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Preface 

This handout "Theory of mechanisms: Course and corrected exercises" is a course 

intended for third-year mechanical engineering students, specializing in mechanical construction. 

This handout is developed in accordance with the official program set by the Ministry of Higher 

Education and Scientific Research. 

This course allows students to learn the fundamental principles of the theory of 

mechanisms, such as degrees of freedom, the different mechanical connections and their 

calculations, kinematic diagrams, etc. This course is reinforced by application exercises to facilitate 

the understanding of the concepts for students. 

This handout is structured in four chapters : 

The first chapter represents mathematical reminders on vector and torsorial calculations 

where these notions will be used in the kinematic and static calculations of mechanisms as well as 

the equivalent connections of a mechanism. 

The second part deals with the analysis and modeling of mechanisms. This part includes 

the usual links of mechanisms and their kinematic and static torsors followed by the principle of 

the construction of kinematic diagrams of a mechanism. In addition, it also includes the 

calculations of mobility, the number of cycles, the number of equations and the unknowns of a 

mechanism. 

The third chapter presents a kinematic and static analysis of different types of mechanisms. 

This part contains the concept of the methods used to determine the kinematic and static torsors 

of the equivalent link of several links linked in series or in parallel. Followed by a kinematic and 

static study of closed chains and the resolution of hyperstatic systems. 

The last chapter represents a study on planar mechanisms and their theory with graphical 

and analytical methods. In this part the analyses of the mechanisms will be based on Grashoff's 

law on 4-bar mechanisms to determine the type of mechanism to be obtained. 
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Introduction 

Mechanism analysis (or kinematics of machines) is inherently a vital part in the design of a 

new machine or in studying the design of an existing machine. For this reason, the subject has 

always been of considerable importance to the mechanical engineer. Moreover, if we consider the 

tremendous advances that have been made within recent years in the design of high-speed 

machines, computers, complex instruments, automatic controls, and mechanical robots, it is not 

surprising that the study of mechanisms has continued to attract greater attention and emphasis 

than ever before.  

Mechanism analysis may be defined as a systematic analysis of a mechanism based on 

principles of kinematics, or the study of motion of machine components without regard to the 

forces that cause the motion. To better appreciate the role of mechanism analysis in the overall 

design process, consider the following. Typically, the design of a new machine begins when there 

is a need for a mechanical device to perform a specific function. To fulfil this need, a conceptual or 

inventive phase of the design process is required to establish the general form of the device. 

Having arrived at a concept, the designer usually prepares a preliminary geometric layout of the 

machine or mechanism for a complete kinematic analysis. Here the designer is  concerned  not 

only  that all components of the machine are properly  proportioned so that  the  desired  motions  

can be achieved (synthesis  phase),  but also with  the  analysis of the  components themselves to 

determine such characteristics as  displacements, velocities, and accelerations (analysis phase). At 

the completion of this analysis, the designer is ready to proceed to the next logical step in the 

design process: kinetic analysis, in which individual machine members are analyzed further to 

determine the forces resulting from the motion. 

Mechanism analysis therefore serves as a necessary prerequisite for the proper sizing of 

machine members, so that they can withstand the loads and stresses to which they will be 

subjected. The following flowchart shows the relationship of mechanism analysis to other 

branches of mechanics. 
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I Preliminary and recalls 

I.1 Vectors and Torsors  

I.1.1 The vector 

A vector is an element of a vector space. The mechanic is more particularly interested in vectors 

in the three-dimensional Euclidean vector space. These vectors have the particularity of being 

represented by arrows, which is convenient for drawing speeds or forces. 

One of the remarkable properties of these “arrow” vectors is that we can add them by drawing 

them end to end. 

 

Figure I. 1: Vector Representation and sum of vectors. 

I.1.1.1 Scalar product 

The scalar product is an application which associates a pair of vectors with a real number equal 

to the product of the norms and the cosine of the angle oriented from the first vector to the 

second vector. 

𝐸 × 𝐸 
                       
→         𝑅

(𝑉1⃗⃗  ⃗, 𝑉2⃗⃗  ⃗)  
                          
→         𝑉1⃗⃗  ⃗. 𝑉2⃗⃗  ⃗ = ‖𝑉1⃗⃗  ⃗‖, ‖𝑉2⃗⃗  ⃗ ‖. cos(𝑉1⃗⃗  ⃗, 𝑉2⃗⃗  ⃗)

 

I.1.1.2 Vector product 

The vector product is an application which associates a pair of vectors with a vector carried by 

the unit vector directly orthogonal to these two vectors and with a module equal to the product 

of the norms and the sine of the angle oriented from the first vector towards the second vector. 

𝐸 × 𝐸 
                       
→         𝐸

(𝑉1⃗⃗  ⃗, 𝑉2⃗⃗  ⃗)  
                          
→        �⃗� =  𝑉1⃗⃗  ⃗ ∧  𝑉2⃗⃗  ⃗ = ‖𝑉1⃗⃗  ⃗‖, ‖𝑉2⃗⃗  ⃗ ‖. sin(𝑉1⃗⃗  ⃗, 𝑉2⃗⃗  ⃗). �⃗� 
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With �⃗�  perpendicular to the plane formed by 𝑉1⃗⃗  ⃗ and  𝑉2⃗⃗  ⃗ (�⃗� ⊥ 𝑉1⃗⃗  ⃗  and �⃗� ⊥ 𝑉2⃗⃗  ⃗). 

 

Figure I. 2 : Vector product representation. 

I.1.1.3 The mixed product 

Mixed product is a triple vector product that combines the concept of scalar product and vector 

products to yield a scalar.  

𝐸 × 𝐸 × 𝐸 
                       
→         𝑅

(𝑉1⃗⃗  ⃗, 𝑉2⃗⃗  ⃗, 𝑉3⃗⃗  ⃗)  
                          
→        𝑉 = (𝑉1⃗⃗  ⃗, 𝑉2⃗⃗  ⃗, 𝑉3⃗⃗  ⃗) = 𝑉1⃗⃗  ⃗. (𝑉2⃗⃗  ⃗ ∧  𝑉3⃗⃗  ⃗)

 

The absolute value of the mixed product is the volume of the parallelepiped formed by the 3 

vectors.  

 

Figure I. 3 : Graphic representation of the mixed product. 

The important property of the mixed product is its invariance by circular permutation on the 

vectors.  

(𝑉1⃗⃗  ⃗, 𝑉2⃗⃗  ⃗, 𝑉3⃗⃗  ⃗) = (𝑉2⃗⃗  ⃗, 𝑉3⃗⃗  ⃗, 𝑉1⃗⃗  ⃗) = (𝑉3⃗⃗  ⃗, 𝑉1⃗⃗  ⃗, 𝑉2⃗⃗  ⃗)  

Either :    𝑉1⃗⃗  ⃗. (𝑉2⃗⃗  ⃗ ∧  𝑉3⃗⃗  ⃗) = 𝑉2⃗⃗  ⃗. (𝑉3⃗⃗  ⃗ ∧  𝑉1⃗⃗  ⃗) = 𝑉3⃗⃗  ⃗. (𝑉1⃗⃗  ⃗ ∧  𝑉2⃗⃗  ⃗) 
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The mixed product is a tool to favour during future calculations. Many of the input-output laws 

sought are expressed in the form of an equality of two mixed products, and its use not only 

simplifies the writing, but limits many calculations. 

I.1.1.4 Double vector product 

To find it quickly, simply realize that the result of the double vector product 𝑉1⃗⃗  ⃗ ∧ (𝑉2⃗⃗  ⃗ ∧ 𝑉3⃗⃗  ⃗) is a vector 

defined in the plane (𝑉2⃗⃗  ⃗ ∧ 𝑉3⃗⃗  ⃗) and respect the order in which these two vectors appear. 

𝑉1⃗⃗  ⃗ ∧ (𝑉2⃗⃗  ⃗ ∧ 𝑉3⃗⃗  ⃗) = (𝑉1⃗⃗  ⃗. 𝑉3⃗⃗  ⃗) ∗ 𝑉2⃗⃗  ⃗) − (𝑉1⃗⃗  ⃗. 𝑉2⃗⃗  ⃗) ∗ 𝑉3⃗⃗  ⃗ 

The double vector product is useful to find: 

• The decomposition of a vector. 

• Solving a linear equation of the form : 𝑎 ∧ �⃗� = 𝑐  

 Decomposition of a vector 

We consider any vector�⃗⃗� , any plane (P) and �⃗�  a vector orthogonal to this plane. We wish to 

decompose the vector �⃗⃗�  into the sum of a vector carried by the normal �⃗�  and a vector of the plane 

(P). 

 

 

 

 

 

Figure I. 4 : Decomposition of a vector. 

 Solving the equation �⃗⃗� ∧ �⃗⃗� = �⃗�  

Equation a⃗ ∧ b⃗ = c  admits only a solution if vector a⃗   is non-zero and orthogonal to vector c . The 

solution is then written:  

𝑥 = − 
�⃗� ∧𝑐 

�⃗� 2
+ 𝜆. 𝑎   with 𝜆 ∈ 𝑅 

 

�⃗⃗�  
P 

�⃗⃗� ∧ (�⃗⃗� ∧ �⃗⃗� ) 

(�⃗⃗� . �⃗⃗� ) �⃗⃗�  �⃗⃗�  
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I.1.2 Vector derivation 

I.1.2.1 Definition 

The derivative of a vector 𝑼 ⃗⃗  ⃗ in a base k is a vector whose components in the base k are the 

respective derivatives of the coordinates of 𝑼 ⃗⃗  ⃗ in this same base. This definition clearly introduces the 

fact that deriving a vector implies an observation base. A notation specifying this basis is essential.  

We note that the derivative of a vector 𝑈 ⃗⃗  ⃗ with respect to time only has meaning relative to a vector 

base k and is written : [
𝑈 ⃗⃗⃗⃗ 

𝑑𝑡
]
𝑘

. 

Either 𝑈 ⃗⃗  ⃗(𝑡) = 𝜆(𝑡). 𝑢 ⃗⃗  ⃗(𝑡) any vector, with 𝑢(𝑡) represent the unit vector. All quantities 

depend on time, so the variable (t) is rarely explained and we are content to write:  

𝑈 ⃗⃗  ⃗ = 𝜆. 𝑢 ⃗⃗  ⃗ 

Over time and in relation to an observation base, the vector 𝑈 ⃗⃗  ⃗ can change module or change 

direction, which is expressed very well by the formula for deriving a product of functions. 

[
𝑈 ⃗⃗  ⃗

𝑑𝑡
]
𝑘

= [
𝜆. 𝑢 ⃗⃗ 

𝑑𝑡
]
𝑘

=
𝑑𝜆

𝑑𝑡
. 𝑢 ⃗⃗ + 𝜆. [

𝑑𝑢 ⃗⃗ 

𝑑𝑡
]
𝑘

 

 With :    
𝑑𝜆

𝑑𝑡
. 𝑢 ⃗⃗   represent the rate of variation of module with constant direction 

   𝜆. [
𝑑𝑢 ⃗⃗  ⃗

𝑑𝑡
]
𝑘
 represent the velocity of direction variation at constant module 

I.1.2.2 Vectorial derivation properties 

• Derivative of a sum of two vectors 

[
𝑑(�⃗⃗� + �⃗� )

𝑑𝑡
]
𝑘

= [
𝑑�⃗⃗� 

𝑑𝑡
]
𝑘

+ [
𝑑�⃗� 

𝑑𝑡
]
𝑘

 

• Derivative of a product of two vectors 

[
𝑑(𝜆. �⃗⃗� )

𝑑𝑡
]
𝑘

= [
𝑑𝜆 

𝑑𝑡
]

𝑘

. �⃗⃗� + 𝜆. [
𝑑�⃗⃗� 

𝑑𝑡
]
𝑘

 

• Derivative of a dot product 

[
𝑑(�⃗⃗� . �⃗� )

𝑑𝑡
]
𝑘

= [
𝑑�⃗⃗� 

𝑑𝑡
]
𝑘

. �⃗� + �⃗⃗� . [
𝑑�⃗� 

𝑑𝑡
]
𝑘
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• Derivative of a vector product 

[
𝑑(�⃗⃗� ∧ �⃗� )

𝑑𝑡
]
𝑘

= [
𝑑�⃗⃗� 

𝑑𝑡
]
𝑘

∧ �⃗� + �⃗⃗� ∧ [
𝑑�⃗� 

𝑑𝑡
]
𝑘

 

I.1.2.3 Variation of a unit vector 

A unit vector is a vector with a norm equal to 1, therefore constant. The only possible 

evolution is a change of direction which can only be appreciated in relation to a vector 

observation base. When we want to change the observation base, we use a formula for changing 

bases, called the vector derivation formula. This is the fundamental formula to use for all vector 

derivative calculations. It is expressed by :  

[
𝑑�⃗� 

𝑑𝑡
]
𝑘

= [
𝑑�⃗� 

𝑑𝑡
]
𝑖

+ Ω⃗⃗ (𝑖/𝑘) ∧ �⃗�  

Where Ω⃗⃗ (𝑖/𝑘) is called the rotation vector of the vector base (i) relative to the vector base (k), 

and this formula makes it possible to determine the derivative of a vector in a base (k) from the 

knowledge of its derivative in a base (i). For practical calculations, it immediately appears 

judicious to look for each time a base (i) in which the vector �⃗�  does not 

I.1.2.4 Rotation vector 

The rotation vector is obviously related to the angles that we define to pass from one 

vector base to another. It is constructed in two steps, starting with the case where two vector 

bases have a common vector. 

Consider two vector bases (i) and (k) having a common vector. We call the rotation vector 

of the base (i) relative to the base (k) the vector denoted Ω⃗⃗ (𝑖/𝑘), carried by the direction 

common to the two bases and of algebraic value the scalar derivative of the angle defined 

between the two bases. The rotation vector is defined by :  

Ω⃗⃗ (𝑖/𝑘) = [
𝑑𝛼𝑖𝑘
𝑑𝑡
]
𝑘
= �̇�𝑖𝑘 . 𝑧 𝑘  

Where is �̇�𝑖𝑘  called rotation rate, sometimes rotation speed, and has as unit radian per second. 
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Figure I. 5 : Change of base by rotation around the z axis. 

I.1.2.5 Composition of rotations 

Composition of rotations When the vector bases do not have common vectors, we end eavor 

to chain together elementary rotations, as for Euler angles, so as to find ourselves in the known 

situation where two vector bases have a common vector . 

Assuming we can describe a rotation (𝑖/𝑘) by linking two rotations (𝑖/𝑗) and (𝑗/𝑘), we 

obtain the rotation vector Ω⃗⃗ (𝑖/𝑘),  by the sum of the two rotation vectors Ω⃗⃗ (𝑖/𝑗),  and Ω⃗⃗ (𝑗/𝑘). 

Ω⃗⃗ (𝑖/𝑘) =  Ω⃗⃗ (𝑖/𝑗)  + Ω⃗⃗ (𝑗/𝑘 

Example 

These two figures make it possible to pose:  

Ω⃗⃗ (2/1) =  �̇� . 𝑧 1  𝑎𝑛𝑑  Ω⃗⃗ (3/2)  = �̇� . 𝑦 2    𝑤𝑖𝑡ℎ  𝑧 1 = 𝑧 2 𝑎𝑛𝑑 𝑦 1 = 𝑦 2 

 

The rotation vector Ω⃗⃗ (3/1) is obtained by the composition of the two elementary rotations 3/2 

and 2/1 and we instantly obtain its expression by the sum of the two previous rotation vectors. 

Ω⃗⃗ (3/1)  =  Ω⃗⃗ (3/2) + Ω⃗⃗ (2/1)  =  �̇� . �⃗⃗� 2 + �̇� . �⃗� 1 
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I.1.3 Euler's angles 

One of the applications of the vector product is the construction of direct trihedral. Let (x,y,z) 

be a direct orthonormal base, we have the three immediate equalities : 

𝑧 = 𝑥 ∧ 𝑦  𝑧 = 𝑦 ∧ 𝑧  𝑦 = 𝑧 ∧ 𝑥  

We cannot finish the section on the different locating systems without looking at the 

recurring problem in mechanics of positioning any vector base in relation to another, knowing 

that we do not know how to define an angle to go from one basis to another when there is no 

common vector between the two. Euler's angle principle solves this problem simply and 

effectively. This involves carrying out three successive rotations, which can be easily understood 

by presenting them in a different order: 

• The first, called precession, around one of the three vectors of the first base, no matter 

which one; 

• The third, called proper rotation, around one of the vectors of the second base; 

• Finally the second, called nutation, around one of the two vectors orthogonal to the two 

vectors previously chosen. This vector is called a nodal vector. 

 

Figure I. 6 : Euler's angle : The precession is around z1, the proper rotation around z2 and the nodal 
vector is following the line of intersection of the two planes illustrating the rotations. 

x 

y 

z 
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The nodal vector (n) is placed orthogonal to the vectors (z1) and (z2). Assuming the latter to be 

different from each other, it suffices to put. 

�⃗� =
𝑧 1 ∧ 𝑧 2
|𝑧 1 ∧ 𝑧 2|

 

 Application example:  

We define the vector  𝐴𝑃 ⃗⃗ ⃗⃗ ⃗⃗  = 𝜌. �⃗⃗� 2 + 𝑏. �⃗⃗� 3 , with length b remaining constant over time, with :  

Ω⃗⃗ (2/1) =  �̇� . 𝑧 1  𝑎𝑛𝑑  Ω⃗⃗ (3/2)  = �̇� . 𝑦 2    𝑤𝑖𝑡ℎ  𝑧 1 = 𝑧 2 𝑎𝑛𝑑 𝑦 1 = 𝑦 2 

 

The derivative of this vector in base 1 is calculated by :  

[
𝐴𝑃 ⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡
]
1

= �̇�. 𝑥 2 + 𝜌. [
𝑑𝑥 2
𝑑𝑡
]
1

+ 𝑏. [
𝑑𝑥 3
𝑑𝑡
]
1

 

 

Figure I. 7 : Representation of the vector derivative. 

Two independent calculations were carried out, using the base change formula then the angle 

definition figures. 

• [
𝑑𝑥 2

𝑑𝑡
]
1
= [

𝑑𝑥 2

𝑑𝑡
]
2
+ Ω⃗⃗ (2/1) ∧ 𝑥 2 
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• The derivate of vector 𝑥 2 in its base is null [
𝑑𝑥 2

𝑑𝑡
]
2
= 0⃗  

• Ω⃗⃗ (2/1) = [
𝑑�⃗⃗� (2/1)

𝑑𝑡
]
1
= �̇�. 𝑧 1 

We obtain :  [
𝑑𝑥 2

𝑑𝑡
]
1
= �̇�. 𝑧 1 ∧ 𝑥 2 = �̇�. 𝑦 2  

• [
𝑑𝑥 3

𝑑𝑡
]
1
=[

𝑑𝑥 3

𝑑𝑡
]
3
+ Ω⃗⃗ (3/1) ∧ 𝑥 3 

• The derivate of vector 𝑥 3 in its base is null [
𝑑𝑥 3

𝑑𝑡
]
3
= 0⃗  

• Ω⃗⃗ (3/1) = Ω⃗⃗ (3/2) + Ω⃗⃗ (2/1) = [
𝑑⃗ (3/2)

𝑑𝑡
]
2
+ �̇�. 𝑧 1 = �̇� . 𝑦 2 + �̇�. 𝑧 1 

We obtain :  [
𝑑𝑥 3

𝑑𝑡
]
1
= (�̇� . 𝑦 2 + �̇�. 𝑧 1) ∧ 𝑥 3 = (�̇� . 𝑦 2 ∧ 𝑥 3) + (�̇�. 𝑧 1 ∧ 𝑥 3) 

[
𝑑𝑥 3
𝑑𝑡
]
1

= −�̇� . 𝑧 3 + (�̇�. 𝑧 1 ∧ cos() . 𝑥 2) 

[
𝑑𝑥 3
𝑑𝑡
]
1

= −�̇� . 𝑧 3 + �̇�. cos() . 𝑦 2 

So:    [
𝐴𝑃 ⃗⃗⃗⃗⃗⃗  ⃗

𝑑𝑡
]
1
= �̇�. 𝑥 2 + �̇�. (𝜌 + 𝑏. cos()). 𝑦 2 − 𝑏. �̇� . 𝑧 3 

I.1.3.1 Exercises on the vector calculation 

Exercise I.2 

Consider the following vectors: 𝐴 = 𝐴𝑥. 𝑖 + 𝐴𝑦. 𝑗 + 𝐴𝑧 . �⃗�    and  �⃗� = 𝐵𝑥. 𝑖 + 𝐵𝑦. 𝑗 + 𝐵𝑧 . �⃗�  

1- Calculate scalar products : 𝐴 . �⃗�  , 𝐴 . 𝐴   and �⃗� . �⃗�  

We consider the three following vectors :  

�⃗� 1 = 2. 𝑖 − 𝑗 + 5. �⃗�  , �⃗� 2 = −3. 𝑖 + 1,5. 𝑗 − 7,5. �⃗�   and  �⃗� 3 = −5. 𝑖 + 4. 𝑗 + �⃗�  

2- Calculate :  �⃗� 1. �⃗� 2  and  �⃗� 1 ∧ �⃗� 2 

3- Calculate the following products :  �⃗� 1. (𝑉⃗⃗⃗⃗ 2 ∧ �⃗� 3) and �⃗� 1 ∧ (𝑉⃗⃗⃗⃗ 2 ∧ �⃗� 3) 

4- Determine the area of the triangle formed by the vectors �⃗� 2 and �⃗� 3 

Solution I.1 

1- 𝐴 . �⃗� = 𝐴𝑥. 𝐵𝑥+𝐴𝑦. 𝐵𝑦+𝐴𝑧 . 𝐵𝑧 

𝐴 . 𝐴 = 𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2  
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�⃗� . �⃗� = 𝐵𝑥
2 + 𝐵𝑦

2 + 𝐵𝑧
2 

2- �⃗� 1. �⃗� 2 = (2. (−3)) + ((−1) . 1,5) + (5. (−7.5)) = −45 

�⃗� 1 ∧ �⃗� 2 = (
2
−1
5
) ∧ (

−3
1.5
−7.5

) 

�⃗� 1 ∧ �⃗� 2 = ((−1). (−7.5)) − (1,5 . 5)). 𝑖 − ((2. (−7,5)) − ((−3). 5)). 𝑗 + (2. 1,5) − ((−3). (−1)). �⃗�  

�⃗� 1 ∧ �⃗� 2 = 0. 𝑖 + 0. 𝑗 + 0. �⃗� = 0⃗   so :  �⃗� 1 ∥ �⃗� 2 

In addition, �⃗� 1. �⃗� 2 = −45 is negative, means that the two vectors have opposite directions. 

3- �⃗� 1. (�⃗� 2 ∧ �⃗� 3) = �⃗� 1. (
−3
1.5
−7.5

) ∧ (
−5
4
1
) = (

2
−1
5
) . (

31,5
40,5
−4,5

) = 0 

�⃗� 1 ∧ (𝑉⃗⃗⃗⃗ 2 ∧ �⃗� 3) = (
2
−1
5
) ∧ (

31,5
40,5
−4,5

) = −198. 𝑖 + 166,5. 𝑗 + 112,5. �⃗�  

4- The surface of the triangle formed by the vectors �⃗� 2 and �⃗� 3 is given by half the modulus of 

the vector product of the two vectors:  

(�⃗� 2 ∧ �⃗� 3) = 31,5. 𝑖 + 40,5. 𝑗 − 4,5. �⃗�  

𝑆 =
|(�⃗� 2 ∧ �⃗� 3)|

2
=
√(31,5)2 + (40,5)2 + (4,5)2

2
=
51,50

2
= 25,75 (𝑢2) 

Exercise I.2 

A mechanism has an lever of variable length rotating around an axis. The plane of evolution of the 

lever is a plane (K, 𝒚𝟎⃗⃗⃗⃗ , 𝒛𝟎⃗⃗⃗⃗ ). A motor activates the axis rotation (K, 𝒙𝟎⃗⃗⃗⃗ ) and a cylinder varies the length  

𝝆 of the arm defined by 𝑲𝑬⃗⃗⃗⃗⃗⃗ = 𝝆. 𝒚𝟏⃗⃗⃗⃗ . 

- Calculate [
𝒅𝑲𝑬⃗⃗⃗⃗⃗⃗ 

𝒅𝒕
]
𝟎

 and [
𝒅𝟐𝑲𝑬⃗⃗⃗⃗⃗⃗ 

𝒅𝒕𝟐
]
𝟎

 

 

Solution I.2 

• [
𝒅𝑲𝑬⃗⃗⃗⃗⃗⃗ 

𝒅𝒕
]
𝟎
= [

𝒅𝜌.𝑦1⃗⃗ ⃗⃗  

𝒅𝒕
]
𝟎
=
𝒅𝜌

𝒅𝒕
. 𝑦1⃗⃗⃗⃗ + 𝜌. [

𝒅𝑦1⃗⃗ ⃗⃗  

𝒅𝒕
]
𝟎
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We have : [
𝑑𝑦1⃗⃗ ⃗⃗  

𝑑𝑡
]
0
= [

𝑑𝑦1⃗⃗ ⃗⃗  

𝑑𝑡
]
1
+ Ω⃗⃗ (1/0) ∧ 𝑦 1 = [

𝒅

𝒅𝒕
]
𝟎
. 𝑥 0 ∧ 𝑦 1 = ̇. 𝑥 0 ∧ 𝑦 1 ,  with : [

𝑑𝑦1⃗⃗ ⃗⃗  

𝑑𝑡
]
1
= 0⃗  

So :  [
𝒅𝑦1⃗⃗ ⃗⃗  

𝒅𝒕
]
𝟎
= ̇. 𝑧 1 

[
𝑑𝐾𝐸⃗⃗ ⃗⃗  ⃗

𝑑𝑡
]
0

= �̇�. 𝑦1⃗⃗⃗⃗ + 𝜌. ̇. 𝑧 1 

• [
𝑑2𝐾𝐸⃗⃗⃗⃗⃗⃗ 

𝑑𝑡2
]
0
= [

𝑑 (�̇�.𝑦1⃗⃗ ⃗⃗  +𝜌.̇.𝑧 1)

𝑑𝑡
]
0
= [

𝑑 (�̇�.𝑦1⃗⃗ ⃗⃗  )

𝑑𝑡
]
0
+ [

𝑑 (𝜌.̇.𝑧 1)

𝑑𝑡
]
0
 

[
𝑑2𝐾𝐸⃗⃗ ⃗⃗  ⃗

𝑑𝑡2
]
0

=
𝑑�̇�

𝑑𝑡
. 𝑦1⃗⃗⃗⃗ + �̇�. [

𝑑𝑦1⃗⃗⃗⃗ 

𝑑𝑡
]
0

+ [
𝑑 (𝜌. ̇)

𝑑𝑡
]
0

. 𝑧 1 + 𝜌. ̇. [
𝑑𝑧 1
𝑑𝑡
]
0

 

[
𝑑2𝐾𝐸⃗⃗⃗⃗⃗⃗ 

𝑑𝑡2
]
0
= �̈�. 𝑦1⃗⃗⃗⃗ + �̇�. ̇. 𝑧 1 + (�̇�. ̇+ 𝜌. ̈

̇ ). 𝑧 1 +  𝜌. ̇. [
𝑑𝑧 1

𝑑𝑡
]
0
 

With :   [
𝑑𝑧 1

𝑑𝑡
]
𝟎
= [

𝑑𝑧 1

𝑑𝑡
]
𝟏
+ Ω⃗⃗ 

(
1

0
)
∧ 𝑧 1 = ̇. 𝑥 0 ∧ 𝑧 1 = −̇. 𝑦 1 

So :  [
𝑑2𝐾𝐸⃗⃗⃗⃗⃗⃗ 

𝑑𝑡2
]
0
= �̈�. 𝑦1⃗⃗⃗⃗ + 2. �̇�. ̇. 𝑧 1+𝜌. ̈

̇ . 𝑧 1 −  𝜌. ̇
2
. 𝑦 1 

I.1.4 The torsors 

I.1.4.1 Vector field 

We call a vector field an application which associates a vector with each point in the affine space. 

ℂ 
                       
→        𝐸

𝑃 
                     
→       �⃗⃗� (𝑃)

 

Among the possible particularities of a vector field, we retain two: 

• Uniform vector field 

∀ 𝐴 ∈ ℂ, ∀ 𝐵 ∈ ℂ,   �⃗⃗� (𝐴) =  �⃗⃗� (𝐵)   

The vectors are identical at each moment, which does not assume their evolution over time. 

• Equiprojective vector field 

∀ 𝐴 ∈ ℂ, ∀ 𝐵 ∈ ℂ,   �⃗⃗� (𝐴). 𝐴𝐵⃗⃗⃗⃗  ⃗ =  �⃗⃗� (𝐵). 𝐴𝐵⃗⃗⃗⃗  ⃗   

The two vectors �⃗⃗� (𝐴) 𝑎𝑛𝑑 �⃗⃗� (𝐵) have the same orthogonal projection on the direction 𝐴𝐵⃗⃗⃗⃗  ⃗. 

I.1.4.2 The torsor 

A torsor is an equiprojective vector field. The word “Torsor”, from the same family as 

torsade, comes from the remarkable shape of an equiprojective vector field. 
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An equiprojective vector field has the remarkable property of corresponding to an 

antisymmetric linear application. There is a vector that we denote (𝑟 ) and which allows you to 

easily change points on the vector field : 

∀ 𝐴 ∈ ℂ, ∀ 𝐵 ∈ ℂ,   �⃗⃗� (𝐵) =  �⃗⃗� (𝐴) + 𝑟 ∧  𝐴𝐵⃗⃗⃗⃗  ⃗  

With :  

 𝑟  : The resultant vector of torsor 𝜯. 

�⃗⃗� (𝑃) : The moment vector at point P of the torsor. 

The two vectors 𝑟   and �⃗⃗� (𝑃) are called reduction elements of the torsor at the point P. They are 

usually presented behind an opening brace, always starting with the resultant vector. 

 Τ = {
𝑟 ⃗⃗        𝑇he resultant of torsor

�⃗⃗� (𝑃)     Moment vector at point 𝑷 
 

I.1.4.3 Torsor Properties 

 Sum of two torsors 

Consider two equiprojective vector fields �⃗⃗� 1(𝑃) and �⃗⃗� 2(𝑃). We construct a new vector field �⃗⃗� (𝑃) 

defined by: 

∀ P,  �⃗⃗� (𝑃) =  �⃗⃗� 1(𝑃) + �⃗⃗� 2(𝑃)     With :      Τ1 = {
𝑟1 ⃗⃗⃗⃗ 

𝑈1⃗⃗⃗⃗ (𝐴) 
 and Τ2 = {

𝑟2 ⃗⃗⃗⃗ 

𝑈2⃗⃗ ⃗⃗ (𝐴) 
 

This field �⃗⃗� (𝑃) is also an equiprojective vector field, whose reduction elements 𝑟 ⃗⃗  and �⃗⃗� (𝐴) are 

simply determined by: 

{
𝑟 =  𝑟1⃗⃗⃗  + 𝑟2 ⃗⃗⃗⃗ 

�⃗⃗� (𝐴) =  �⃗⃗� 1(𝐴) + �⃗⃗� 2(𝐴)
 

The torsorial writing of the sum of two equiprojective vector fields is elementary. 

Τ =  Τ1 + Τ2 

 Comoment – Automoment 

Consider two equiprojective vector fields �⃗⃗� 1(𝑃) and �⃗⃗� 2(𝑃) whose reduction elements are 

determined at the same point A. 

Τ1 = {
𝑟1 ⃗⃗⃗⃗ 

𝑈1⃗⃗⃗⃗ (𝐴) 
 and Τ2 = {

𝑟2 ⃗⃗⃗⃗ 

𝑈2⃗⃗ ⃗⃗ (𝐴) 
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 Co-moment  

We call the comoment of the two torsors Τ1 and Τ2, which we note Τ1⊗Τ2 the scalar 

number obtained from the reduction elements in the following way: 

Τ1⊗Τ2 = 𝑟1 ⃗⃗⃗⃗ . 𝑈2⃗⃗ ⃗⃗ (𝐴) + 𝑈1⃗⃗⃗⃗ (𝐴). 𝑟2 ⃗⃗⃗⃗  

• The comoment is independent of the calculation point. 

• The comoment of a torsor with itself gives double scalar product of the resultant and the 

moment at any point. 

 Automoment 

We call the automoment of a torsor the scalar invariant obtained by the scalar product of the 

resultant vector and the moment vector at any point. 

 Central axis 

For a torsor with a non-zero resultant, there exists a particular line in space for which the 

moment vector is collinear with the resultant vector. 

Let a torso Τ  be known by its reduction elements 𝑟 ⃗⃗  and �⃗⃗� (𝐴). We search for the set of points P 

verifying  :  

𝑟 ⃗⃗ ∧  �⃗⃗� (𝑃) = 0 ⃗⃗⃗   

By using the following formula for change of point to introduce the known moment �⃗⃗� (𝐴) :  

�⃗⃗� (𝑃) = �⃗⃗� (𝐴) + 𝑟 ⃗⃗ ∧ 𝐴𝑃⃗⃗⃗⃗  ⃗ 

It’s necessary to search for all the points P verifying : 

𝑟 ⃗⃗ ∧ ( �⃗⃗� (𝐴) + 𝑟 ⃗⃗ ∧ 𝐴𝑃⃗⃗⃗⃗  ⃗) = 0 ⃗⃗⃗       ⟹      𝑟 ⃗⃗ ∧ �⃗⃗� (𝐴) + 𝑟 ⃗⃗ ∧ ( 𝑟 ⃗⃗ ∧ 𝐴𝑃⃗⃗⃗⃗  ⃗) =  0 ⃗⃗⃗        

we have :   𝑎 ⃗⃗⃗  ∧ ( 𝑏 ⃗⃗⃗  ∧ 𝑐 ) = (𝑐  . 𝑎 ⃗⃗⃗   ) × 𝑏 ⃗⃗⃗  −   (𝑏 ⃗⃗⃗⃗  ⃗ . 𝑎 ⃗⃗⃗   ) × 𝑐  

So :    𝑟 ⃗⃗ ∧ ( 𝑟 ⃗⃗ ∧ 𝐴𝑃⃗⃗⃗⃗  ⃗) = (𝐴𝑃⃗⃗⃗⃗  ⃗. 𝑟 ⃗⃗ ) × 𝑟 ⃗⃗ − (𝑟 ⃗⃗ . 𝑟 ⃗⃗ ) × 𝐴𝑃⃗⃗⃗⃗  ⃗ 

we can write 𝐴𝑃⃗⃗⃗⃗  ⃗ in the form:  𝐴𝑃⃗⃗⃗⃗  ⃗ = 𝐴𝐻⃗⃗⃗⃗⃗⃗ + 𝐻𝑃⃗⃗⃗⃗⃗⃗   with  𝐴𝐻⃗⃗⃗⃗⃗⃗ ⊥ 𝑟 ⃗⃗   

So :     𝑟 ⃗⃗ ∧ ( 𝑟 ⃗⃗ ∧ 𝐴𝑃⃗⃗⃗⃗  ⃗) = ((𝐴𝐻⃗⃗⃗⃗⃗⃗ + 𝐻𝑃⃗⃗⃗⃗⃗⃗ ). 𝑟 ⃗⃗ ) × 𝑟 ⃗⃗ – (𝑟 ⃗⃗ 2) × 𝐴𝑃⃗⃗⃗⃗  ⃗ 

           = [(𝐴𝐻⃗⃗⃗⃗⃗⃗  . 𝑟 ⃗⃗ ) + (𝐻𝑃 ⃗⃗⃗⃗ ⃗⃗  ⃗. 𝑟 ⃗⃗ )] × 𝑟 ⃗⃗ −  (𝑟 ⃗⃗ 2) × 𝐴𝑃⃗⃗⃗⃗  ⃗    We have :   𝐴𝐻⃗⃗⃗⃗⃗⃗  . 𝑟 ⃗⃗ = 0  (𝐴𝐻⃗⃗⃗⃗⃗⃗ ⊥ 𝑟 ⃗⃗ )  

           = (𝐻𝑃 ⃗⃗⃗⃗ ⃗⃗  ⃗. 𝑟 ⃗⃗ ) × 𝑟 ⃗⃗ −  (𝑟 ⃗⃗ 2) × 𝐴𝑃⃗⃗⃗⃗  ⃗ 

The vector 𝐻𝑃 ⃗⃗⃗⃗ ⃗⃗  ⃗ is parallel to 𝑟 ⃗⃗  so we can write 𝐻𝑃 ⃗⃗⃗⃗ ⃗⃗  ⃗ in the form: 𝐻𝑃 ⃗⃗⃗⃗ ⃗⃗  ⃗ = 𝜆 . 𝑟 ⃗⃗  
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With : 𝜆 is a constant. 

𝑟 ⃗⃗ ∧ ( 𝑟 ⃗⃗ ∧ 𝐴𝑃⃗⃗⃗⃗  ⃗) = (𝜆 . 𝑟 ⃗⃗ . 𝑟 ⃗⃗ ) × 𝑟 ⃗⃗ −  (𝑟 ⃗⃗ 2) × 𝐴𝑃⃗⃗⃗⃗  ⃗ 

𝑟 ⃗⃗ ∧ ( 𝑟 ⃗⃗ ∧ 𝐴𝑃⃗⃗⃗⃗  ⃗) = (𝜆 . 𝑟 ⃗⃗ 2) × 𝑟 ⃗⃗ −  (𝑟 ⃗⃗ 2) × 𝐴𝑃⃗⃗⃗⃗  ⃗ 

𝑟 ⃗⃗ ∧ �⃗⃗� (𝐴) + (𝜆 . 𝑟 ⃗⃗ 2) × 𝑟 ⃗⃗ −  (𝑟 ⃗⃗ 2) × 𝐴𝑃⃗⃗⃗⃗  ⃗ =  0 ⃗⃗⃗   

𝑟 ⃗⃗ ∧ �⃗⃗� (𝐴) + (𝜆 . 𝑟 ⃗⃗ 2) × 𝑟 ⃗⃗ −  (𝑟 ⃗⃗ 2) × (𝐴𝐻⃗⃗⃗⃗⃗⃗ + 𝐻𝑃⃗⃗⃗⃗⃗⃗ ) =  0 ⃗⃗⃗   

𝑟 ⃗⃗ ∧ �⃗⃗� (𝐴) + (𝜆 . 𝑟 ⃗⃗ 2) × 𝑟 ⃗⃗ −  (𝑟 ⃗⃗ 2 ×  𝐴𝐻⃗⃗⃗⃗⃗⃗ + 𝑟 ⃗⃗ 2 ×𝐻𝑃⃗⃗⃗⃗⃗⃗ ) =  0 ⃗⃗⃗   

𝑟 ⃗⃗ ∧ �⃗⃗� (𝐴) + (𝜆 . 𝑟 ⃗⃗ 2) × 𝑟 ⃗⃗ −  (𝑟 ⃗⃗ 2 ×  𝐴𝐻⃗⃗⃗⃗⃗⃗ + 𝑟 ⃗⃗ 2 × 𝜆 . 𝑟 ⃗⃗ ) =  0 ⃗⃗⃗   

𝑟 ⃗⃗ ∧ �⃗⃗� (𝐴) − 𝑟 ⃗⃗ 2 ×  𝐴𝐻⃗⃗⃗⃗⃗⃗ =  0 ⃗⃗⃗   

𝐴𝐻⃗⃗⃗⃗⃗⃗ =  
𝑟 ⃗⃗ ∧ �⃗⃗� (𝐴)

𝑟 ⃗⃗ 2
 

𝐴𝑃⃗⃗⃗⃗  ⃗ = 𝐴𝐻⃗⃗⃗⃗⃗⃗ + 𝐻𝑃⃗⃗⃗⃗⃗⃗ =  
𝑟 ⃗⃗ ∧ �⃗⃗� (𝐴)

𝑟 ⃗⃗ 2
+ 𝐻𝑃⃗⃗⃗⃗⃗⃗        𝑤𝑖𝑡ℎ     𝐻𝑃⃗⃗⃗⃗⃗⃗ =  𝜆 . 𝑟 ⃗⃗  

Therefore the formula which defines the central axis is written in the form: 

𝐴𝑃⃗⃗⃗⃗  ⃗ =
𝑟 ⃗⃗⃗  ∧�⃗⃗� (𝐴)

𝑟 ⃗⃗⃗  2
+ 𝜆 . 𝑟 ⃗⃗        , 𝜆 ∈ ℝ 

With P is the central point of the torsor. 

Definition: The central axis of a torso is the line for which the resultant vector and the moment 

vector are collinear. This central axis is defined as soon as the resulting vector is not zero. 

The most remarkable graphic representation of a torso is that built around the central axis: 

• The central axis is oriented by the resulting vector. 

• All points on the central axis have the same moment, called central moment. 

• The central moment is collinear with the resultant.  

• The moment vector is invariant along any line parallel to the central axis. 

• Two planes perpendicular to the central axis admit the same distribution of moment 

vectors. For a plane perpendicular to the central axis: 

o A moment vector at any point Q is equal to the central moment increased by a 

component orthogonal to the resultant and proportional to the distance from the 

central axis to the point considered. 

o For any point on a circle centered on the central axis, the additional component 

has the same module and is orthogonal to the radius. 
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Figure I. 8 : The distribution of moment vectors around the central axis. 

I.1.4.4 Particular torsors 

 Null Torsor 

A null torsor is a zero vector field. Its reduction elements are the zero vectors and we denote 

it simply  0 ⃗⃗⃗  .  Τ = {0 
⃗⃗⃗  

0⃗  
 . 

 Couple torsor 

A couple torsor is a torsor with uniform vector field not null and null resultant. Τ = {0 
⃗⃗⃗  

𝐶  
 

 

Figure I. 9 : A non-zero uniform vector field. 

 Sliding torsor 

A sliding torsor is a non-zero vector field with automoment null. The moment is zero at any point 

on the central axis. Τ = {
𝑟 ⃗⃗ 

0⃗  
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Figure I. 10 : A non-zero vector field with automoment equal to zero. 

I.1.4.5 Application exercises on the torsors 

Exercice I.3 

Consider the three vectors 𝑉1⃗⃗  ⃗ = −𝑖 + 𝑗 + �⃗�  , 𝑉2⃗⃗  ⃗ = 𝑗 + 2�⃗�  , 𝑉3⃗⃗  ⃗ = 𝑖 − 𝑗  , defined in an orthonormal 

coordinate system 𝑅(𝑂, 𝑖 , 𝑗 , �⃗� ), and linked respectively to the points : A(0,1,2) , B(1,0,2) , C(1,2,2). 

1- Construct the torsor [�⃗� ]
0
, associated with the system of three vectors. 

2-   Deduce the automoment 

3-   Calculate the pitch of the torso 

4-   Determine the central axis of the torsor. 

Solution I.3 

1- Construction of the torsor [�⃗� ]
0
 

The torsor Τ = {�⃗�
 

�⃗⃗� 
 

o The resultant �⃗�  of the torsor : 

�⃗� =∑�⃗� 𝑖 = �⃗� 1 + �⃗� 2 + �⃗� 3 = (= −𝑖 + 𝑗 + �⃗� ) + (𝑗 + 2�⃗� ) + (𝑖 − 𝑗 ) 

 �⃗� = 𝑗 + 3. �⃗�  

o The moment �⃗⃗� : 
�⃗⃗� = 𝑂𝐴⃗⃗⃗⃗  ⃗ ∧ �⃗� 1 + 𝑂𝐵⃗⃗ ⃗⃗  ⃗ ∧ �⃗� 2 + 𝑂𝐶⃗⃗⃗⃗  ⃗ ∧ �⃗� 3 

�⃗⃗� = (
0
1
2
) ∧ (

−1
1
1
) + (

1
0
2
) ∧ (

0
1
2
) + (

1
2
2
) ∧ (

1
−1
0
) = (

−1
−2
−1
) 

�⃗⃗� = −𝑖 − 2. 𝑗 − �⃗�  

2- Automoment A 

𝐴 =  �⃗� . �⃗⃗�  = (𝑗 + 3. �⃗� ). (−𝑖 − 2. 𝑗 − �⃗� ) =  −5 

3- Pitch of the torsor 

𝑃 =  
�⃗� . �⃗⃗� 

𝑅2
=
𝐴

𝑅2
=

−5

√12 + 32
= −

5

√10
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4- Central axes of the torsor 

𝑂𝑃⃗⃗⃗⃗  ⃗ =  
�⃗� ∧�⃗⃗� 

𝑅2
+ 𝜆 . 𝑅 ⃗⃗  ⃗       , 𝜆 ∈ ℝ 

We have : �⃗� ∧ �⃗⃗� = (
0
1
3
) ∧ (

−1
−2
−1
) = 5. 𝑖 − 3. 𝑗 + �⃗�  

𝑂𝑃⃗⃗⃗⃗  ⃗ =
1

2
. 𝑖 −

3

10
. 𝑗 +

1

10
. �⃗� + 𝜆. (𝑗 + 3. �⃗� ) 

𝑂𝑃⃗⃗⃗⃗  ⃗ =
1

2
. 𝑖 + (𝜆 −

3

10
). 𝑗 + (3𝜆 +

1

10
). �⃗�  

𝑂𝑃⃗⃗⃗⃗  ⃗ = (
𝑥
𝑦
𝑧
) =

(

 
 

1

2

𝜆 −
3

10

3𝜆 +
1

10)

 
 

, with  𝜆 = 𝑦 +
3

10
 ,  so : 𝑧 = 3 (𝑦 +

3

10
) +

1

10
 

We obtain:   𝑧 = 3. 𝑦 + 1 

The central axis is straight in a plan parallel to the plane (yoz) located at:  

𝑥 =
1

2
  and  𝑧 = 3. 𝑦 + 1 

Exercice I.2 

Consider the torsor [𝑇1⃗⃗  ⃗]0 be defined by the three vectors: 

𝑉1⃗⃗ ⃗⃗  = −2𝑖 + 3𝑗 − 7�⃗⃗�  ,   𝑉2⃗⃗ ⃗⃗  = 3𝑖 − 𝑗 − �⃗⃗�  ,  𝑉3⃗⃗ ⃗⃗  = −𝑖 − 2𝑗 + 8�⃗⃗�  

Defined in an orthonormal coordinate system 𝑅(𝑂, 𝑖 , 𝑗 , �⃗� ), and linked respectively to the points : 

A(1,0,0) , B(0,1,0) , C(0,0,1).  

Either the Torsor: [𝑇2⃗⃗  ⃗]0 = {
𝑅2⃗⃗ ⃗⃗ 

𝑀20⃗⃗ ⃗⃗ ⃗⃗  ⃗
    with  𝑅2⃗⃗ ⃗⃗ = 2𝑖 + 𝑗 + 3�⃗�   and    �⃗⃗� 20 = −3𝑖 + 2𝑗 − 7�⃗�  

1- Determine the reduction elements of the torsor [𝑇1⃗⃗  ⃗]0  

2- Calculate the pitch and the central axis of the torsor [𝑇2⃗⃗  ⃗]0 

3- Calculate the sum and product of the two torsors 

4- Calculate the auto-moment of the sum torsor [�⃗⃗⃗⃗�  ⃗]
0
= [𝑇1⃗⃗  ⃗]0 + [𝑇2

⃗⃗  ⃗]
0
. 
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I.2 Definitions and assumptions 

I.2.1 Machines  

A machine is a mechanism or group of mechanisms used to perform useful work. A machine 

transmits forces.  

The term “Machine” should not be confused with “mechanism” even though in actuality, both 

may refer to the same device. The difference in terminology is related primarily to function.  Whereas 

the function of a machine is to transmit energy, that of a mechanism is to transmit motion. Stated in 

other words, the term “mechanism” applies to the geometric arrangement that imparts definite 

motions to parts of a machine.  

Figure I.11 illustrates an adjustable height platform that is driven by hydraulic cylinders. 

Although the entire device could be called a machine, the parts that take the power from the 

cylinders and drive the raising and lowering of the platform comprise the mechanism. 

 

Figure I. 11 : Adjustable height platform. 

I.2.2 A mechanism  

A mechanism is a combination of rigid bodies so connected that the motion of one will 

produce a definite and predictable motion of others, according to a physical law. Alternatively, a 

mechanism is considered to be a kinematic chain in which one of the rigid bodies is fixed. An example 

of a mechanism is the slider crank shown in Figure I.12. Instruments, watches, and governors provide 

other examples of mechanisms. 
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Figure I. 12 : Slider-crank mechanism. 

I.2.3 Linkage  

A linkage is a mechanism where rigid parts are connected together to form a chain. One part 

is designated the frame because it serves as the frame of reference for the motion of all other parts. 

The frame is typically a part that exhibits no motion. For example the chain saw, the mechanism 

takes power from a small engine and delivers it to the cutting edge of the chain. 

The purpose of the mechanism in Figure I.12 is to lift the platform and any objects that are 

placed upon it. Synthesis is the process of developing a mechanism to satisfy a set of performance 

requirements for the machine. Analysis ensures that the mechanism will exhibit motion that will 

accomplish the set of requirements. 

I.2.4 Links  

Are the individual parts of the mechanism (Figures I.13 and I.14). They are considered rigid 

bodies and are connected with other links to transmit motion and forces. Theoretically, a true rigid 

body does not change shape during motion. Although a true rigid body does not exist, mechanism 

links are designed to minimally deform and are considered rigid. 

Elastic parts, such as springs, are not rigid and, therefore, are not considered links. They have 

no effect on the kinematics of a mechanism and are usually ignored during kinematic analysis. They 

do supply forces and must be included during the dynamic force portion of analysis. 
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 Simple link  

Is a rigid body that contains only two joints, which connect it to other links (Figure I.13). Crank 

link is considered as a simple link that is able to complete. Also, rocker is a simple link that 

oscillates through an angle, reversing its direction at certain intervals. 

 Complex link  

Is a rigid body that contains more than two joints. Figure I.13 illustrates the simple and 

complex link. A crank is a simple link that is able to complete. 

 

Figure I. 13: Simple and complex link 

▪ Rocker arm is a complex link, containing three joints, that is pivoted near its center. 

▪ Bellcrank link is similar to a rocker arm, but is bent in the center (Figure I.13-b). 

I.2.5 Joint  

Is a movable connection between links and allows relative motion between the links. The two 

primary joints, also called full joints, are the revolute and sliding joints.  

The revolute joint is also called a pin or hinge joint. It allows pure rotation between the two 

links that it connects.  

The sliding joint is also called a piston or prismatic joint. It allows linear sliding between the 

links that it connects. Figure I.14 illustrates these two primary joints. 
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Figure I. 14 : Individual parts of the mechanism. 

A cam joint is shown in Figure I.15-a. It allows for both rotation and sliding between the two 

links that it connects. Because of the complex motion permitted, the cam connection is called a 

higher-order joint, also called half joint.  

A gear connection also allows rotation and sliding between two gears as their teeth mesh. 

This arrangement is shown in Figure I.15-b. The gear connection is also a higher-order joint. 

 

Figure I. 15: Higher-order joint (a) Cam joint, (b) Gear joint. 

I.2.6 Planar mechanism 

A mechanism is considered a planar mechanism if all the trajectories of the points of the 

moving elements remain in parallel planes during the movement (Figure I.16). 
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Figure I. 16 : Example for a planar mechanism. 

I.2.7 Spherical mechanisms 

Spherical mechanisms are pin-jointed spatial linkages which are used to move an object along 

a three-dimensional path in space. A spherical mechanism differs from a planar mechanism in the 

orientation of its axes of revolution. In a planar mechanism all the axes of the pin joints are parallel. 

In a spherical mechanism, however, all of the axes of revolution intersect at a single point. This 

constrains each of the pin joints to lie on concentric spheres about this point. 

 

Figure I. 17: Example of the spherical mechanism 
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I.2.8 Spatial mechanisms 

Spatial mechanisms have no restrictions on the movements of their constituent elements. 

Spatial mechanisms are essentially three-dimensional mechanisms such that one or more members 

of such a mechanism move in a plane different to others. 

 

Figure I. 18 : Example for special mechanism 

 

 


