University Mohamed Khider-Biskra Computer Science Department

 1^{st} year Computer Science Degree Exercises Serie N°3

TD ADS2

Linked Lists

Consider the following data structure (linked list):

Type

```
\begin{aligned} linked\_list &= \text{Record} \\ &el: \text{element\_type}\,; \\ &Next: \uparrow linked\_list\,; \\ &\text{End}\,; \\ &List= \uparrow linked\_list\,; \end{aligned}
```

Write the following procedures:

- 1. **Procedure** insert_begin(v : element_type; **var** l : List); which insert an element v at the beginning of the list l.
- 2. **Procedure** insert_end(v: element_type; **var** l: List); which insert an element v at the end of the list l.
- 3. **Procedure** delete_begin($\mathbf{var}\ v$: element_type; $\mathbf{var}\ l: List$); which delete the first of a list $l.\ v$ will contains the value of the deleted element.
- 4. **Procedure** delete_end($\mathbf{var}\ v$: element_type; $\mathbf{var}\ l: List$); which delete the last element of the list $l.\ v$ will contains the value of the deleted element.
- 5. Use the previous operations to accomplish:
 - (a) a procedure to transfer the elements of an array T of N real numbers into a linked list L.

Procedure array2list(T : array [N] of real; var <math>L : list);

- (b) a procedure of a reverse transfer (list to array). **Procedure** list2array($\operatorname{var} L : \operatorname{list}$; $\operatorname{var} T : \operatorname{array}[N]$ of real);
- (c) a sub-program to sort a list L.
- (d) a sub-program to merge two ordered lists L_1 and L_2 in a third list L which will be also sorted.
- 6. Let L be a sorted linked list. Write:
 - (a) **Procedure** insert(v: element_type; var L: list); which insert the value v in the list L so that the list remains sorted.
 - (b) **Procedure** delete(v: element_type; var L: list); which deletes v from the list L.