
Chapter 3

Key-Value Database

Key-Value Database

• A Key-Value Database is a type of NoSQL
database that stores data as a collection of
key-value pairs.

• It is designed for :

high-speed lookups,

scalability,

 and flexibility,

Key-Value Database

• Each key is a unique identifier,

• and its value can be anything from a simple

string to a complex object (JSON, XML, binary

data, etc.).

Key-Value Database

Key-Value Database

• The key is used to retrieve the corresponding
value instantly.

• Data retrieval is done using hash tables, B-
Trees, or in-memory caching.

• Some key-value databases support
persistence, replication, and clustering for
scalability.

Key-Value Database

• Advantages of Key-Value Databases

1. Easy to Use: Simple operations like GET, SET, DELETE.

2. High Performance: Fast lookups using hash-based access.

3. Scalability: Can handle massive amounts of data across distributed

nodes.

4. Flexibility: Schema-less structure allows storing various data types.

5. Efficient Caching: Used for in-memory caching (e.g., Redis, Memcached).

Key-Value Database

• Use Cases of Key-Value Databases

• Session Management: Storing user session
data (e.g., Redis for login sessions).

• Real-time Analytics: Handling fast-moving
data in stock trading, IoT.

• Gaming Leaderboards: Fast retrieval of high-
score rankings.

• Configuration Storage: Managing settings and
configurations in microservices.

Key-Value Database

2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterCard
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterCard
2012-01-01 09:00 Austin Cameras 379.6 Visa
2012-01-01 09:00 New York Consumer Electronics 296.8 Cash
2012-01-02 15:20 Lincoln Cameras 242.2 Discover
2012-01-02 15:20 Madison Baby 254.15 MasterCard
2012-01-02 15:20 Wichita Cameras 446.66 Amex
2012-01-02 15:20 Irvine Computers 9.23 Discover
2012-01-02 15:20 Anaheim Cameras 3.64 Visa
2012-01-02 15:21 Birmingham Music 156.68 Cash

Example : Calculate total sales per store for the
current year?

Key-Value Database

• In traditional programming, we will make
Hash tables in the form <key-value>

1. For each entry, enter the city and the sale
price

2. If we find an entry with a city already
entered, we group them by adding the sales

San Jose 214.05
Fort Worth 153.57
San Diego 66.08
New York 55.60
San Jose 100.00

San Jose 31400.05
Fort Worth 15300.57
San Diego 66000.08
New York 55000.60

Key-Value Database

• Millions of rows

• Memory size issues

• Sequential processing  Problem?

• Solution : Map-Reduce of Hadoop

San Jose 214.05
Fort Worth 153.57
San Diego 66.08
New York 55.60
San Jose 100.00

San Jose 31400.05
Fort Worth 15300.57
San Diego 66000.08
New York 55000.60

Key-Value Database

Hadoop and MapReduce

• MapReduce is a distributed data processing

model and programming framework introduced

by Google

• for handling large-scale datasets in parallel across

multiple nodes in a cluster.

• It is widely used in Big Data processing and is the

foundation of Apache Hadoop.

Key-Value Database

Hadoop and MapReduce

• MapReduce follows a divide-and-conquer
approach by breaking down tasks into two key
phases:

• Map Phase – Processes and filters data,

outputting key-value pairs.

• Reduce Phase – Aggregates and summarizes
results from the Map phase.

Key-Value Database

Hadoop and MapReduce
• How MapReduce Works?

1. Input Data

• The input dataset is typically stored in HDFS (Hadoop
Distributed File System) and is split into chunks
across multiple nodes.

2. Map Phase

• The Map function extracts key-value pairs from input
data.

• The output is partitioned and sorted for the next step.

Key-Value Database

Hadoop and MapReduce
• How MapReduce Works?

3. Shuffle & Sort (Intermediate Phase)

• The framework groups values by key and distributes them
to reducers.

• This step ensures that all values for the same key go to the
same reducer.

4. Reduce Phase

• The Reduce function processes grouped key-value pairs.

• It applies aggregation, counting, summation, or other
computations.

• The final output is written to storage (e.g., HDFS, database).

MapReduce – (ex: WORD COUNT)

Welcome to hadoop
class hadoop is good
Hadoop is bad

Welcome, 1
 to, 1
 hadoop, 1

Class, 1
Hadoop, 1
Is, 1
Good, 1

Hadoop, 1
Is, 1
Bad, 1

Map

Welcome, 1

to, 1

hadoop, 3

is, 2

good, 1

bad, 1

Class, 1

Welcome, 1
To,1
 hadoop, 3
class , 1
is , 2
Good, 1
Bad, 1

Reduce

Key-Value Database

Hadoop and MapReduce

MapReduce :WORD COUNT

Key-Value Database

Hadoop and MapReduce

• MapReduce :WORD COUNT

• Program : MAP

public class WordCountMapper extends MapReduceBase implements

Mapper<LongWritable, Text, Text, IntWritable> {

private final IntWritable one = new IntWritable(1); private Text word = new Text();

 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable>

output, Reporter reporter) throws IOException {

String line = value.toString();

StringTokenizer itr = new StringTokenizer(line.toLowerCase());

while(itr.hasMoreTokens())

 { word.set(itr.nextToken()); output.collect(word, one); } } }

Key-Value Database

Hadoop and MapReduce

REDUCER Code
public class WordCountReducer extends MapReduceBase implements Reducer<Text,
IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values, OutputCollector
<Text, IntWritable> output, Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 // replace ValueType with the real type of your value

 IntWritable value = (IntWritable) values.next();

 sum += value.get(); // process value

 }

 output.collect(key, new IntWritable(sum));

 }}

Key-Value Database

Hadoop and MapReduce

2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterCard
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterCard
2012-01-01 09:00 Austin Cameras 379.6 Visa
2012-01-01 09:00 New York Electronics 296.8 Cash
2012-01-02 15:20 Lincoln Cameras 242.2 Discover
2012-01-02 15:20 Madison Baby 254.15 MasterCard
2012-01-02 15:20 Wichita Cameras 446.66 Amex
2012-01-02 15:20 Irvine Computers 9.23 Discover
2012-01-02 15:20 Anaheim Cameras 3.64 Visa
2012-01-02 15:21 Birmingham Music 156.68 Cash

Calculate total sales per store for the current year?

Key-Value Database

Hadoop and MapReduce

Key-Value Database

Hadoop and MapReduce

Advantages of MapReduce :

1. Scalability – Handles petabytes of data
across distributed clusters.

2. Fault Tolerance – Automatically recovers
failed tasks.

3. Parallel Processing – Processes data in
parallel for speedup.

4. Flexibility – Can be implemented in various
languages (Java, Python, etc.).

Key-Value Database

Hadoop and MapReduce

Disadvantages of MapReduce :

• High Latency – Not suitable for real-time
processing.

• Complex Programming Model – Requires
writing separate Map and Reduce functions.

• I/O Intensive – Reads and writes data
multiple times, slowing performance.

Key-Value Database

Hadoop and MapReduce

Alternatives to MapReduce :

1. Apache Spark – Faster, in-memory
processing.

2. Apache Flink – Real-time stream processing.

3. Google BigQuery – Serverless Big Data
analytics.

Key-Value Database

Hadoop and MapReduce
MapReduce is a programming model available in Hadoop

environments

Used to access big data stored in the Hadoop File System

(HDFS)

Key-Value Database

Hadoop and MapReduce

• A Hadoop cluster of 20,000 servers (standard and

inexpensive servers) with 256 MB data blocks can

process about 5 TB of data.

• With MapReduce, you can therefore reduce the

processing time compared to sequential

processing of such a large dataset.

• Google's cluster contains 10,000,000 servers

Key-Value Database

Hadoop and MapReduce

Key-Value Database

Hadoop and MapReduce

• With Hadoop and MapReduce, rather than

sending the data to where the application or

algorithms are located,

• The algorithms are executed on the server

where the data already resides, which has the

effect of speeding up processing.

Key-Value Database

Hadoop and MapReduce

Distributed storage:

• Hadoop Distributed File System (HDFS),

• Amazon S3,

• Google Cloud Storage

Key-Value Database

Hadoop Distributed File System (HDFS)

• Is a distributed file system that manages large
data sets

Key-Value Database

Hadoop Distributed File System (HDFS)

• HDFS is one of the core components of Apache Hadoop,
(along with MapReduce and YARN).

• Running on commodity hardware

Key-Value Database

Hadoop and MapReduce

• HDFS objectives :

1. Fast recovery from hardware failures :

– HDFS can include thousands of servers failure of

at least one server is inevitable

– HDFS was designed to detect faults and

automatically recover quickly

Key-Value Database

Hadoop and MapReduce

• HDFS objectives :

2. Access to streaming data

3. Hosting of large data sets.

4. Portability

Key-Value Database

Hadoop and MapReduce

• A cluster of several machines Master/slave

• Principle data is stored on datanodes (slaves)

• Metadata on data blocks is managed by the

namenode (master)

• Each data file is broken down into blocks.

• Default size 64 MB

• With replication principle

Key-Value Database

Hadoop and MapReduce

Key-Value Database

Hadoop and MapReduce

Key-Value Database

Hadoop and MapReduce

