Chapter lli

Kinematic and static analysis of mechanism



III Kinematic and static analysis of mechanism

In this part, we will be interested in systems of solids connected to each other by frictionless
joints (perfect joints), solids are non-deformable and we will quite often neglect the actions of gravity
in front of other mechanical actions. The Fundamental Principle of Statics (FPS) therefore applies to
each solid of the mechanism studied. The objective is both to study the kinematics of a mechanism
(input output relationship) and the mechanical actions between the solids of the system studied.
Each solid being in contact with one or more others, each connection between two solids will be

described by one of the elementary joints presented previously.

II1.1 Equivalent joint

Let us assume that there are several connections between two parts $;: and Sz, made with or
without intermediate parts. The connection equivalent to all the connections located between parts
S; and S; is the theoretical reference joints Lz, which has the same behavior as this association of
joints, i.e. it transmits the same mechanical action and allows the same movement. An illustration in
terms of a joint graph is given in Figure lll.1 where joints Lz, Ly, Lz and Ls as well as the material
system Ss are kinematically and mechanically equivalent to joint Li2. The connections that can exist
between the connected solids are either in parallel or in series. Let us now see what this implies as a

condition on the kinematic torsors and mechanical actions.

Figure lll. 1 : Example of equivalent joint.
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111.1.1 Parallel joints
We say that n joints Ly, Ly, ..., Lj, ..., Ln are arranged in parallel between two solids $; and S if
each joint directly connects these two solids. An illustration in terms of a joint graph is given in Figure

1.2.

L,

) &

Figure lll. 2 : n parallel joints.
a) Static torsor
The components of mechanical actions transmissible between S; and S; are the set of actions
transmissible by the joints L;. Indeed, by applying the fundamental principle of statics to the solid Sz
for example, the following relation immediately follows:

n

{[TE‘I]susz}M = z{[Ti]m/sz}M

i=1
With : (i) represent the joint L;

Therefore, for a component of the static torsor of the equivalent joint not to be zero, it suffices

that a single corresponding component of a joint Li is not zero.

b) Kinematic torsor
To obtain the kinematic torsor of the equivalent joints, it suffices to write that the kinematic
torsor of the equivalent joints and must be compatible with all the kinematic torsors of the joints L;

fori € [1;n], that's to say :

{[TEq]Sl/SZ}M = {[T1]s1/sz}M = {[T2]51/52}M = e = {[Tn]s1/sz}M

Example (Kinematic study)
We consider two solids S1 and S; assembled by two parallel joints:
L1: Sliding pivot connection with axis (0, X)

L: Point connection with normal (0, X)
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The kinematic torsors of these two connections are written at point 0, in the same basis R.

a U
[TLl]R = {0 0}

a, O
[T2]r = {ﬁz vz}
0 O

Y2 W2

R R

/ (L) (Ll
1 (&)

Solution

We suppose that the L1z is the equivalent joints of two joins Lyand Lz . The Lz> torsor is written in the

following form in the same basis R:

a u
[TL12]R = {ﬁ v}
Yy Wig

The two joints L;and Lz are parallel, so we have :

[Tr12]r = [Tralr = [Tr2lr

a u a; U a, 0
Vv Wi 0 0/g Y2 Wy

The equality of the torsors gives :

a=a; =a, u=u, =0
B=0=p v=0=wv,
y=0=y, w=0=w,

0

a=a;=a, 0
0
0 0/r

So : the torsor of equivalent joints  [T;1,]gr = {

The equivalent joint is the pivot along the (0, X) axis with a single degrees of freedom.

Example 1
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We consider a shaft Sz, with axis (0,X) mounted in a frame S; via two joints L; and L. Link Lz is an

annular linear joint with axis (0, X) , link Lz is an pivot along the axis (0, X).

L) L)

|
7 |

The statically torsors of two joints are written in the same basis O by the following formula:

0 0 X, 0
[Ts1lo = {Y1 0} [Ts2]o = {Yz Mz}
0

Z, 0 Z, NpJ,

1- Determine the static torsor of the equivalent joint to the two parallel joints Lz and L.

2- Determine the degree of hyperstaticity of the equivalent joint as well as the hyperstatic

unknowns.

3- By a kinematic study, determine the kinematic torsor of the equivalent joint to the two joints

L; and L».
Solution

1- The two statically torsors L; and L2 are in the same basis 0, so maintain their shape :

0 O X5 0
[Ts1]o = {Y1 0} [Tsz]o =1, M,
Z; 0 0 Z, N, 0

The equivalent torseur is written in the form :

[T512]0 =

X L
Y M
Z N),

The two joints L1 and L2 are parallel so :

[Ts12]o = [Ts1lo + [Ts2]o

X L 0 0y (X, 0 X, 0
{Y M = Y1 O} + Yz M2 = {Yl + YZ Mz}
z Ny o), z, N, \zi42, W),
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( X:XZ

Y=Y1+Y2
Z=7,+127, . _
L=0 with 7, =5
M:MZ
N:NZ
X, 0
So: [Ts12]0:{y1+yz Mz}
Zi+Z; N,

The torsor of equivalent joint is the pivot along the (0, X)

2- The degree of hyperstaticity h

h=1I,—r
Wlth . IS - 151 + 152
0 O X,
The torsor [Ts1]o = {Yl 0} have I;; = 2 and the torsor [Ty, ], = {Yz
Z, 0), Z,
So: I,=245=7

From the equations of equivalent joint we have r; = 5
So: h=7-5, h=2

The mobility m is calculated by :
m=E;—1, with E,=6.(N,—1)=6.(2—-1)=6
m=6-5=1
3- Kinematic torsor of equivalent joint L2
The kinematic torsors of two joints are :
ay U a, 0
[Tx1lo = {ﬁl 0} [Tx2]o = { 0 0}
i 0), 0 0/
The equivalent torseur is written in the form :

a u
[TK12]0 = {ﬁ v}
Yy wj,

0
M,
N,

The two joints Ly and L, are parallel so the compatibility of joints requires that:

[TK12]0 = [TKI]O = [TKZ]O

0

have I, =5



So we have :
a=a,=a,
B =p=
Yy=r1= : _
w=wu =0 with 17,=5
v=20
w=0
a=a,=a, 0
The equivalent torsor of joints is written as follow : [Tx12]o = 0 0
0 0/

The torsor of equivalent of joints is the pivot along the (0, X)
Example 2

The following Figure shows a diagram of a mechanism consisting of two links. A ball joint with

center O and a rectilinear linear link (plane cylinder) with normal Z and contact along (A, ¥). with

—

0A = —a.Xx.

e The static torsors of the ball joint S; and the rectilinear linear joint Sz are defined respectively at

point O and at point A by:

X, 0 0 L,
[Sl]o: Y, 0 [SZ]Az[O O]
Z, 0 Z, 01,
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e The kinematic torsors of the ball joint C: and of the rectilinear linear joint C; are defined

respectively at point O and at point A by:

Wi1q 0 0 sz
[Kl ]0 = Wyl 0 [KZ ]A = wyZ VyZ
W,q 0 0 W, 0 A

1- Draw the joint graph of the mechanisms.

2- Are the two joints in series or in parallel?

3- Calculate the cyclomatic number N..

4- Using a static approach, determine the equivalent joints at point O of the two joints.

5- Using a kinematic approach, determine the equivalent joint at point O of the two joints.

Solution

1- Joint graph (structure graph)

L (A, 3).

CBJ (0).

- LJ : Linear joint in A, along axis ¥ with Normal axis Z
- CBJ : Center Ball Joint (O).
2- Les deux liaisons sont en parallele
3- Nombre cyclomatique N
N.=N;—N,+1=1
4- Equivalent joint (Static Approach)
The equivalent joint will be calculated at point O, so the torsor [52 ]A must be written at
point O.
[$2],=[S21, + 0AA Qus4

0 L, —-a 0
[s.],=|0 o +<0>/\<0>
zZ, 0], \o z,
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o

0 L, 0 0 L,
S.],=|0 © +<a.22> so  [S,],=]|0 aZz,
Z, 01, \o Z, 0
The two joints are in parallel so:
X, 0 0 L,
[sEq]0=[sl]O+[sz]0= Y, Of +]0 aZ,
Z, 0l, Z, 01,
X1 L,
[SEq]0= Y, a.Z,| thejoint represent a pivot of axis Z
Z,+Z, 01,

5- Equivalent joint (Kinematic Approach)

The same for the torsor [Kz ]A, the torsor is written in the point A and must be written at

point O.
[KZ ]0 = [Cz ]A +0—‘4)A QZCA

[ 0 sz- —Qa 0
[KZ]O =Wy Vy2 +< 0 ) /\<wy2>

_sz 0 1, 0 W,o

0V, 0 0
[K2 ]0 = Wyz Vyz + ( a.w,, ) SO [CZ ]0 = Wyz Vyz + a. Wyo
W, —a. Wy2

—a. Wyz

Wyo 0 1,

The two joints are in parallel so:

X L Wyt 0 0
[CEq]O = [C1 ]0 = [Cz ]0 with [Y M| =|wy,1 O =|wy,
Z N 0 Wzt 0 0 Wy2
For the equality we obtain:
X=wy;=0 L=0=V,
Y=w, =wy, M=()=Vy2_|_a_w-z2
Z=Wzl =Wy N=O=_a.Wy2 , wy, =

0O O
[CE‘I]o = [ 0 0] Joint pivot along axis Z
W,1 0 0

VxZ

VxZ
Vy2 + a. W,

—a.w
y2 0



Example 3

1- Draw the graph of the structure of the slide on a ball joint axis mechanisms, shown in the

following figure.

N
1

Give their kinematic chain type and their cyclomatic number.

3- Name each of the joints (Center, axis,...).

BN
1

approach.

With the Kinematic and static joints are expressed by:

0 Vxl sz 0 0 L1 X2
[K“]A =10 0. [KLZ]B =2 0 , [SLl]A = [V Ml] ’ [SLZ]B = (Y2
0 0 A W, 0 B 1 Nl A ZZ
Y
a \ BN/ Ss
+A < +, >
J ?
N s,
Solution :

1- Graph of the structure (joint graph)

2- kinematic chain type and the cyclomatic number N,
Ne=N;—N,+1=2-3+1=0
No cycle is obtained because the chain is open (The joints are in series)

3- Name each of the joints (Center, axis,...).

Ls: Slide along axis ¥

Determine their equivalent joints using the kinematic approach and then the static
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L. Ball joint with Center B

4- Equivalent joints at point B
a- kinematic approach

The torsor [Ku]A is written at point A and must be written at point B

_ — 0 Vxl _AB Vxl 0 Vx1
[KLl]B:[KL1]A+BA/\.QA= 0 0 +]1 o [Alol=lo 0
0 0 A 0 0 0 0 B
0 Va W,, 0
[KLl]B =10 O and [KLZ]B =|wy, O
0 0l w, 0]
0 Vx1 Wx2 0
[KL/Eq]B = [KLl]B + [KLZ]B =10 0| +{wy,2 O
0 0 B sz 0
B
Wiz Vi
[KL/Eq]B = [Wy2 0 [ The Equivalent joints represent a linear annular joint along the axis X.
W;2 0

B

b- Static Approach

The torsor [SLI]A is written at point A and must be written at point B

[0 L —AB] [0 0 L, 0 0
[Sia], = [Sua], +BAAGQ, =Y My| +| 0 [A|Ve|=|Vy M;| +|0 4B.Z,
Z1 Nl A 0 Zl Zl N1 A O —ABYI B
0 L, X, 0
[Sil, = Y1 My+AB.Zy| , [S,],=|Y2 O
Zy N{—AB.Y{l, Z, 0l
The two joints are in series so:
[S1/eql, = [S1aly = [S12],
X L 0 L, X, 0
[SL/Eq]B= Y M| =|Y1 M;+AB.Z,| =|Y; 0]
Z Nl 1|Z; Ny-ABY.l, 1z, 0l

we obtain : X=0=XZ,Y=Y1=Y2,Z=Z1=ZZ

L:L1:0 ,M:M1+ABZ1:0 ,N:NI_ABY1:O

68



X L 00
So: [SL/E,,]B= Yy M| =y o| ,with:Y=Y,=Y, and Z=2,=12,
Z Nlg 1z olg

III.2 Kinematic and static analysis of closed chains

111.2.1 Geometric study of a closed chain mechanism
To achieve the geometric study of a closed-loop system (figure 111.3), it is sufficient to write the

vector relation connecting the characteristic points of each solid.

Figure Ill. 3: Closed chains.

Let O; be the characteristic point of the solid §;, the closing relation of the geometric chain is written

as:

0,0, + 0,03 + -+ 0,_,0, + -+ 0,,_,0, + 0,0, = 0

By projecting this vector equation into an orthonormal basis, we obtain 3 scalar equations
linking the different geometric parameters. In the case of a plane mechanism, we obtain 2 scalar

equations, deduced from the projection of this relation onto the axes of the plane.
example
Example: Walking robot

Consider the walking robot in Figure 1l1l.4. The six legs of the robot are identical and are
synchronized three by three using the alternating “tripod” technique. Within each flank, the center

leg is angularly offset from the other two by the angle it (rad).

e The housing (0) is assumed to be fixed;
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e The crankpin (1) pivots relative to the housing around the axis (O, zo) and in axis pivot

connection (B, zo) with the lug (2);

e The lug (2) pivots around the axis (A, zo) with the guide (3), it is simultaneously driven by the

crankpin (2) by a connection at B;

e The guide (3) slides along (O, yo) relative to the housing (0).

Kinematic chain Structure graph

We recognize on the structure graph a simple closed chain. From the two base change figures we

determine:

N .
o Ql/O = a.zZy

o Qz/o=ﬂz/3+ﬂ3/0=gz—0>+0
The geometric closure is written:
OC+CA+AB+B0 =0

Either in projection in (Xg, Vo, Zo) :
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a.sinf@ —r.cosa =0
A—a.cos@ —r.sina=0
e—e=0

From these relations, it is quite easy to obtain the relations between 8 and a and then between A and

a.
e For0: sin@z%.cosa with9=arcsin(£.cosa)
e ForAi:

A=a.cos@ +r.sina =a.VvV1—sin?0 +r.sina SO :

T
A= a.\/l—(a.cosa)2+r.sina

111.2.2 Kinematic analysis of closed chains

Consider a closed chain mechanism composed of n solids and n links (figure 111.5). For each link

Li, we can write the kinematic torsor between the two solids S; and Si:; of the link at the point O;

characteristic of the link.

G
[Kasnyil = {e s }
0;

0;€(i+1)/i

Figure lll. 5: Closed chain mechanism.

The kinematic closure is obtained by writing the sum of the torsors at the same point O;:
[Kypel,, + [Kapa]y + o+ [Kamnl, + [Kipaen],, + [Knpl = 10]
This relationship allows us to obtain 2 vector equations, and after projection, 6 scalar equations.

From this system of equations, we deduce the degree of mobility of the mechanism.
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Note: This sum of torsors can only be calculated if the torsors are written at the same point.

Example: Walking robot (The continuation)

The kinematic closure is written by :
[Ksp2] = [Kipa],, + -+ [Ka-vpil ) + [Kijaen],, + [Knal,, = 10]

[Ka/2] + [Kaja] + [K1jo] + [Koss] = [0]

Pivot
(A,Zo) B.Zg

L I
Yo (0, 2o)

Structure graph

With :

[K3/2]A - {93/2 ZOwBZIZ_O)}A [KI/O]A - {91/0 ; d.Z_O)}O

e R T
2/1A O B O/3C V0/3=_A.y0 c

The kinematic closure on point O is written by :
[K3/2]0 = [K3/2]A + 93/2 /\AO = (1)32.2_(;/\ (_eZ_(; - A %) = A (1)32.x—0)
[Kz/l]o = [Kz/l]B + QZ/l N BO = (1)21.2—0) N (—Tx—l) - eZ—(;) = —T. (1)21.%)

. . .
[K2/1]0 = —T.W31.CO0SQA .Yy +T.Wy.SINA. X,
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N 0 Awsy

Ks] = ”IL}: 0 0

[ 3/2]0 {/’Lw32.x0 0 w 0
32

0&5,76.20)

I~ 0 T.wyq.SiNA
[K2/1] ={ 2reo . __)} =] 0 —r.wy.cosa
0 (-T.wy.cosa.yy + 1. .wy.sina.xp), "~ 0 X
(x0.Y0.20)
azg) _[0 0 0 0 0
[Kl/O] :{ ' 0} =70 0 , [K0/3] = [K0/3] = {_' —>} =10 -4
0 0 ) ®10 0 c 1.¥0), 0

0&5,76.20)

Where the the six equations system of kinematic closure is written by :

(K32l + [K2p1l ) + [Kajo) , + [Koss], = 0

0 Adws, 0 T.Wyq.SiN QA 0 0 0 0
{0 0 } +{ 0 —r.a)21.cosa} +{ 0 O} +{0 —/i} =0
W32 0 J, \wy 0 o wi 0J, 0 0/
‘ 0=0 ( 0=0
0=0 0=0
W3y + Wy + w0 =0 -0+ wy +da=0
</’La)32+r.a)21.sincx+0+0=0 :><—/1.9+r.w21.sina=0
0—7.wy.cosa—A=0 —T.wyq.c08 — A =0
\ 0=0 \ 0=0

W|th . 63/2 = 53/0 - 52/0 , we have :(1)32 = _9

0 _
0@5.50.20)

We recognize a system of 6 equations with 4 unknowns. The rank of this system is rx = 3. To solve this

system, we must choose a parameter. It is often judicious for the kinematic study, to choose either

the input parameter (here is &) or the output parameter, we call this parameter the pilot parameter.

Here, it is sufficient to choose a single parameter a. The number of parameters that it is necessary to

impose to solve the system is the degree of mobility of the mechanism. The mobility of the

mechanism is therefore m = 1.

_6 + Wwy1 = —0(
—2.0 +7r.wy.5ina =0
—r.wy.c08a—A=0

After solving the sytem equations we obtain :

. r.A.cosa . r.sina
/1:—_—.(1 B 9:_—.
r.sina — A r.sina — A4
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With : A=a.cos@ +r.sina

. r.sina . r.sina
So: 6 =— —.a = — .
r.sina.cos@-r.sina a.cos@

This relation represent the derivate of the geometric relation between 8 and «a.

111.2.3 Static analysis of closed chains
Consider a mechanism (figure 11.6) formed of N solids connected by L links. We apply the F.P.S to each

solid except the frame, thus for the solid Si:

{Az-3 + Ak} + {Aryoi} + (Fexeni} = {0}

T
{" oxt—+i cxlﬂu}

Figure lll. 6: Closed chain mechanism

For each equilibrium, we can therefore write a system of 6 equations. It is possible to study the
equilibrium of N-1 solids (the other equilibria are deduced from these), from which, for the whole

mechanism a total number of equations of:
E;=6-(N—-1)

Note: Writing the F.P.S assumes that the system is in equilibrium, we will assume here that the

masses are negligible and/or the speeds are constant in order to apply it.

We will see later that it is possible to perform the calculations with zero forces, in fact the objective is
not the equilibrium of the parts or the study of the movement but the determination of the
mobilities and the hyperstaticity of the mechanism and the result of this calculation do not depend

on external forces.

Each action transmitted torsors by a L; bond of the solid Si-1 in Si({A(i—1)—>i}) comporte ns;

unknowns. Table I1l.1 shows some links and their associated unknowns.

Table Ill. 1 : Links and their associated unknowns.

Links Static Torsor Ng;
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X, 0
pivot {Yi M; ng =5
Zi Nl Pi
L(xLyuzy)
0 O
Slide Pivot {Yi M; ng =4
L Npy s
Spherical link (kneecap, ball X 0
) 7 o M =3
joint ;
: b Py

The total number of static unknowns for the L connections is therefore:

The global study of the mechanism is the study of a linear system of Es equations with Is unknowns.
This system is a linear system whose rank is noted rs. The degree of hyperstaticity h corresponds to

the number of unknowns of connection that cannot be determined by the resolution of the system:
h=1Is—r
- Ifh =0, soitis possible to determine all the unknowns of connections or links, the system is
isostatic.

- If h > 0, there are more unknowns than independent equations, the system is hyperstatic.

The number of undetermined link unknowns represents the degree of hyperstaticity h.

Example: Walking robot (Static study)

We continue the previous example of the walking robot. We complete this example by adding

mechanical actions.

- A motor torque of 0 ---1 modeled by the following torsor :

—

(REARY

N
Cm-ZO

- A mechanical action, modeling the action of the ground on the foot (2) modeled by the sliding

torsor at point R:

-

(o) = {2}

R
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The structure graph consists of a single loop:

F o121

Pivot (A, z3) Pivot (B, zg)

Ne=—1, Ne =1,
N =9 =9
Glissiére yg Divot (O, z3)
n. =1, =1,
Ne—9 N =D

We start by writing the different action torsors transmissible by the links and we identify the link

unknowns:
X12 L1 Xp3  Las
[A1—>2] =1Y, My, [A2—>3] =1Y3 My;
A 0 Z 0
12 Baiz 23 AGiz0)
X30 L3o Xo1 Lox
[A3_>0] =40 M30 [Ao—>1] = Y01 M01
Z N Z 0
30 30 VP(?“%' 5 01 0@}’%)

Each pivot link has ns = 5 “static” unknowns. The sliding links also. Overall assessment: The system

has 4 solids.

- Itis possible to isolate at most N-1 = 3 independent sets, i.e. Ec = 6 .(N - 1) = 18 equations of

statics with Ic = 20 unknowns.
From this simple assessment and before any calculation, we can say:

- That the mechanism is at least hyperstatic of order h = I. - Es = 2, in fact the rank of the static
equation system is at most 18, with :

ry < min (I, E,)

Degree of hyperstaticity : To determine the degree of hyperstaticity, we must isolate N - 1 = 3 solids

(or set of solids) independent of the mechanism in order to determine all the unknown bonds.

1) Isolate the solid 3: It is subjected to two mechanical actions of connections, the slide between
(0) and (3) and the pivot at point A between (2) and (3). We choose to write the FPS at A in

the base (xg,, Yo, Zg)-
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[Ag-3] + [Az3] = [0]

X30 Lso X33 Loz 0 0
-1 0 M +1Yo3 My =40 O
A N A 0
30 T30 A y670) 23 Awirirm O Vlagyezm

Which allows us to write the first system of 6 equations (3 for the resultant, 3 for the moment):

Y,3=0 My3 — M30 =0

X3 —X30=0 Lz —L3o =0
and
Zy3— 23 =0 N3p =0

2) Isolate solid 2: 1t is subject to the two mechanical actions of connections (pivot at A, and pivot
at B) and to the external mechanical action at R.

[A152] + [A352] + [Fsor2] = [0]

We choose to write the FPS in A in the base (xg, Vo, Z0):

Myi1.2 =Mp1; + AB A (X12.%g + Yi2.0 + Z12.20)
My1o2 = Lia.Xg + M13.Yg — a. Y3 A (X12.%g + Y12. Y0 + Z12.20)
My1y = (Liy —a.cos0.Zy3).%5 + (M1, — a.sin@.Zy,). Y, + a.(cos 0. Xy, +sin6.Yy,).z5
MA,SOl—>2 == 6+ﬁ/\F%
My so1-2 = —(a+b).y, ANF.ys =F.(a+ b).sinf.z,

The fundamental principle of static (FPS) is therefore written in the base (xy, ¥, Zo) and at point A as:

X12 L12 - a. COS 9 .le X23 L23 0 O 0 0
{le MlZ — a. Sin9 .Z12 } - {Y23 M23} + {F O } = {0 0}

Zy; a.(cosB.X,, +sin6.Y;;) Z,; 0 0 F.(a+b).sin6 0 0)acyez

Finaly, the six equations the second equilibrium are:

Y]_Z_Y23+F:0 and Mlz_a.Sine.le—M23+0=0

{XIZ_X23+0=0 { le—a.COSH.le—L23+0=0
Zip—Zy3+0=0 a.cosf.X;, +a.sinf.Y;, —0+F.(a+b).sinf =0

3) Isolate the solid 1: It is subjected to 2 mechanical links actions (pivot at B and O) and to the

engine torque.
[Ags1] — [A152] + [Cm,0—>1] = [0]

We choose to write the FPS in point O in the base (xg, Vg, Zo) :

Mo152 = My1op +7.%7 A (X12. %0 + Y12. Y0 + Z15.20)
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Mp1op = (Lip + 7. Z15.5in ). Xg + (Myy — 1. Z15.cos @). Yo + (—1.Xqp.sina + r.Y;,. cos a). zg

The static equation become :

X01 LOl X12 L12 +T‘.Z12.Sina 0 0 0 0
{Y()l MOI} - {le MlZ -7 le. cosa } + {0 0 } = {0 0}
ZOl 0 Z12 —T.X12.Sina +T. Y12.COS(X 0 — 0 Cm 0 0 0 0

0@5.70.20) (%0, 70.20) 0. 70.20)

The six equations of static are therefore written in the base (xy, yy,Z,) and at point O as:

XOl_X12+0:0 L01_L12+r.le.Sina+0:0
YOI_Y12+0=0 and M01—M12—T.Z12.C05a+0=0
ZOl_Z12+0=0 0—T.Xlz.sina+T.Y12.COS(Z+Cm=0

The complete equilibrium is translated by the following 18 equations with 20 unknowns.

(X233 —X30=0 ( Lyz3 =Lz =0
Y33 =0 Mj3 — M3, =0
Zyz— 23 =0 N3o =0
Xi2—X3=0 Li;, —a.cosf.Z;, —L,3=0
Y, — Y3 +F=0 and My, —a.sinf.Zy, — My = 0
Zip—Zy3 =0 a.cosf.X;, +a.sinf.Y;, + F.(a+ b).sinf =0
Xo1—X12=0 Log = L1y +1.Z4p.5ina =0
Yo1 = Y1, =0 My, — My, —1.Z13.cosa =0
\ Zp1—Z12=0 \ —r.Xip.sina + .Y ,.cosa +Cp, =0

It remains to determine the rank rs of this system.

Rather than looking for the rank of the entire system, it is often better to reorganize the system, and

solve it piece by piece. We can see that the system can be devised into two parts:

( Xo1 —X12=0 ( ZB_ZgOiO
X _X23:O 212_223_0
Xlz_X :0 201_212:0
23Y23 :300 Ly3 = L3 =0
Moy — M5 =0
< YlZ—Y23+F=O and < 23N :300
Yo1 =Y, =0 30
L, —a.cos@.Z,, — L, =0
a.cos6.X,, +a.sinf.Y;, + F.(a+ b).sinf =0 Mlz—asine le_MZB —0
. _ 12 . AV 23 =
k r.Xip.5ina +r.Y;,.cosa+Cp,, =0 Loi = Lip + 7. Z1p.5in@ = 0

LMOI - Mlz —T. le.COSCZ = O

We can written the first subsystem by the following equations :
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Xo1 —X12=0

X2 —X23=0
X3 —X30=0
Y;3=0
Yio —-Y3=—F
Yo —Y12=0

a.cosf.X,, +a.sinf.Y;, = —F.(a+ b).sin6
—1.X12.85iIna +r.Y 5. cosa = —Cpy

The first subsystem has 8 equations with 7 unknowns. The subsystem rank is therefore 7. There is

therefore an additional equation which will link Cn to F which can be quickly determined by :

Now, it is possible to determine all the unknowns of the first subsystem :

—a.cosa.cos@ + b.sina.sin @

Cyp=-1.F

a.cos @

( Cyp—71.F.cosa
Xo1 =X12 =
01 12 r.sina
X ¥ Cn—r1.F.cosa
23— A1z ™ r.sina
Xo = X _ Cp—r.F.cosa
30 =23 r.sina
3 Y3=0
Yi,=-F
Yo1 = —F
a.cosf.X,, =a.sinf.F —F.(a+ b).sinf
¥ _Cp—r.F.cosa
12— r.sina
\

The second subsystem has 10 equations with 13 unknowns, the rank is 10, it is not possible to

determine all the unknowns, it is necessary to fix at least 3 to solve: here it is wise to choose 723, Ls3

and Mzs.
( Z3g =233
Zyy = Zy3
Zyy—Z1=0
L3g = Lys
< M3o = My;

Li; —a.cosf.Zy, = Lys
M12 - a51n9212 = M23
L01 — le + T.le.Sin a=0

\Myy — M, —1.Z15.cosa =0

In conclusion,

79



— The rank rs of the complete system is therefore rs=7 + 10 =17
— 3 unknowns of links are not determinable.
The mechanism is therefore hyperstatic of degree: h=Is-rs=3

The system of Es = 18 equations and Is = 20 unknowns of links, of rank rs = 17 therefore includes 17

equations useful for determining the unknowns and 1 additional equation: Es = rs = 1.

The number of additional equations of the static study gives the degree of mobility of the

mechanism: m=Es-rs

I11.3 Isostatic solutions of hyperstatic problems
A hyperstatic mechanism is a mechanism in which the links are superabundant, so we could
obtain the same operation with a simpler structure. Is it wise to try to transform it to make it

isostatic?

The main quality of a hyperstatic mechanism is its rigidity. The counterpart of this quality is its
main defect, hyperstatic mechanisms are more difficult to produce and therefore more expensive.
We therefore reserve hyperstatic solutions whenever rigidity must prevail over cost, in other cases

we prefer isostatic solutions.

111.3.1 Influence of the degree of hyperstaticity on the realization of the mechanism
The hyperstatic unknowns correspond to the rating conditions between the links that the

mechanism must respect in order to function correctly despite the hyperstaticity.

Thus, for the 4 legs of a chair (hyperstaticity of degree h = 1) to touch the ground, it is
necessary that the 4 legs are coplanar. This condition will imply stricter realization conditions than for

a 3-legged stool.
Guided example (continuation) : Walking robot - Influence of geometric and dimensional defects

We see in the two figures below the influence of two defects on the assembly of the
mechanism, a defect in the length of one of the arms, or a defect in parallelism, will prohibit the

assembly of the mechanism.
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superabundant unknowns.

perpendicularity, flatness, etc.).

a dimensional defect

111.3.2 Systematic search for isostatic solutions.

necessary to add parts in the mechanism.

How to make the walking robot mechanism isostatic?

The static study is translated by the previous system of equations:

a parallelism defect

dimensional constraint must be respected when producing the mechanism.

Guided example (continuation) : Walking robot - Make the mechanism isostatic

When the degree of hyperstaticity is linked to an unknown resultant, this implies that a

When the degree of hyperstaticity is linked to an unknown moment, this implies that an

angular constraint must be respected when producing the mechanism (parallelism,

From the static study, we identify the unknowns of superabundant links. For each unknown

of non-determinable link, we must add a degree of freedom in the kinematic chain. It may also be

It is therefore a question of replacing certain links by links that allow cancelling the
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( Zy3— 23 =0

Zip —Z3=0

Zo1 —Z12=0

Ly =Lz =0

) M3 — M3 =0
N3, =0

Li; —a.cos@.Z;, —L,3=0
M;, —a.sin@.Z;, —M,3 =0
Loy —Lip+71.Zip.sina =0
\My; — My, —1.Z15.cosa =0

( Z3o =233
Zip =23

Zo1 —Z12=0
Lo = Ly3

le — a. Ccos 9 .le = L23
MlZ — a. Sin9 .le = M23
LOl - L12 + T.le.Sin a = 0

kMOl - Mlz - T‘.le.COS(X = 0

For the mechanism to become isostatic, it is necessary to cancel the superabundant static

unknowns. Here this amounts to saying that it is necessary that:
Casel: Z7Z,3=0,L,3=0and My; =0

But this is not the only possibility, we could choose the triplet :
Case2: Z,,=0,L;,=0and M;, =0 or
Case3: Z;,=0,L,3=0and My,3=0

Casel: Z,3=0,L,3=0and M,5=0

For the first case, the torsor of the transmissible actions of the link [4,_,3] becomes :

X23 L23 X23 0
[A2_>3] = Y23 M23 becomes [A2—>3] = Y23 0
Z23 0 Aza 0 0 Ass__

@2z0) (7220)

We recognize a sphere-cylinder link with center A and axis (4, z,) which gives the equivalent isostatic

diagram of the first case, presented in the figure IIl.7.
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Figure Ill. 7 : Isostatic solution (Case 1).

Case 2: le=0,L12=0aTld M12=O

The second possibility corresponds to the modification of the pivot link in B into a sphere-cylinder

link. Which gives the equivalent isostatic diagram of the case 2, presented in the figure II1.8.

X2 Lya X, O
[A1,] =Y, My, the torsor becomes [4;,,] =1{Y;, O
VA 0
12 Btz 0 Wby
= i
o Y2 L 3 \
3
_— A
—'—'-LA—"b L/ ' |2
0 Y

-
rw
F

—
: 20
—e] ER
Hyperstatic mechanism Isostatic solution

Figure lll. 8 : Isostatic solution (Case 2).
Case 3 : Z12:O,L2320and M23:O

83



For the third case we obtain the following torsors:

X23 L23 X23 0
[A,03] ={Y23 My3 becomes [A, 3] =3Y23 O represent a spherical link at A.
VA 0 VA 0
23 A(?.?. %) 23 A(?,?,Tg’)
X1z Lz X1z Ly
[A1,] =Y, My, becomes [4;,] =1{Y1, M;, represent a sliding pivot at B.
VA 0
12 B33 75) 0 08450

Which gives the equivalent isostatic diagram of the case 3, presented in the figure Il1.9.

—

—irs Yo TEY
RN S S
3\

ok

rw
i
-

Hyperstatic mechanism Isostatic solution

Figure lll. 9 : Isostatic solution (Case 3).



