Département de génie mécanique

3 Licence Construction mécanique

Théorie des mécanismes 2021/2022

Série N01 : Les torseurs

Exercice 1:

Soient les trois vecteurs $\overrightarrow{V_1} = -\vec{\imath} + \vec{j} + \vec{k}$, $\overrightarrow{V_2} = \vec{\jmath} + 2\vec{k}$, $\overrightarrow{V_3} = \vec{\imath} - \vec{\jmath}$, définie dans un repère orthonormé $R(0, \vec{\imath}, \vec{\jmath}, \vec{k})$ et liés respectivement au points A(0,1,2), B(1,0,2), C(1,2,0).

- 1- Construire le torseur $[\vec{T}]_0$, associé au système des trois vecteurs.
- 2- Déduire l'automoment
- 3- Calculer le pas du torseur
- 4- Déterminer l'axe central du torseur

Exercice 2:

Soient le torseur $[\overrightarrow{T_1}]_0$ défini par les trois vecteurs :

$$\vec{V_1} = -2\vec{i} + 3\vec{j} - 7\vec{k}$$
, $\vec{V_2} = 3\vec{i} - \vec{j} - \vec{k}$, $\vec{V_3} = -\vec{i} - 2\vec{j} + 8\vec{k}$

Définie dans un repère orthonormé $R(0,\vec{i},\vec{j},\vec{k})$ et liés respectivement aux points A(1,0,0), B(0,1,0), C(0,0,1). Soit le

Torseur:
$$\left[\overrightarrow{T_2}\right]_0 = \begin{cases} \overrightarrow{R_2} \\ \overrightarrow{M_{20}} \end{cases}$$
 ou $\overrightarrow{R_2} = 2\overrightarrow{i} + \overrightarrow{j} + 3\overrightarrow{k}$ et $\overrightarrow{M}_{20} = -3\overrightarrow{i} + 2\overrightarrow{j} - 7\overrightarrow{k}$

- 1- Déterminer les éléments de réduction du torseur $[\overrightarrow{T_1}]_0$
- 2- Calculer le pas et l'axe centrale du torseur : $[\overrightarrow{T_2}]_0$
- 3- Calculer la somme et le produit des deux torseurs
- 4- Calculer l'automoment du torseur somme $[\overrightarrow{T}]_0 = [\overrightarrow{T}_1]_0 + [\overrightarrow{T}_2]_0$

Exercice 3:

Soient deux torseurs $[\overrightarrow{T_1}]_A$ et $[\overrightarrow{T_2}]_A$ définis au même point A par les éléments de réductions dans un repère orthonormé $R(0, \vec{t}, \vec{j}, \vec{k})$.

$$\begin{bmatrix} \overrightarrow{T_1} \end{bmatrix}_A = \begin{cases} \overrightarrow{R_1} = -3\overrightarrow{\imath} + 2\overrightarrow{\jmath} + 2\overrightarrow{k} \\ \overrightarrow{M}_{1A} = 4\overrightarrow{\imath} - \overrightarrow{\jmath} - 7\overrightarrow{k} \end{cases} \quad \text{et} \quad \begin{bmatrix} \overrightarrow{T_2} \end{bmatrix}_A = \begin{cases} \overrightarrow{R_2} = 3\overrightarrow{\imath} - 2\overrightarrow{\jmath} - 2\overrightarrow{k} \\ \overrightarrow{M}_{2A} = 4\overrightarrow{\imath} + \overrightarrow{\jmath} + 7\overrightarrow{k} \end{cases}$$

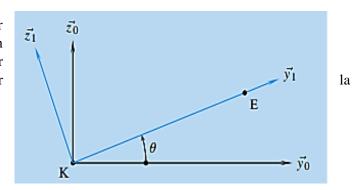
- 1- Déterminer l'axe centrale et le pas du torseur : $[\overrightarrow{T_1}]_A$
- 2- Déterminer l'automoment du torseur $[\overrightarrow{T_1}]_4$, montrer qui est indépendant du point A.
- 3- Construire le torseur $\left[\overrightarrow{T}\right]_A = a. \left[\overrightarrow{T_1}\right]_A + b. \left[\overrightarrow{T_2}\right]_A$
- 4- Quelle relation doivent vérifier \mathbf{a} et \mathbf{b} pour le torseur $\left[\overrightarrow{T}\right]_A$ soit torseur couple.

Exercice 4:

Un manège pour enfant comporte un bras de longueur variable en rotation autour d'un axe. Le plan d'évolution du bras est un plan $(K, \overrightarrow{y_0}, \overrightarrow{z_0})$. Un moteur actionne la rotation d'axe $(K, \overrightarrow{x_0})$ et un vérin fait varier longueur ρ du bras défini par $\overrightarrow{KE} = \rho$. $\overrightarrow{y_1}$.



- Calculer
$$\left[\frac{d^2 \overline{KE}}{dt^2}\right]_0$$



Département de génie mécanique

3 Licence Construction mécanique

Exercice 5:

Soit la structure très simplifiée d'un bras de robot évoluant dans un plan $(A, \overline{x_1}, \overline{y_1})$. Deux moteurs pilotent les deux rotations possibles, respectivement autour des axes $(A, \overline{z_1})$ et $(B, \overline{z_2})$. On donne $\overrightarrow{AB} = a.\overline{x_2}$ et $\overrightarrow{BC} = b.\overline{x_3}$. Les longueurs a et b étant constantes au cours du temps.

- 1- Tracer les figures de définition des deux angles α et β
- 2- En déduire les expressions des vecteurs rotation $\overrightarrow{\Omega}(2/1)$ et $\overrightarrow{\Omega}(3/2)$.
- 3- Calculer $\left[\frac{d\overrightarrow{AB}}{dt}\right]_1$, $\left[\frac{d\overrightarrow{BC}}{dt}\right]_2$ et $\left[\frac{d\overrightarrow{BC}}{dt}\right]_1$
- 4- Déduire l'expression de $\left[\frac{d\overrightarrow{AC}}{dt}\right]_1$

Théorie des mécanismes 2021/2022

