Course: Formal Languages (TL)

10/03/2025

Problem set 3

Exercise 1:

Build a finite state automata accepting the following language: 'strings containing an even number of a or an odd number of b'.

Exercise 2:

- Build a finite state automata accepting the following language: "all the strings of {a,b}* containing the word aab"
- Build the equivalent deterministic automata.

Exercise 3:

- 1- Build a non-deterministic automata A recognizing the language L over the alphabet $V = \{a, b\}$ such that all the words of L simultaneously satisfy the following two conditions:
 - Any word of L has a length divisible by 3
 - Any word of L begins with the symbol **a** and ends with the symbol **b**
- 2- Build the equivalent deterministic automata.

Exercise 4:

Build a finite state automata accepting the following languages:

```
1- L= { w \& Vt^* / |w| \equiv 0 \ [p] \ p>0 } Vt= \{a, b \}
2- L= { w \& Vt^* / w = a^nb^m, m+n \equiv 0 \ [p] \ p>0 } Vt= \{a, b \}
```

Exercise 5: (passage : grammar-FSA- RE)

Find the regular expressions defining the languages generated by the following grammars:

1- S
$$\rightarrow$$
 bS / aX X \rightarrow bS / aY Y \rightarrow aY / bY / a / b

2- S
$$\rightarrow$$
 aaS / abS / baS / bbS / ε

Exercise 6: (passage : grammar-FSA- RE)

Find a regular grammar equivalent to the following grammar:

1- S
$$\rightarrow$$
 XYZ X \rightarrow aX/bX/E Y \rightarrow aY/bY/E Z \rightarrow aZ/E

$$2- S \rightarrow XY \quad X \rightarrow aX/Xa/a \quad Y \rightarrow aY/Ya/a$$

Exercise 7: (passage : grammar-FSA- RE)

Find an equivalent grammar that does not contain the empty word (\mathcal{E})

1-
$$S \rightarrow aX/bX$$
 $X \rightarrow a/b/E$

2- S
$$\rightarrow$$
 aS / bX X \rightarrow aX / ε

Exercise 8:

Build a deterministic finite state automata accepting the language defined by the following regular expression:

- 1- (00+11)*(01+10)(00+11)*
- 2- ((a+b)* abb (a+b)*)*

Exercise 9:

Give a regular expression that describes the possible words for a 24-hour digital clock hours where hours, minutes and seconds are separated by ":"

Exercise 10:

Let the FSA defined by the following transition table: A: initial state E: Final state

	0	1
A	В	C
В	В	D
C	В	C
D	В	Е
Е	В	С

- 1- Using Arden theorem, find the regular expression equivalent to this automata
- 2- Minimizing this automata
- 3- Using Arden theorem, find the regular expression equivalent to the minimized automata

Exercise 11:

Let the FSA defined by the following transition table: A: initial state C: Final state

	a	b
A	B G	F
В	G	C
C	A	C
D	A C	C C G
Е	Н	F
F	С	A
B C D E F G	H C G	E C
Н	G	С

- 1- Minimizing this automata
- 2- Using Arden theorem, find the regular expression equivalent to the minimized automata

Exercise 12: (do it alone)

Let L1 be the language of the words of $\{a, b\}^*$ containing an odd number of letters "a"; and L2 = $\{aa, ab\}$.

- 1) Build a simple finite state automata that accepts L1.
- 2) Build a simple finite state automata that accepts L2.
- 3) Build a simple finite state automata that accepts L1 \cup L2.
- 4) Make the automata deterministic.
- 5) Minimizing the deterministic automata.

Exercise 13: (do it alone)

Consider the grammar G, where $R = \{ A \rightarrow aaB \mid abC; B \rightarrow aC \mid To; C \rightarrow bC \mid \epsilon \}$

- 1) Build the deterministic automata that accepts the iteration of L(G).
- 2) Build the automata that accepts the mirror of L(G).