Integral calculus

The indefinite integral

grating irrational functions

Integration of irrational functions, examples

Integration of irrational functions of the form $\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx,$

Integrating irrational functions

Integrals of the form
$$\int R \left[x, \left(\frac{ax+b}{cx+d} \right)^{\frac{p_1}{q_1}}, \left(\frac{ax+b}{cx+d} \right)^{\frac{p_2}{q_2}}, \dots \right] dx$$

where, R is a rational function and, $p_1, q_1, p_2, q_2, \ldots$ are integers,

we can solve using substitution $\frac{ax+b}{cx+d} = z^n$,

where the power n is the least common multiple of q_1, q_2, \ldots

Integration of irrational functions of the form $\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} \, dx$

where $P_n(x)$ is an n-th degree polynomial.

Set
$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx = Q_{n-1}(x) \cdot \sqrt{ax^2 + bx + c} + \lambda \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

where $Q_{n-1}(x)$ is an (n-1) -th degree polynomial of undetermined coefficients and λ is a constant.

Coefficients of the polynomial ${\it Q}$ and the constant λ we obtain by deriving the above identity.

Integration of irrational functions of the form $\int \frac{dx}{(x-\alpha)^n \sqrt{\alpha x^2 + bx + c}}$

Given integral can be solved using the substitution $\,x-lpha=1\,/\,t.\,$

Integral calculus

The indefinite integral

Integrating irrational functions

Integrals of the form
$$\int R(x, \sqrt{ax^2 + bx + c}) dx.$$

Euler's substitutions

Integrating irrational functions using Euler's substitutions examples

Integrals of the form
$$\int R(x, \sqrt{ax^2 + bx + c}) dx$$
.

Euler's substitutions

1.
$$\sqrt{ax^2 + bx + c} = t \pm \sqrt{a}x$$
, $a > 0$,

2.
$$\sqrt{ax^2 + bx + c} = \sqrt{a(x - x_1)(x - x_2)} = t(x - x_1) = t(x - x_2),$$

3.
$$\sqrt{ax^2 + bx + c} = tx \pm \sqrt{c}, c > 0.$$

Binomial integral

Integral of the form

$$\int x^m (a+bx^n)^p dx$$

is called the binomial integral where, a and b are real numbers while m, n and p are rational numbers.

If m, n and p all are integers then the integrand is a rational function integration of which is shown above.

- There are only three cases the binomial integral can be solved by elementary functions:
- 1. if m and n are fractions and p is an integer then, the integral can be solved using substitution x = s, where s is the least common denominator of m and n.
- 2. if p is a fraction and (m+1)/n is an integer, then the integral can be solved using substitution $a+bx^n=t^s$, where s is denominator of p.
- 3. if p is a fraction and (m+1)/n+p is an integer then, the integral can be solved using substitution $ax^{-n}+b=t^s$, where s is denominator of p.

Integral calculus

The indefinite integral

■ Trigonometric integrals

Trigonometric integrals of the form $\int \sin^m x, \cos^n x \, dx$ Integrals of the rational functions containing sine and cosine, $\int R(\sin x, \cos x) \, dx$

Trigonometric integrals of the form

$$\int \sin^m x, \cos^n x \, dx$$

where m and n are integers, we use the following substitutions;

- 1) if *m* is a positive odd integer then, $\cos x = t$
- 2) if *n* is a positive odd integer then, $\sin x = t$
- 3) if m + n is a negative even integer then,

$$\tan x = t$$
 or $x = \tan^{-1} t$, $dx = \frac{dt}{1+t^2}$, $\sin x = \frac{t}{\sqrt{1+t^2}}$ and $\cos x = \frac{1}{\sqrt{1+t^2}}$.

If m and n are positive even integers then the integrand expression can be transformed using the following trigonometric identities,

$$\sin^2 x = \frac{1}{2}(1-\cos 2x)$$
, $\cos^2 x = \frac{1}{2}(1+\cos 2x)$ and $\sin x \cos x = \frac{1}{2}\sin 2x$.

Trigonometric integrals of the form

$$\int \sin(m x) \sin(n x) dx, \quad \int \sin(m x) \cos(n x) dx, \quad \int \cos(m x) \cos(n x) dx,$$

in these cases we use the following product to sum formulas,

1)
$$\sin mx \sin nx = \frac{1}{2} [\cos (m-n) x - \cos (m+n) x],$$

2)
$$\sin mx \cos nx = \frac{1}{2} [\sin (m-n)x + \sin (m+n)x],$$

3)
$$\cos mx \cos nx = \frac{1}{2} [\cos(m-n)x + \cos(m+n)x].$$