
Chapter 2: 
a. Conductors in Electrostatic Equilibrium
b. The Capacitor

Conductors in Electrostatic Equilibrium



Conductors in Electrostatic Equilibrium
Conductors contain free electrons that can move freely. When there is no 

net motion of electrons within the conductor, the conductor is in 
electrostatic equilibrium

A conductor in electrostatic equilibrium has the following properties:
The excess charge on an isolated conductor lies on its outer surface

The electric field inside the conductor is zero and the electric potential inside 
the conductor is constant. 

The electric field just outside a charged conductor at any point is 
perpendicular to its surface and has a magnitude E=  / 0 , where  is the 

surface charge density at that point. 
The surface charge density is greatest at locations where the radius of 

curvature of the surface is smallest.



 The electric field inside the conductor must be zero under the assumption that we 
have electrostatic equilibrium
 If the field were not zero, free
electrons in the conductor would 
experience an electric 
force(F=qE) and would accelerate 

The electric field is zero everywhere inside the conductor

due to this force ( this motion means conductor is  not in  electrostatic equilibrium) 
When the external field is applied, the free electrons accelerate to the left, causing a 
plane of negative charge to be present on the left surface. The movement of electrons to 
the left results in a plane of positive charge on the right surface. These planes of charge 
create an additional electric field inside the conductor that opposes the external field. As 
the electrons move, the surface charge densities on the left and right surfaces increase 
until the magnitude of the internal field equals that of the external field, resulting in a 
net field of zero inside the conductor



If an isolated conductor carries a charge, the 
charge resides on its surface

From Gauss’s law, we conclude that the
net charge inside the gaussian surface
is zero.

Because there can be no net charge
inside the gaussian surface (which is
close to the conductor’s surface), any
net charge on the conductor must reside
on its surface.



The electric field just outside a charged conductor 
is perpendicular to the conductor’s surface 

To determine the magnitude of the electric field, we 
draw a gaussian surface in the shape of a small cylinder 
whose end faces are parallel to the surface of the 
conductorconductor



Charged conductor with a hole inside
Are there any charges on an interior surface?

Let’s apply Gauss’s law
Place a Gaussian surface around the hole.

The electric flux is zero through the 
Gaussian surface, since E=0 inside the 
conductor
So Qin=0 (inside the Gaussian surface),  
there is no charge on the surface of the 
hole



Let’s put a charge inside the hole
But, we know that there is +q inside, it means that there must  be 
–q on the interior surface (+q charge induced –q on the surface)

Let’s count all charges inside the conductor 
to find the amount of charge on the to find the amount of charge on the 

exterior surface



Partial effect

Only part of the electric field lines ends at the 
conductor B, and therefore this effect is called 

partial effect.



(Total effect): A conducting sphere of radius a carries a
net positive charge . A conducting spherical shell of inner
radius b(b > a) and outer radius c. This shell is concentric with
the conducting sphere. Determine the distribution of the
electric charges on conductors (conducting spherical and
conducting spherical shell) . Determine the electric field
strength and electric potential in all regions when the electric
charge, Q, is given on the inner conductor.
1- Distribution of electric charges
1- A conducting sphere Q
We can assume that Q is uniformly distributed on the
surface (r = a) of the inner conductor because of the
spherical symmetry
2- A conducting spherical shell
•The electric charge appears on the inner surface (r = b),
is denoted by Qb and is equal to opposite the charge of
the inner conductor (Qb=-Q).
•The electric charge appears on the outer surface (r = c),
is denoted by Qc and is equal The electric charge of a
conducting spherical shell - The electric charge of the
inner surface Qc=0-Qb=0-(-Q)=Q

Q
-Q Q



case radius r the total electric charge inside The electric field 

2- Finding the electric field 
We apply Gauss’ law to a spherical surface, A, of radius r with the same center as that 

of the conductors
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1 0 < r < a Q1=0

2 a < r < b Q2=Q

3 b < r < c Q3=Q+(-Q)=0

4 c < r Q4=Q+(-Q)+Q=Q
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3- Finding the electric potential
We determine the electric potential from 
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Here, we suppose that the outer conductor in Example is grounded

Grounding is a method to make the electric  potential of a 
conductor zero by connecting  it to the ground. It sometimes 
accompanies  transfer of electric charge. In the above case, 
the electric charge on the outer surface (r = c) of the outer 
conductor transfers to the ground through the grounding.
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The Capacitor
Capacitors are one of the fundamental passive components. In its 

most basic form, it is composed of two plates separated by a 
dielectric. The ability to store charge is the definition of capacitance.

DielectricConductors



Capacitance:  is the ratio of 
charge to voltage

So the amount of charge on a capacitor can be 
determined using the following formula

Capacitance
V
QC  V is really |V|, the potential 

difference across the capacitor

capacitance C is a device property, it is always positive 

VCQ 

The energy of a charged capacitor is given by the equation

unit of C: farad (F) 
1 F is a large unit, most capacitors have values of C ranging from pico farads to 
microfarads (pF to F). micro 10-6,   nano 10-9,   pico 10-12
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• capacitors do not have to consist of parallel plates, other 
geometries are possible

• capacitor made of two coaxial cylinders:

Capacitance of coaxial cylinder and Concentric Spheres 

Calculating the capacitance of a concentric spherical capacitor of charge Q…Calculating the capacitance of a concentric spherical capacitor of charge Q…
In between the spheres (Gauss’ Law)
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Capacitors connected in parallel:

all three capacitors must have 
the same potential difference 

(voltage drop) Vab = V

Circuits Containing Capacitors in Parallel

Q1 = C1 V
and Q2 = C2 V
and Q3 = C3V

Imagine replacing the parallel combination of capacitors by a 
single equivalent capacitor
“equivalent” means “stores the same total charge if the voltage 
is the same.”

Qtotal = Ceq V = Q1 + Q2 + Q3 Using Q1 = C1V, etc., gives
C1V + C2V + C3V = Ceq V C1 + C2 + C3 = Ceq (after dividing both sides by V)

Generalizing:                         Ceq = i Ci (capacitances in parallel add up)



Circuits Containing Capacitors in Series
Q = C1 V1 Q = C2 V2 Q = C3 V3

The charges on C1, C2, and C3 are the same, and are

The voltage drops across C1, C2, and C3 add up
Vab = V1 + V2 + V3

Substituting for V1, V2, and V3: 1 2 3
Q Q QV  =   +   +  C C C1 2 3C C C

e q 1 2 3
Q Q Q Q =   +   +  C C C C

e q 1 2 3
1 1 1 1 =   +   +  C C C C

Q = Ceq V     Substituting for V:

Dividing both sides by Q:

Generalizing:
ieq i

1 1 =  C C



Parallel Series
Summary

C1

C2

C3

C1 C2 C3

equivalent 
capacitance

charge Q’s add same Q
voltage same V V’s add

eq i
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C C
ieq i

1 1
C C


