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III Kinematic and static analysis of mechanism 

In this part, we will be interested in systems of solids connected to each other by frictionless 

joints (perfect joints), solids are non-deformable and we will quite often neglect the actions of gravity 

in front of other mechanical actions. The Fundamental Principle of Statics (FPS) therefore applies to 

each solid of the mechanism studied. The objective is both to study the kinematics of a mechanism 

(input output relationship) and the mechanical actions between the solids of the system studied. 

Each solid being in contact with one or more others, each connection between two solids will be 

described by one of the elementary joints presented previously. 

III.1 Equivalent joint 

Let us assume that there are several connections between two parts S1 and S2, made with or 

without intermediate parts. The connection equivalent to all the connections located between parts 

S1 and S2 is the theoretical reference joints L12, which has the same behavior as this association of 

joints, i.e. it transmits the same mechanical action and allows the same movement. An illustration in 

terms of a joint graph is given in Figure III.1 where joints L1, L2, L3 and L4 as well as the material 

system S3 are kinematically and mechanically equivalent to joint L12. The connections that can exist 

between the connected solids are either in parallel or in series. Let us now see what this implies as a 

condition on the kinematic torsors and mechanical actions. 

 

Figure III. 1 : Example of equivalent joint. 
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III.1.1 Parallel joints 

We say that n joints L1, L2, ..., Li, ..., Ln are arranged in parallel between two solids S1 and S2 if 

each joint directly connects these two solids. An illustration in terms of a joint graph is given in Figure 

II.2.  

 

Figure III. 2 : n parallel joints. 

 Static torsor 

The components of mechanical actions transmissible between S1 and S2 are the set of actions 

transmissible by the joints Li. Indeed, by applying the fundamental principle of statics to the solid S2 

for example, the following relation immediately follows: 

{[𝑇𝐸𝑞]𝑆1/𝑆2
}
𝑀
=∑{[𝑇𝑖]𝑆1/𝑆2}𝑀

𝑛

𝑖=1

 

With : (i) represent the joint Li 

Therefore, for a component of the static torsor of the equivalent joint not to be zero, it suffices 

that a single corresponding component of a joint Li is not zero. 

 Kinematic torsor 

To obtain the kinematic torsor of the equivalent joints, it suffices to write that the kinematic 

torsor of the equivalent joints and must be compatible with all the kinematic torsors of the joints Li 

for 𝑖 ∈ [1; 𝑛], that's to say :  

{[𝑇𝐸𝑞]𝑆1/𝑆2
}
𝑀
= {[𝑇1]𝑆1/𝑆2}𝑀

= {[𝑇2]𝑆1/𝑆2}𝑀
= ⋯⋯⋯ = {[𝑇𝑛]𝑆1/𝑆2}𝑀

 

Example (Kinematic study) 

We consider two solids S1 and S2 assembled by two parallel joints: 

 L1: Sliding pivot connection with axis (𝑂, 𝑥⃗) 

 L2: Point connection with normal (𝑂, 𝑥⃗) 
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The kinematic torsors of these two connections are written at point 0, in the same basis R.  

[𝑇𝐿1]𝑅 = {
𝛼1 𝑢1
0 0
0 0

}

𝑅

                [𝑇𝐿2]𝑅 = {
𝛼2 0
𝛽2 𝑣2
𝛾2 𝑤2

}

𝑅

 

 

Solution 

We suppose that the L12 is the equivalent joints of two joins L1 and L2 . The L12  torsor is written in the 

following form in the same basis R:    

[𝑇𝐿12]𝑅 = {

𝛼 𝑢
𝛽 𝑣
𝛾 𝑤

}

𝑅

  

The two joints L1 and L2  are parallel, so we have :  

 

[𝑇𝐿12]𝑅 = [𝑇𝐿1]𝑅 = [𝑇𝐿2]𝑅 

{

𝛼 𝑢
𝛽 𝑣
𝛾 𝑤

}

𝑅

= {
𝛼1 𝑢1
0 0
0 0

}

𝑅

= {
𝛼2 0
𝛽2 𝑣2
𝛾2 𝑤2

}

𝑅

 

The equality of the torsors gives :  

𝛼 = 𝛼1 = 𝛼2     𝑢 = 𝑢1 = 0
𝛽 = 0 = 𝛽2     𝑣 = 0 = 𝑣2
𝛾 = 0 = 𝛾2     𝑤 = 0 = 𝑤2

 

So : the torsor of equivalent joints  [𝑇𝐿12]𝑅 = {
𝛼 = 𝛼1 = 𝛼2 0

0 0
0 0

}

𝑅

 

The equivalent joint is the pivot along the (𝑂, 𝑥⃗) axis  with a single degrees of freedom. 

Example 1 
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We consider a shaft S2, with axis (𝑂, 𝑥⃗)  mounted in a frame S1 via two joints L1 and L2. Link L1 is an 

annular linear joint with axis (𝑂, 𝑥⃗)  , link L2 is an pivot along the axis (𝑂, 𝑥⃗). 

 

The statically torsors of two joints are written in the same basis O by the following formula:  

[𝑇𝑆1]0 = {
0 0
𝑌1 0
𝑍1 0

}

0

                [𝑇𝑆2]0 = {
𝑋2 0
𝑌2 𝑀2
𝑍2 𝑁2

}

0

 

1- Determine the static torsor of the equivalent joint to the two parallel joints L1 and L2. 

2- Determine the degree of hyperstaticity of the equivalent joint as well as the hyperstatic 

unknowns. 

3- By a kinematic study, determine the kinematic torsor of the equivalent joint to the two joints 

L1 and L2. 

Solution 

1- The two statically torsors  L1 and L2  are in the same basis 0, so maintain their shape :  

[𝑇𝑆1]0 = {
0 0
𝑌1 0
𝑍1 0

}

0

                [𝑇𝑆2]0 = {
𝑋2 0
𝑌2 𝑀2
𝑍2 𝑁2

}

0

 

The equivalent torseur  is written in the form :  

[𝑇𝑆12]0 = {
𝑋 𝐿
𝑌 𝑀
𝑍 𝑁

}

0

 

The two joints L1 and L2   are parallel so :  

[𝑇𝑆12]0 = [𝑇𝑆1]0 + [𝑇𝑆2]0 

{
𝑋 𝐿
𝑌 𝑀
𝑍 𝑁

}

0

= {
0 0
𝑌1 0
𝑍1 0

}

0

+ {
𝑋2 0
𝑌2 𝑀2
𝑍2 𝑁2

}

0

= {
𝑋2 0

𝑌1 + 𝑌2 𝑀2
𝑍1 + 𝑍2 𝑁2

}

0
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{
 
 

 
 

𝑋 = 𝑋2
𝑌 = 𝑌1 + 𝑌2
𝑍 = 𝑍1 + 𝑍2
𝐿 = 0
𝑀 = 𝑀2
𝑁 = 𝑁2

 with  𝑟𝑠 = 5 

So :  [𝑇𝑆12]0 = {
𝑋2 0

𝑌1 + 𝑌2 𝑀2
𝑍1 + 𝑍2 𝑁2

}

0

 

The torsor of equivalent joint is the pivot along the (𝑂, 𝑥⃗) 

2- The degree of hyperstaticity h 

   ℎ = 𝐼𝑠 − 𝑟𝑠 

With :  𝐼𝑠 = 𝐼𝑠1 + 𝐼𝑠2 

The torsor  [𝑇𝑆1]0 = {
0 0
𝑌1 0
𝑍1 0

}

0

have  𝐼𝑠1 = 2  and the torsor [𝑇𝑆2]0 = {
𝑋2 0
𝑌2 𝑀2
𝑍2 𝑁2

}

0

have 𝐼𝑠2 = 5 

So :  𝐼𝑠 = 2 + 5 = 7 

From the equations of equivalent joint we have 𝑟𝑠 = 5  

So :    ℎ = 7 − 5,   ℎ = 2  

The mobility m is calculated by :  

 𝑚 = 𝐸𝑠 − 𝑟𝑠 with  𝐸𝑠 = 6. (𝑁𝐿 − 1) = 6. (2 − 1) = 6 

    𝑚 = 6 − 5 = 1 

3- Kinematic torsor of equivalent joint L12 

The kinematic torsors of two joints are :   

[𝑇𝐾1]0 = {

𝛼1 𝑢1
𝛽1 0
𝛾1 0

}

0

                [𝑇𝐾2]0 = {
𝛼2 0
0 0
0 0

}

0

 

The equivalent torseur  is written in the form :  

[𝑇𝐾12]0 = {

𝛼 𝑢
𝛽 𝑣
𝛾 𝑤

}

0

 

The two joints L1 and L2   are parallel so the compatibility of joints requires that:  

[𝑇𝐾12]0 = [𝑇𝐾1]0 = [𝑇𝐾2]0 
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{

𝛼 𝑢
𝛽 𝑣
𝛾 𝑤

}

0

= {

𝛼1 𝑢1
𝛽1 0
𝛾1 0

}

0

= {
𝛼2 0
0 0
0 0

}

0

 

So we have :  

{
 
 

 
 
𝛼 = 𝛼1 = 𝛼2
𝛽 = 𝛽1 = 0
𝛾 = 𝛾1 = 0
𝑢 = 𝑢1 = 0
𝑣 = 0
𝑤 = 0

 with  𝑟𝑐 = 5 

 

The equivalent torsor of joints is written as follow :  [𝑇𝐾12]0 = {
𝛼 = 𝛼1 = 𝛼2 0

0 0
0 0

}

0

 

The torsor of equivalent of joints is the pivot along the (𝑂, 𝑥⃗) 

Example 2 

The following Figure shows a diagram of a mechanism consisting of two links. A ball joint with 

center O and a rectilinear linear link (plane cylinder) with normal 𝒛⃗⃗ and contact along (A, 𝒚⃗⃗⃗).  with 

𝑶𝑨⃗⃗⃗⃗⃗⃗⃗ = −𝒂. 𝒙⃗⃗⃗. 

 

• The static torsors of the ball joint S1 and the rectilinear linear joint S2 are defined respectively at 

point O and at point A by: 

[𝑺𝟏 ]𝑶 = [
𝑿𝟏 𝟎
𝒀𝟏 𝟎
𝒁𝟏 𝟎

]

𝑶

    [𝑺𝟐 ]𝑨 = [
𝟎 𝑳𝟐
𝟎 𝟎
𝒁𝟐 𝟎

]

𝑨

 

 

x 

z 

O 
A 



 

65 
 

• The kinematic torsors of the ball joint C1 and of the rectilinear linear joint C2 are defined 

respectively at point O and at point A by: 

[𝑲𝟏 ]𝑶 = [

𝒘𝒙𝟏 𝟎
𝒘𝒚𝟏 𝟎

𝒘𝒛𝟏 𝟎
]

𝑶

    [𝑲𝟐 ]𝑨 = [

𝟎 𝑽𝒙𝟐
𝒘𝒚𝟐 𝑽𝒚𝟐
𝒘𝒛𝟐 𝟎

]

𝑨

 

1- Draw the joint graph of the mechanisms. 

2- Are the two joints in series or in parallel? 

3- Calculate the cyclomatic number Nc. 

4- Using a static approach, determine the equivalent joints at point O of the two joints. 

5- Using a kinematic approach, determine the equivalent joint at point O of the two joints. 

Solution  

1- Joint graph (structure graph) 

 

- LJ : Linear joint in A, along axis 𝑦⃗  with Normal axis 𝑧 

- CBJ : Center Ball Joint (O).  

2- Les deux liaisons sont en parallèle 

3- Nombre cyclomatique 𝑁c 

𝑵𝒄 = 𝑁𝑗 −𝑁𝐿 + 1 = 1 

4- Equivalent joint (Static Approach) 

The equivalent joint will be calculated at point O, so the torsor [𝑺𝟐 ]𝑨 must be written at 

point O. 

[𝑺𝟐 ]𝑶 = [𝑺𝟐 ]𝑨 + 𝑶𝑨
⃗⃗⃗⃗⃗⃗⃗ ∧  𝛀𝟐𝑺𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    

[𝑺𝟐 ]𝑶 = [
𝟎 𝑳𝟐
𝟎 𝟎
𝒁𝟐 𝟎

]

𝑨

+ (
−𝒂
𝟎
𝟎
) ∧ (

𝟎
𝟎
𝒁𝟐

)   

LJ (A, 𝒚⃗⃗⃗). 

CBJ (O). 

2 1 
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[𝑺𝟐 ]𝑶 = [
𝟎 𝑳𝟐
𝟎 𝟎
𝒁𝟐 𝟎

]

𝑨

+ (
𝟎
𝒂.
𝟎
𝒁𝟐)  so    [𝑺𝟐 ]𝑶 = [

𝟎 𝑳𝟐
𝟎 𝒂. 𝒁𝟐
𝒁𝟐 𝟎

]

𝑶

 

The two joints are in parallel so:  

[𝑺𝑬𝒒]𝑶
= [𝑺𝟏 ]𝑶 + [𝑺𝟐 ]𝑶 = [

𝑿𝟏 𝟎
𝒀𝟏 𝟎
𝒁𝟏 𝟎

]

𝑶

+ [
𝟎 𝑳𝟐
𝟎 𝒂. 𝒁𝟐
𝒁𝟐 𝟎

]

𝑶

  

[𝑺𝑬𝒒]𝑶
= [

𝑿𝟏 𝑳𝟐
𝒀𝟏 𝒂. 𝒁𝟐

𝒁𝟏 + 𝒁𝟐 𝟎
]

𝑶

 the joint represent a pivot of axis 𝒛⃗⃗  

5- Equivalent joint (Kinematic Approach) 

The same for the torsor [𝑲𝟐 ]𝑨, the torsor is written in the point A and must be written at 

point O. 

[𝑲𝟐 ]𝑶 = [𝑪𝟐 ]𝑨 + 𝑶𝑨
⃗⃗⃗⃗⃗⃗⃗ ∧  𝛀𝟐𝑪𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    

[𝑲𝟐 ]𝑶 = [

𝟎 𝑽𝒙𝟐
𝒘𝒚𝟐 𝑽𝒚𝟐
𝒘𝒛𝟐 𝟎

]

𝑨

+ (
−𝒂
𝟎
𝟎
) ∧ (

𝟎
𝒘𝒚𝟐
𝒘𝒛𝟐

)   

[𝑲𝟐 ]𝑶 = [

𝟎 𝑽𝒙𝟐
𝒘𝒚𝟐 𝑽𝒚𝟐
𝒘𝒛𝟐 𝟎

]

𝑨

+ (

𝟎
𝒂.𝒘𝒛𝟐
−𝒂.𝒘𝒚𝟐

)  so   [𝑪𝟐 ]𝑶 = [

𝟎 𝑽𝒙𝟐
𝒘𝒚𝟐 𝑽𝒚𝟐 + 𝒂.𝒘𝒛𝟐
𝒘𝒛𝟐 −𝒂.𝒘𝒚𝟐

]

𝟎

 

The two joints are in parallel so:  

[𝑪𝑬𝒒]𝑶
= [𝑪𝟏 ]𝑶 = [𝑪𝟐 ]𝑶  with  [

𝑿 𝑳
𝒀 𝑴
𝒁 𝑵

]

𝑶

= [

𝒘𝒙𝟏 𝟎
𝒘𝒚𝟏 𝟎

𝒘𝒛𝟏 𝟎
]

𝑶

= [

𝟎 𝑽𝒙𝟐
𝒘𝒚𝟐 𝑽𝒚𝟐 + 𝒂.𝒘𝒛𝟐
𝒘𝒛𝟐 −𝒂.𝒘𝒚𝟐

]

𝟎

 

For the equality we obtain:  

𝑿 = 𝒘𝒙𝟏 = 𝟎  𝑳 = 𝟎 = 𝑽𝒙𝟐 

𝒀 = 𝒘𝒚𝟏 = 𝒘𝒚𝟐  𝑴 = 𝟎 = 𝑽𝒚𝟐 + 𝒂.𝒘𝒛𝟐 

𝒁 = 𝒘𝒛𝟏 = 𝒘𝒛𝟐  𝑵 = 𝟎 = −𝒂.𝒘𝒚𝟐 , 𝒘𝒚𝟐 = 𝟎 

[𝑪𝑬𝒒]𝑶
= [

𝟎 𝟎
𝟎 𝟎
𝒘𝒛𝟏 𝟎

]

𝑶

  Joint pivot along axis 𝒛⃗⃗  
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Example 3 

1- Draw the graph of the structure of the slide on a ball joint axis mechanisms, shown in the 

following figure. 

2- Give their kinematic chain type and their cyclomatic number. 

3- Name each of the joints (Center, axis,…). 

4- Determine their equivalent joints using the kinematic approach and then the static 

approach. 

With the Kinematic and static joints are expressed by:  

[𝑲𝑳𝟏]𝑨 = [
𝟎 𝑽𝒙𝟏
𝟎 𝟎
𝟎 𝟎

]

𝑨

 , [𝑲𝑳𝟐]𝑩 = [

𝒘𝒙𝟐 𝟎
𝒘𝒚𝟐 𝟎

𝒘𝒛𝟐 𝟎
]

𝑩

  ,        [𝑺𝑳𝟏]𝑨 = [
𝟎 𝑳𝟏
𝒀𝟏 𝑴𝟏

𝒁𝟏 𝑵𝟏

]

𝑨

 , [𝑺𝑳𝟐]𝑩 = [
𝑿𝟐 𝟎
𝒀𝟐 𝟎
𝒁𝟐 𝟎

]

𝑩

 

 

Solution :  

1- Graph of the structure (joint graph) 

 

2- kinematic chain type and the cyclomatic number Nc 

𝑵𝒄 = 𝑁𝑗 −𝑁𝐿 + 1 = 2 − 3 + 1 = 0 

No cycle is obtained because the chain is open (The joints are in series) 

3- Name each of the joints (Center, axis,…). 

L1: Slide along axis 𝒙⃗⃗⃗ 
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L2: Ball joint with Center B 

4- Equivalent joints at point B 

a- kinematic approach 

The torsor [𝑲𝑳𝟏]𝑨 is written at point A and must be written at point B 

[𝑲𝑳𝟏]𝑩 = [𝑲𝑳𝟏]𝑨 + 𝑩𝑨
⃗⃗⃗⃗⃗⃗⃗ ∧𝛀𝑨⃗⃗ ⃗⃗ ⃗⃗ = [

𝟎 𝑽𝒙𝟏
𝟎 𝟎
𝟎 𝟎

]

𝑨

+ [
−𝑨𝑩
𝟎
𝟎
] ∧ [

𝑽𝒙𝟏
𝟎
𝟎
] = [

𝟎 𝑽𝒙𝟏
𝟎 𝟎
𝟎 𝟎

]

𝑩

  

[𝑲𝑳𝟏]𝑩 = [
𝟎 𝑽𝒙𝟏
𝟎 𝟎
𝟎 𝟎

]

𝑩

  and   [𝑲𝑳𝟐]𝑩 = [

𝒘𝒙𝟐 𝟎
𝒘𝒚𝟐 𝟎

𝒘𝒛𝟐 𝟎
]

𝑩

 

[𝑲𝑳/𝑬𝒒]𝑩
= [𝑲𝑳𝟏]𝑩 + [𝑲𝑳𝟐]𝑩 = [

𝟎 𝑽𝒙𝟏
𝟎 𝟎
𝟎 𝟎

]

𝑩

+ [

𝒘𝒙𝟐 𝟎
𝒘𝒚𝟐 𝟎

𝒘𝒛𝟐 𝟎
]

𝑩

 

[𝑲𝑳/𝑬𝒒]𝑩
= [

𝒘𝒙𝟐 𝑽𝒙𝟏
𝒘𝒚𝟐 𝟎

𝒘𝒛𝟐 𝟎
]

𝑩

  The Equivalent joints represent a linear annular joint along the axis 𝒙⃗⃗⃗. 

b- Static Approach 

The torsor [𝑺𝑳𝟏]𝑨 is written at point A and must be written at point B 

[𝑺𝑳𝟏]𝑩 = [𝑺𝑳𝟏]𝑨 + 𝑩𝑨
⃗⃗⃗⃗⃗⃗⃗ ∧𝛀𝑨⃗⃗ ⃗⃗ ⃗⃗ = [

𝟎 𝑳𝟏
𝒀𝟏 𝑴𝟏

𝒁𝟏 𝑵𝟏

]

𝑨

+ [
−𝑨𝑩
𝟎
𝟎
] ∧ [

𝟎
𝒀𝟏
𝒁𝟏

] = [
𝟎 𝑳𝟏
𝒀𝟏 𝑴𝟏

𝒁𝟏 𝑵𝟏

]

𝑨

+ [
𝟎 𝟎
𝟎 𝑨𝑩. 𝒁𝟏
𝟎 −𝑨𝑩. 𝒀𝟏

]

𝑩

 

[𝑺𝑳𝟏]𝑩 = [
𝟎 𝑳𝟏
𝒀𝟏 𝑴𝟏 + 𝑨𝑩. 𝒁𝟏
𝒁𝟏 𝑵𝟏 − 𝑨𝑩. 𝒀𝟏

]

𝑩

 ,  [𝑺𝑳𝟐]𝑩 = [
𝑿𝟐 𝟎
𝒀𝟐 𝟎
𝒁𝟐 𝟎

]

𝑩

 

The two joints are in series so:  

[𝑺𝑳/𝑬𝒒]𝑩
= [𝑺𝑳𝟏]𝑩 = [𝑺𝑳𝟐]𝑩 

[𝑺𝑳/𝑬𝒒]𝑩
= [
𝑿 𝑳
𝒀 𝑴
𝒁 𝑵

]

𝑩

= [
𝟎 𝑳𝟏
𝒀𝟏 𝑴𝟏 + 𝑨𝑩. 𝒁𝟏
𝒁𝟏 𝑵𝟏 − 𝑨𝑩. 𝒀𝟏

]

𝑩

= [
𝑿𝟐 𝟎
𝒀𝟐 𝟎
𝒁𝟐 𝟎

]

𝑩

 

we obtain :  𝑿 = 𝟎 = 𝑿𝟐  ,  𝒀 = 𝒀𝟏 = 𝒀𝟐   ,  𝒁 = 𝒁𝟏 = 𝒁𝟐 

  𝑳 = 𝑳𝟏 = 𝟎   , 𝑴 = 𝑴𝟏 + 𝑨𝑩. 𝒁𝟏 = 𝟎   ,  𝑵 = 𝑵𝟏 − 𝑨𝑩. 𝒀𝟏 = 𝟎 
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So :  [𝑺𝑳/𝑬𝒒]𝑩
= [
𝑿 𝑳
𝒀 𝑴
𝒁 𝑵

]

𝑩

= [
𝟎 𝟎
𝒀 𝟎
𝒁 𝟎

]

𝑩

 , with :  𝒀 = 𝒀𝟏 = 𝒀𝟐   and  𝒁 = 𝒁𝟏 = 𝒁𝟐 

 

III.2 Kinematic and static analysis of closed chains 

III.2.1 Geometric study of a closed chain mechanism 

To achieve the geometric study of a closed-loop system (figure III.3), it is sufficient to write the 

vector relation connecting the characteristic points of each solid. 

 

Figure III. 3: Closed chains. 

Let Oi be the characteristic point of the solid Si, the closing relation of the geometric chain is written 

as: 

0102⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 0203⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + ⋯+ 0𝑖−10𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + ⋯+ 0𝑛−10𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 0𝑛01⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0⃗⃗ 

By projecting this vector equation into an orthonormal basis, we obtain 3 scalar equations 

linking the different geometric parameters. In the case of a plane mechanism, we obtain 2 scalar 

equations, deduced from the projection of this relation onto the axes of the plane. 

example  

Example: Walking robot 

Consider the walking robot in Figure III.4. The six legs of the robot are identical and are 

synchronized three by three using the alternating “tripod” technique. Within each flank, the center 

leg is angularly offset from the other two by the angle π (rad). 

• The housing (0) is assumed to be fixed; 
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• The crankpin (1) pivots relative to the housing around the axis (O, z0) and in axis pivot 

connection (B, z0) with the lug (2); 

• The lug (2) pivots around the axis (A, z0) with the guide (3), it is simultaneously driven by the 

crankpin (2) by a connection at B; 

• The guide (3) slides along (O, y0) relative to the housing (0). 

 

Figure III. 4 : Walking robot. 

 

We recognize on the structure graph a simple closed chain. From the two base change figures we 

determine: 

• Ω1/0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝛼.̇ 𝑧0⃗⃗ ⃗⃗  

• Ω2/0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = Ω2/3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + Ω3/0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝜃̇𝑧0⃗⃗ ⃗⃗ + 0⃗⃗ 

The geometric closure is written:  

𝑂𝐶⃗⃗⃗⃗ ⃗⃗ + 𝐶𝐴⃗⃗⃗⃗⃗⃗ + 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + 𝐵𝑂⃗⃗ ⃗⃗ ⃗⃗ = 0⃗⃗ 

Either in projection in (𝑥0⃗⃗⃗⃗⃗, 𝑦0⃗⃗⃗⃗⃗, 𝑧0⃗⃗ ⃗⃗ ) :  
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{𝜆 −
𝑎. sin 𝜃 − 𝑟. cos 𝛼 = 0
𝑎. cos 𝜃 − 𝑟. sin 𝛼 = 0

𝑒 − 𝑒 = 0
 

From these relations, it is quite easy to obtain the relations between θ and α and then between λ and 

α.  

• For θ:  sin 𝜃 =
𝑟

𝑎
. cos 𝛼  with 𝜃 = arcsin (

𝑟

𝑎
. cos 𝛼) 

• For 𝜆 :  

𝜆 = 𝑎. cos 𝜃 + 𝑟. sin 𝛼 = 𝑎. √1 − 𝑠𝑖𝑛2𝜃 + 𝑟. sin 𝛼  so : 

𝜆 = 𝑎.√1 − (
𝑟

𝑎
. cos 𝛼)2 + 𝑟. sin 𝛼 

III.2.2 Kinematic analysis of closed chains 

Consider a closed chain mechanism composed of n solids and n links (figure III.5). For each link  

Li, we can write the kinematic torsor between the two solids Si and Si+1 of the link at the point Oi 

characteristic of the link. 

[𝐾(𝑖+1)/𝑖] = {
Ω⃗⃗⃗(𝑖+1)/𝑖

𝑉⃗⃗𝑂𝑖𝜖(𝑖+1)/𝑖
}

𝑂𝑖

 

 

Figure III. 5: Closed chain mechanism. 

The kinematic closure is obtained by writing the sum of the torsors at the same point Oi : 

[𝐾1/2]𝑂𝑖
+ [𝐾2/3]𝑂𝑖

+⋯+ [𝐾(𝑖−1)/𝑖]𝑂𝑖
+ [𝐾𝑖/(𝑖+1)]𝑂𝑖

+ [𝐾𝑛/1]𝑂𝑖
= [0] 

This relationship allows us to obtain 2 vector equations, and after projection, 6 scalar equations. 

From this system of equations, we deduce the degree of mobility of the mechanism. 
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Note: This sum of torsors can only be calculated if the torsors are written at the same point. 

 

 

 

 

 

Example: Walking robot (The continuation) 

The kinematic closure is written by :  

[𝐾3/2] = [𝐾𝑖/3]𝑂𝑖
+⋯+ [𝐾(𝑖−1)/𝑖]𝑂𝑖

+ [𝐾𝑖/(𝑖+1)]𝑂𝑖
+ [𝐾𝑛/1]𝑂𝑖

= [0] 

[𝐾3/2] + [𝐾2/1] + [𝐾1/0] + [𝐾0/3] = [0] 

 

With :  

[𝐾3/2]𝐴
= {Ω⃗⃗⃗3/2 = 𝜔32. 𝑧0⃗⃗ ⃗⃗

0
}
𝐴

   [𝐾1/0]𝐴
= {Ω⃗⃗⃗1/0 = 𝛼̇. 𝑧0⃗⃗ ⃗⃗

0
}
0

 

[𝐾2/1]𝐴
= {Ω⃗⃗⃗2/1 = 𝜔21. 𝑧0⃗⃗ ⃗⃗

0
}
𝐵

   [𝐾0/3]𝐶
= {

0

V⃗⃗⃗0/3 = −𝜆̇. 𝑦0⃗⃗⃗⃗⃗
}
𝐶

 

The kinematic closure on point O is written by : 

[𝐾3/2]𝑂
= [𝐾3/2]𝐴

+ Ω⃗⃗⃗3/2 ∧ AO⃗⃗⃗⃗⃗⃗ = 𝜔32. 𝑧0⃗⃗ ⃗⃗ ∧ (−𝑒. 𝑧0⃗⃗ ⃗⃗ − 𝜆. 𝑦0⃗⃗⃗⃗⃗) = 𝜆. 𝜔32. 𝑥0⃗⃗⃗⃗⃗ 

[𝐾2/1]𝑂
= [𝐾2/1]𝐵

+ Ω⃗⃗⃗2/1 ∧ BO⃗⃗⃗⃗⃗⃗ = 𝜔21. 𝑧0⃗⃗ ⃗⃗ ∧ (−𝑟. 𝑥1⃗⃗ ⃗⃗ − 𝑒. 𝑧0⃗⃗ ⃗⃗ ) = −𝑟. 𝜔21. 𝑦1⃗⃗⃗⃗⃗ 

[𝐾2/1]𝑂
= −𝑟.𝜔21. cos 𝛼 . 𝑦0⃗⃗⃗⃗⃗ + 𝑟. 𝜔21. sin 𝛼 . 𝑥0⃗⃗⃗⃗⃗ 
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[𝐾3/2]𝑂
= {

𝜔32. 𝑧0⃗⃗ ⃗⃗

𝜆. 𝜔32. 𝑥0⃗⃗⃗⃗⃗
}
0

= {
0 𝜆. 𝜔32
0 0
𝜔32 0

}

0(𝑥0⃗⃗⃗⃗⃗⃗ ,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

 

[𝐾2/1]𝑂
= {

𝜔21. 𝑧0⃗⃗ ⃗⃗

−𝑟. 𝜔21. cos 𝛼 . 𝑦0⃗⃗⃗⃗⃗ + 𝑟. 𝜔21. sin 𝛼 . 𝑥0⃗⃗⃗⃗⃗
}
𝑂

= {
0 𝑟. 𝜔21. sin 𝛼
0 −𝑟.𝜔21. cos 𝛼
𝜔21 0

}

0(𝑥0⃗⃗⃗⃗⃗⃗ ,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

 

[𝐾1/0]𝑂
= {𝛼̇. 𝑧0⃗⃗ ⃗⃗

0
}
0
= {

0 0
0 0
𝜔10 0

}

0(𝑥0⃗⃗⃗⃗⃗⃗ ,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

 , [𝐾0/3]𝑂
= [𝐾0/3]𝐶

= {
0

−𝜆̇. 𝑦0⃗⃗⃗⃗⃗
}
𝑂

= {
0 0
0 −𝜆̇
0 0

}

0(𝑥0⃗⃗⃗⃗⃗⃗ ,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

 

 

Where the the six equations system of kinematic closure is written by :  

[𝐾3/2]𝑂
+ [𝐾2/1]𝑂

+ [𝐾1/0]𝑂
+ [𝐾0/3]𝑂

= 0 

{
0 𝜆. 𝜔32
0 0
𝜔32 0

}

𝑂

+ {
0 𝑟. 𝜔21. sin 𝛼
0 −𝑟.𝜔21. cos 𝛼
𝜔21 0

}

𝑂

+ {
0 0
0 0
𝜔10 0

}

𝑂

+ {
0 0
0 −𝜆̇
0 0

}

𝑂

= 0 

{
 
 

 
 

0 = 0
0 = 0

𝜔32 + 𝜔21 + 𝜔10 = 0
𝜆.𝜔32 + 𝑟.𝜔21. sin 𝛼 + 0 + 0 = 0

0 − 𝑟.𝜔21. cos 𝛼 − 𝜆̇ = 0
0 = 0

 ⇒

{
 
 

 
 

0 = 0
0 = 0

−𝜃̇ + 𝜔21 + 𝛼̇ = 0

−𝜆. 𝜃̇ + 𝑟. 𝜔21. sin 𝛼 = 0

−𝑟.𝜔21. cos 𝛼 − 𝜆̇ = 0
0 = 0

 

With :   Ω⃗⃗⃗3/2 = Ω⃗⃗⃗3/0 − Ω⃗⃗⃗2/0 , we have  : 𝜔32 = −𝜃̇ 

We recognize a system of 6 equations with 4 unknowns. The rank of this system is rK = 3. To solve this 

system, we must choose a parameter. It is often judicious for the kinematic study, to choose either 

the input parameter (here is 𝛼̇) or the output parameter, we call this parameter the pilot parameter. 

Here, it is sufficient to choose a single parameter α. The number of parameters that it is necessary to 

impose to solve the system is the degree of mobility of the mechanism. The mobility of the 

mechanism is therefore m = 1. 

{

−𝜃̇ + 𝜔21 = −𝛼̇

−𝜆. 𝜃̇ + 𝑟. 𝜔21. sin 𝛼 = 0

−𝑟.𝜔21. cos 𝛼 − 𝜆̇ = 0

 

After solving the sytem equations we obtain :  

𝜆̇ = −
𝑟. 𝜆. cos 𝛼

𝑟. sin 𝛼 − 𝜆
. 𝛼̇   , 𝜃̇ =

𝑟. sin 𝛼

𝑟. sin 𝛼 − 𝜆
. 𝛼̇     , 𝜔21 = −

𝜆

𝑟. sin 𝜃 − 𝜆
. 𝛼̇ 
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With :   𝜆 = 𝑎. cos 𝜃 + 𝑟. sin 𝛼  

So :   𝜃̇ =
𝑟.sin𝛼

𝑟.sin𝛼. cos𝜃−𝑟.sin𝛼
. 𝛼̇ = −

𝑟.sin𝛼

𝑎. cos𝜃
. 𝛼̇ 

This relation represent the derivate of the geometric relation between 𝜃 and  𝛼. 

III.2.3 Static analysis of closed chains 

Consider a mechanism (figure II.6) formed of N solids connected by L links. We apply the F.P.S to each 

solid except the frame, thus for the solid Si: 

{𝐴2→𝑖} + {𝐴𝑘→𝑖} + {𝐴(𝑖+1)→𝑖} + {𝐹𝑒𝑥𝑡→𝑖} = {0} 

 

Figure III. 6: Closed chain mechanism 

For each equilibrium, we can therefore write a system of 6 equations. It is possible to study the 

equilibrium of N−1 solids (the other equilibria are deduced from these), from which, for the whole 

mechanism a total number of equations of: 

𝐸𝑠 = 6 ∙ (𝑁 − 1) 

Note: Writing the F.P.S assumes that the system is in equilibrium, we will assume here that the 

masses are negligible and/or the speeds are constant in order to apply it. 

We will see later that it is possible to perform the calculations with zero forces, in fact the objective is 

not the equilibrium of the parts or the study of the movement but the determination of the 

mobilities and the hyperstaticity of the mechanism and the result of this calculation do not depend 

on external forces. 

Each action transmitted torsors by a Li bond of the solid Si−1 in 𝑆𝑖({𝐴(𝑖−1)→𝑖}) comporte nsi 

unknowns. Table III.1 shows some links and their associated unknowns. 

Table III. 1 : Links and their associated unknowns. 

Links Static Torsor 𝑛𝑠𝑖  
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pivot {
𝑋𝑖 0
𝑌𝑖 𝑀𝑖
𝑍𝑖 𝑁𝑖

}

𝑃𝑖(𝑥𝑖⃗⃗⃗⃗⃗,𝑦𝑖⃗⃗ ⃗⃗⃗,𝑧𝑖⃗⃗⃗⃗⃗)

 𝑛𝑠𝑖 = 5 

Slide Pivot {
0 0
𝑌𝑖 𝑀𝑖
𝑍𝑖 𝑁𝑖

}

𝑃𝑖(𝑥𝑖⃗⃗⃗⃗⃗,𝑦𝑖⃗⃗ ⃗⃗⃗,𝑧𝑖⃗⃗⃗⃗⃗)

 𝑛𝑠𝑖 = 4 

Spherical link (kneecap, ball 

joint) 
{

𝑋𝑖 0
𝑌𝑖 0
𝑍𝑖 0

}

𝑃𝑖(𝑥𝑖⃗⃗⃗⃗⃗,𝑦𝑖⃗⃗ ⃗⃗⃗,𝑧𝑖⃗⃗⃗⃗⃗)

 𝑛𝑠𝑖 = 3 

 

The total number of static unknowns for the L connections is therefore: 

𝐼𝑠 =∑𝑛𝑠𝑖

𝐿

𝑖=1

 

The global study of the mechanism is the study of a linear system of Es equations with Is unknowns. 

This system is a linear system whose rank is noted rs. The degree of hyperstaticity h corresponds to 

the number of unknowns of connection that cannot be determined by the resolution of the system: 

ℎ = 𝐼𝑠 − 𝑟𝑠 

- If ℎ = 0, so it is possible to determine all the unknowns of connections or links, the system is 

isostatic. 

- If ℎ > 0, there are more unknowns than independent equations, the system is hyperstatic. 

The number of undetermined link unknowns represents the degree of hyperstaticity h. 

Example: Walking robot (Static study) 

We continue the previous example of the walking robot. We complete this example by adding 

mechanical actions. 

- A motor torque of 0 ---1 modeled by the following torsor :  

{𝐶𝑚,0→1} = {
0⃗⃗

𝐶𝑚. 𝑧0
}
∀𝑃

 

- A mechanical action, modeling the action of the ground on the foot (2) modeled by the sliding 

torsor at point R:  

{𝐹𝑠𝑜𝑙→2} = {
𝐹. 𝑦⃗0

0⃗⃗
}
𝑅

 



 

76 
 

The structure graph consists of a single loop: 

 

 

We start by writing the different action torsors transmissible by the links and we identify the link 

unknowns:  

[𝐴1→2] = {
𝑋12 𝐿12
𝑌12 𝑀12
𝑍12 0

}

𝐵
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

  [𝐴2→3] = {

𝑋23 𝐿23
𝑌23 𝑀23
𝑍23 0

}

𝐴
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

 

[𝐴3→0] = {

𝑋30 𝐿30
0 𝑀30
𝑍30 𝑁30

}

∀𝑃
(?⃗,,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,0⃗⃗⃗)

  [𝐴0→1] = {

𝑋01 𝐿01
𝑌01 𝑀01
𝑍01 0

}

𝑂
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

 

Each pivot link has ns = 5 “static” unknowns. The sliding links also. Overall assessment: The system 

has 4 solids. 

- It is possible to isolate at most N−1 = 3 independent sets, i.e. EC = 6 .(N − 1) = 18 equations of 

statics with Ic = 20 unknowns. 

From this simple assessment and before any calculation, we can say: 

- That the mechanism is at least hyperstatic of order h = Ic - Es = 2, in fact the rank of the static 

equation system is at most 18, with :  

𝑟𝑠 ≤ min (𝐼𝑐, 𝐸𝑐) 

Degree of hyperstaticity : To determine the degree of hyperstaticity, we must isolate N − 1 = 3 solids 

(or set of solids) independent of the mechanism in order to determine all the unknown bonds. 

1) Isolate the solid 3: It is subjected to two mechanical actions of connections, the slide between 

(0) and (3) and the pivot at point A between (2) and (3). We choose to write the FPS at A in 

the base (𝑥0⃗⃗⃗⃗⃗, , 𝑦0⃗⃗⃗⃗⃗, 𝑧0⃗⃗ ⃗⃗ ). 
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[𝐴0→3] + [𝐴23] = [0] 

− {

𝑋30 𝐿30
0 𝑀30
𝑍30 𝑁30

}

𝐴(𝑥0⃗⃗⃗⃗⃗⃗ ,,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

+ {

𝑋23 𝐿23
𝑌23 𝑀23
𝑍23 0

}

𝐴(𝑥0⃗⃗⃗⃗⃗⃗ ,,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

= {
0 0
0 0
0 0

}

𝐴(𝑥0⃗⃗⃗⃗⃗⃗ ,,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

 

Which allows us to write the first system of 6 equations (3 for the resultant, 3 for the moment): 

{

𝑋23 − 𝑋30 = 0
𝑌23 = 0

𝑍23 − 𝑍30 = 0
        𝑎𝑛𝑑      {

𝐿23 − 𝐿30 = 0
𝑀23 −𝑀30 = 0
𝑁30 = 0

 

 

2) Isolate solid 2: It is subject to the two mechanical actions of connections (pivot at A, and pivot 

at B) and to the external mechanical action at R. 

[𝐴1→2] + [𝐴3→2] + [𝐹𝑠𝑜𝑙→2] = [0] 

We choose to write the FPS in A in the base (𝑥0⃗⃗⃗⃗⃗, 𝑦0⃗⃗⃗⃗⃗, 𝑧0⃗⃗ ⃗⃗ ):  

𝑀𝐴,1→2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑀𝐵,1→2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ∧ (𝑋12. 𝑥0⃗⃗⃗⃗⃗ + 𝑌12. 𝑦0⃗⃗⃗⃗⃗ + 𝑍12. 𝑧0⃗⃗ ⃗⃗ ) 

𝑀𝐴,1→2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐿12. 𝑥0⃗⃗⃗⃗⃗ + 𝑀12. 𝑦0⃗⃗⃗⃗⃗ − 𝑎. 𝑦2⃗⃗⃗⃗⃗ ∧ (𝑋12. 𝑥0⃗⃗⃗⃗⃗ + 𝑌12. 𝑦0⃗⃗⃗⃗⃗ + 𝑍12. 𝑧0⃗⃗ ⃗⃗ ) 

𝑀𝐴,1→2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (𝐿12 − 𝑎. cos 𝜃 . 𝑍12). 𝑥0⃗⃗⃗⃗⃗ + (𝑀12 − 𝑎. sin 𝜃 . 𝑍12). 𝑦0⃗⃗⃗⃗⃗ + 𝑎. (cos 𝜃 . 𝑋12 + sin 𝜃 . 𝑌12). 𝑧0⃗⃗ ⃗⃗  

𝑀𝐴,𝑆𝑜𝑙→2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 0⃗⃗ + 𝐴𝑅⃗⃗⃗⃗ ⃗⃗ ∧ 𝐹. 𝑦0⃗⃗⃗⃗⃗ 

𝑀𝐴,𝑆𝑜𝑙→2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = −(𝑎 + 𝑏). 𝑦2⃗⃗⃗⃗⃗ ∧ 𝐹. 𝑦0⃗⃗⃗⃗⃗ = 𝐹. (𝑎 + 𝑏). sin 𝜃 . 𝑧0⃗⃗ ⃗⃗  

The fundamental principle of static (FPS) is therefore written in the base (𝑥0⃗⃗⃗⃗⃗, 𝑦0⃗⃗⃗⃗⃗, 𝑧0⃗⃗ ⃗⃗ ) and at point A as: 

{

𝑋12 𝐿12 − 𝑎. cos 𝜃 . 𝑍12
𝑌12 𝑀12 − 𝑎. sin 𝜃 . 𝑍12
𝑍12 𝑎. (cos 𝜃 . 𝑋12 + sin 𝜃 . 𝑌12)

} − {

𝑋23 𝐿23
𝑌23 𝑀23
𝑍23 0

} + {
0 0
𝐹 0
0 𝐹. (𝑎 + 𝑏). sin 𝜃

} = {
𝑂 0
0 0
0 0

}

𝐴,(𝑥0⃗⃗ ⃗⃗ ⃗,𝑦0⃗⃗ ⃗⃗ ⃗,𝑧0⃗⃗⃗⃗⃗)

 

Finaly, the six equations the second equilibrium are:  

{

𝑋12 − 𝑋23 + 0 = 0
𝑌12 − 𝑌23 + 𝐹 = 0
𝑍12 − 𝑍23 + 0 = 0

 and  {

𝐿12 − 𝑎. cos 𝜃 . 𝑍12 − 𝐿23 + 0 = 0
𝑀12 − 𝑎. sin 𝜃 . 𝑍12 −𝑀23 + 0 = 0

𝑎. cos 𝜃 . 𝑋12 + 𝑎. sin 𝜃 . 𝑌12 − 0 + 𝐹. (𝑎 + 𝑏). sin 𝜃 = 0
 

3) Isolate the solid 1: It is subjected to 2 mechanical links actions (pivot at B and O) and to the 

engine torque. 

[𝐴0→1] − [𝐴1→2] + [𝐶𝑚,0→1] = [0] 

We choose to write the FPS in point O in the base (𝑥0⃗⃗⃗⃗⃗, 𝑦0⃗⃗⃗⃗⃗, 𝑧0⃗⃗ ⃗⃗ ) ∶ 

𝑀𝑂,1→2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑀𝐴,1→2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑟. 𝑥1⃗⃗ ⃗⃗ ∧ (𝑋12. 𝑥0⃗⃗⃗⃗⃗ + 𝑌12. 𝑦0⃗⃗⃗⃗⃗ + 𝑍12. 𝑧0⃗⃗ ⃗⃗ ) 
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𝑀𝑂,1→2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (𝐿12 + 𝑟. 𝑍12. 𝑠𝑖𝑛 𝛼). 𝑥0⃗⃗⃗⃗⃗ + (𝑀12 − 𝑟. 𝑍12. cos 𝛼). 𝑦0⃗⃗⃗⃗⃗ + (−𝑟. 𝑋12. sin 𝛼 + 𝑟. 𝑌12. cos 𝛼). 𝑧0⃗⃗ ⃗⃗  

The static equation become :  

{

𝑋01 𝐿01
𝑌01 𝑀01
𝑍01 0

}

𝑂(𝑥0⃗⃗⃗⃗⃗⃗ ,,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

− {
𝑋12 𝐿12 + 𝑟. 𝑍12. 𝑠𝑖𝑛 𝛼
𝑌12 𝑀12 − 𝑟. 𝑍12. cos 𝛼
𝑍12 −𝑟. 𝑋12. sin 𝛼 + 𝑟. 𝑌12. cos 𝛼

}

𝑂(𝑥0⃗⃗⃗⃗⃗⃗ ,,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

+ {
0 0
0 0
0 𝐶𝑚

}

𝑂(𝑥0⃗⃗⃗⃗⃗⃗ ,,𝑦0⃗⃗ ⃗⃗ ⃗⃗ ,𝑧0⃗⃗⃗⃗⃗⃗ )

= {
0 0
0 0
0 0

}

𝑂

 

The six equations of static are therefore written in the base (𝑥0⃗⃗⃗⃗⃗, 𝑦0⃗⃗⃗⃗⃗, 𝑧0⃗⃗ ⃗⃗ ) and at point O as: 

 

 

{

𝑋01 − 𝑋12 + 0 = 0
𝑌01 − 𝑌12 + 0 = 0
𝑍01 − 𝑍12 + 0 = 0

 and  {

𝐿01 − 𝐿12 + 𝑟. 𝑍12. 𝑠𝑖𝑛 𝛼 + 0 = 0
𝑀01 −𝑀12 − 𝑟. 𝑍12. cos 𝛼 + 0 = 0

0 − 𝑟. 𝑋12. sin 𝛼 + 𝑟. 𝑌12. cos 𝛼 + 𝐶𝑚 = 0
 

The complete equilibrium is translated by the following 18 equations with 20 unknowns. 

{
 
 
 
 

 
 
 
 
𝑋23 − 𝑋30 = 0
𝑌23 = 0

𝑍23 − 𝑍30 = 0
𝑋12 − 𝑋23 = 0
𝑌12 − 𝑌23 + 𝐹 = 0
𝑍12 − 𝑍23 = 0
𝑋01 − 𝑋12 = 0
𝑌01 − 𝑌12 = 0
𝑍01 − 𝑍12 = 0

  and  

{
 
 
 
 

 
 
 
 

𝐿23 − 𝐿30 = 0
𝑀23 −𝑀30 = 0
𝑁30 = 0

𝐿12 − 𝑎. cos 𝜃 . 𝑍12 − 𝐿23 = 0
𝑀12 − 𝑎. sin 𝜃 . 𝑍12 −𝑀23 = 0

𝑎. cos 𝜃 . 𝑋12 + 𝑎. sin 𝜃 . 𝑌12 + 𝐹. (𝑎 + 𝑏). sin 𝜃 = 0
𝐿01 − 𝐿12 + 𝑟. 𝑍12. 𝑠𝑖𝑛 𝛼 = 0
𝑀01 −𝑀12 − 𝑟. 𝑍12. cos 𝛼 = 0

−𝑟. 𝑋12. sin 𝛼 + 𝑟. 𝑌12. cos 𝛼 + 𝐶𝑚 = 0

 

It remains to determine the rank rs of this system. 

Rather than looking for the rank of the entire system, it is often better to reorganize the system, and 

solve it piece by piece. We can see that the system can be devised into two parts: 

{
 
 
 
 

 
 
 
 

𝑋01 − 𝑋12 = 0
𝑋12 − 𝑋23 = 0
𝑋23 − 𝑋30 = 0
𝑌23 = 0

𝑌12 − 𝑌23 + 𝐹 = 0
𝑌01 − 𝑌12 = 0

𝑎. cos 𝜃 . 𝑋12 + 𝑎. sin 𝜃 . 𝑌12 + 𝐹. (𝑎 + 𝑏). sin 𝜃 = 0
−𝑟. 𝑋12. sin 𝛼 + 𝑟. 𝑌12. cos 𝛼 + 𝐶𝑚 = 0

   and   

{
 
 
 
 
 

 
 
 
 
 

𝑍23 − 𝑍30 = 0
𝑍12 − 𝑍23 = 0
𝑍01 − 𝑍12 = 0
𝐿23 − 𝐿30 = 0
𝑀23 −𝑀30 = 0
𝑁30 = 0

𝐿12 − 𝑎. cos 𝜃 . 𝑍12 − 𝐿23 = 0
𝑀12 − 𝑎. sin 𝜃 . 𝑍12 −𝑀23 = 0
𝐿01 − 𝐿12 + 𝑟. 𝑍12. 𝑠𝑖𝑛 𝛼 = 0
𝑀01 −𝑀12 − 𝑟. 𝑍12. cos 𝛼 = 0

 

We can written the first subsystem by the following equations :  
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{
 
 
 
 

 
 
 
 

𝑿𝟎𝟏 − 𝑿𝟏𝟐 = 0
𝑋12 − 𝑿𝟐𝟑 = 0
𝑋23 − 𝑿𝟑𝟎 = 0
𝒀𝟐𝟑 = 0

𝒀𝟏𝟐 − 𝑌23 = −𝐹
𝒀𝟎𝟏 − 𝑌12 = 0

𝑎. cos 𝜃 . 𝑋12 + 𝑎. sin 𝜃 . 𝑌12 = −𝐹. (𝑎 + 𝑏). sin 𝜃
−𝑟. 𝑋12. sin 𝛼 + 𝑟. 𝑌12. cos 𝛼 = −𝐶𝑚

    

The first subsystem has 8 equations with 7 unknowns. The subsystem rank is therefore 7. There is 

therefore an additional equation which will link Cm to F which can be quickly determined by :  

𝐶𝑚 = −𝑟. 𝐹.
−𝑎. cos 𝛼 . cos 𝜃 + 𝑏. sin 𝛼 . sin 𝜃

𝑎. cos 𝜃
 

Now, it is possible to determine all the unknowns of the first subsystem :  

{
 
 
 
 
 
 

 
 
 
 
 
 𝑿𝟎𝟏 = 𝑿𝟏𝟐 =

𝐶𝑚 − 𝑟. 𝐹. cos 𝛼

𝑟. sin 𝛼

𝑿𝟐𝟑 = 𝑋12 =
𝐶𝑚 − 𝑟. 𝐹. cos 𝛼

𝑟. sin 𝛼

𝑿𝟑𝟎 = 𝑋23 =
𝐶𝑚 − 𝑟. 𝐹. cos 𝛼

𝑟. sin 𝛼
𝒀𝟐𝟑 = 0
𝒀𝟏𝟐 = −𝐹
𝒀𝟎𝟏 = −𝐹

𝑎. cos 𝜃 . 𝑋12 = 𝑎. sin 𝜃 . 𝐹 − 𝐹. (𝑎 + 𝑏). sin 𝜃

𝑋12 =
𝐶𝑚 − 𝑟. 𝐹. cos 𝛼

𝑟. sin 𝛼

 

The second subsystem has 10 equations with 13 unknowns, the rank is 10, it is not possible to 

determine all the unknowns, it is necessary to fix at least 3 to solve: here it is wise to choose Z23, L23 

and M23. 

                

{
 
 
 
 

 
 
 
 

𝒁𝟑𝟎 = 𝑍23
𝒁𝟏𝟐 = 𝑍23

𝒁𝟎𝟏 − 𝑍12 = 0
𝑳𝟑𝟎 = 𝐿23
𝑴𝟑𝟎 = 𝑀23
𝑵𝟑𝟎 = 0

𝑳𝟏𝟐 − 𝑎. cos 𝜃 . 𝑍12 = 𝐿23
𝑴𝟏𝟐 − 𝑎. sin 𝜃 . 𝑍12 = 𝑀23
𝑳𝟎𝟏 − 𝐿12 + 𝑟. 𝑍12. 𝑠𝑖𝑛 𝛼 = 0
𝑴𝟎𝟏 −𝑀12 − 𝑟. 𝑍12. cos 𝛼 = 0

 

In conclusion, 
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— The rank rs of the complete system is therefore rs = 7 + 10 = 17 

— 3 unknowns of links are not determinable. 

The mechanism is therefore hyperstatic of degree: h = Is − rs = 3 

The system of Es = 18 equations and Is = 20 unknowns of links, of rank rs = 17 therefore includes 17 

equations useful for determining the unknowns and 1 additional equation: Es − rs = 1. 

The number of additional equations of the static study gives the degree of mobility of the 

mechanism: m = Es − rs 

III.3 Isostatic solutions of hyperstatic problems 

A hyperstatic mechanism is a mechanism in which the links are superabundant, so we could 

obtain the same operation with a simpler structure. Is it wise to try to transform it to make it 

isostatic? 

The main quality of a hyperstatic mechanism is its rigidity. The counterpart of this quality is its 

main defect, hyperstatic mechanisms are more difficult to produce and therefore more expensive. 

We therefore reserve hyperstatic solutions whenever rigidity must prevail over cost, in other cases 

we prefer isostatic solutions. 

III.3.1 Influence of the degree of hyperstaticity on the realization of the mechanism 

The hyperstatic unknowns correspond to the rating conditions between the links that the 

mechanism must respect in order to function correctly despite the hyperstaticity. 

Thus, for the 4 legs of a chair (hyperstaticity of degree h = 1) to touch the ground, it is 

necessary that the 4 legs are coplanar. This condition will imply stricter realization conditions than for 

a 3-legged stool. 

Guided example (continuation) : Walking robot - Influence of geometric and dimensional defects 

We see in the two figures below the influence of two defects on the assembly of the 

mechanism, a defect in the length of one of the arms, or a defect in parallelism, will prohibit the 

assembly of the mechanism. 
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- When the degree of hyperstaticity is linked to an unknown resultant, this implies that a 

dimensional constraint must be respected when producing the mechanism. 

- When the degree of hyperstaticity is linked to an unknown moment, this implies that an 

angular constraint must be respected when producing the mechanism (parallelism, 

perpendicularity, flatness, etc.). 

III.3.2 Systematic search for isostatic solutions. 

From the static study, we identify the unknowns of superabundant links. For each unknown 

of non-determinable link, we must add a degree of freedom in the kinematic chain. It may also be 

necessary to add parts in the mechanism. 

It is therefore a question of replacing certain links by links that allow cancelling the 

superabundant unknowns. 

Guided example (continuation) : Walking robot - Make the mechanism isostatic 

How to make the walking robot mechanism isostatic? 

The static study is translated by the previous system of equations:  
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{
 
 
 
 
 

 
 
 
 
 

𝑍23 − 𝑍30 = 0
𝑍12 − 𝑍23 = 0
𝑍01 − 𝑍12 = 0
𝐿23 − 𝐿30 = 0
𝑀23 −𝑀30 = 0
𝑁30 = 0

𝐿12 − 𝑎. cos 𝜃 . 𝑍12 − 𝐿23 = 0
𝑀12 − 𝑎. sin 𝜃 . 𝑍12 −𝑀23 = 0
𝐿01 − 𝐿12 + 𝑟. 𝑍12. 𝑠𝑖𝑛 𝛼 = 0
𝑀01 −𝑀12 − 𝑟. 𝑍12. cos 𝛼 = 0

     
             
→      

{
 
 
 
 

 
 
 
 

𝑍30 = 𝑍23
𝑍12 = 𝑍23

𝑍01 − 𝑍12 = 0
𝐿30 = 𝐿23
𝑀30 = 𝑀23
𝑁30 = 0

𝐿12 − 𝑎. cos 𝜃 . 𝑍12 = 𝐿23
𝑀12 − 𝑎. sin 𝜃 . 𝑍12 = 𝑀23
𝐿01 − 𝐿12 + 𝑟. 𝑍12. 𝑠𝑖𝑛 𝛼 = 0
𝑀01 −𝑀12 − 𝑟. 𝑍12. cos 𝛼 = 0

 

For the mechanism to become isostatic, it is necessary to cancel the superabundant static 

unknowns. Here this amounts to saying that it is necessary that: 

Case 1 :     𝑍23 = 0 , 𝐿23 = 0 𝑎𝑛𝑑  𝑀23 = 0 

But this is not the only possibility, we could choose the triplet :  

Case 2 :    𝑍12 = 0 , 𝐿12 = 0 𝑎𝑛𝑑  𝑀12 = 0   or 

Case 3 :      𝑍12 = 0 , 𝐿23 = 0 𝑎𝑛𝑑  𝑀23 = 0 

Case 1 :      𝑍23 = 0 , 𝐿23 = 0 𝑎𝑛𝑑  𝑀23 = 0 

For the first case, the torsor of the transmissible actions of the link [𝐴2→3] becomes :  

[𝐴2→3] = {

𝑋23 𝐿23
𝑌23 𝑀23
𝑍23 0

}

𝐴
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

 becomes  [𝐴2→3] = {
𝑋23 0
𝑌23 0
0 0

}

𝐴
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

 

We recognize a sphere-cylinder link with center A and axis (𝐴, 𝑧0⃗⃗ ⃗⃗ ) which gives the equivalent isostatic 

diagram of the first case, presented in the figure III.7. 
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Figure III. 7 : Isostatic solution (Case 1). 

Case 2 :    𝑍12 = 0 , 𝐿12 = 0 𝑎𝑛𝑑  𝑀12 = 0 

The second possibility corresponds to the modification of the pivot link in B into a sphere-cylinder 

link. Which gives the equivalent isostatic diagram of the case 2, presented in the figure III.8. 

[𝐴1→2] = {
𝑋12 𝐿12
𝑌12 𝑀12
𝑍12 0

}

𝐵
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

 the torsor becomes [𝐴1→2] = {
𝑋12 0
𝑌12 0
0 0

}

𝐵
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

 

      

Figure III. 8 : Isostatic solution (Case 2). 

Case 3 :     𝑍12 = 0 , 𝐿23 = 0 𝑎𝑛𝑑  𝑀23 = 0 



 

84 
 

For the third case we obtain the following torsors: 

[𝐴2→3] = {

𝑋23 𝐿23
𝑌23 𝑀23
𝑍23 0

}

𝐴
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

 becomes  [𝐴2→3] = {

𝑋23 0
𝑌23 0
𝑍23 0

}

𝐴
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

 represent a spherical link at A. 

[𝐴1→2] = {
𝑋12 𝐿12
𝑌12 𝑀12
𝑍12 0

}

𝐵
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

 becomes [𝐴1→2] = {
𝑋12 𝐿12
𝑌12 𝑀12
0 0

}

𝐵
(?⃗,?⃗,𝑧0⃗⃗⃗⃗⃗⃗ )

  represent a sliding pivot at B. 

Which gives the equivalent isostatic diagram of the case 3, presented in the figure III.9. 

 

Figure III. 9 : Isostatic solution (Case 3). 

 

 

 

 

 

 

 

 


