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What is Text representation?

Feature representation is a common step in any ML project, whether the
data is text, images, videos, or speech. However, feature representation for
text is often much more involved as compared to other formats of data.

Often in NLP, feeding a good text representation to an ordinary algorithm
will get you much farther compared to applying a topnotch algorithm to
an ordinary text representation.
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What is Text representation?

Process of converting text into numerical vectors

Essential step for machine learning algorithms

Enables mathematical operations on text data
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Basic vectorization approaches

Basic idea of text representation:

map each word in the vocabulary (V) of the text corpus to a unique
ID (integer value),

Then, represent each sentence or document in the corpus as a
V-dimensional vector.

Dr. Nourelhouda ZERARKA Text representation Methods 5 / 48



One-Hot Encoding

Each word gets a unique binary vector

Vector length equals vocabulary size

Only one ’1’, rest are ’0’s

Concept

So, each word is represented by a V-dimensional binary vector of 0s and 1

Example

Vocabulary: [”hello”, ”world”, ”python”]

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]
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One-Hot Encoding Limitations

Key Limitations

Sparse representation

High dimensionality

No semantic meaning

No word relationships
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Bag of Words

Concept

1 Tokenize the text (split it into words).

2 Create a Vocabulary of unique words from all the documents.

3 Count how many times each word appears in each document.

Why to use BoW

Counts word occurrences

Ignores word order

Simple but effective approach
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Bag of Words

Example

Text: ”The cat sat on the mat”
Vocabulary:{”the”, ”cat”, ”sat”, ”on”,”mat”}
BoW: [2,1,1,1,1]
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N-grams

What are N-grams?

Continuous sequence of n items

Captures local context

Common types:

Unigrams (n=1)
Bigrams (n=2)
Trigrams (n=3)
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N-grams Example

Text: ”The quick brown fox”

Unigrams:

”The”, ”quick”, ”brown”, ”fox”

Bigrams:

”The quick”, ”quick brown”, ”brown fox”

Trigrams:

”The quick brown”, ”quick brown fox”
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Bag of N-gram

Concept

The Bag of N-grams method converts n-grams into a numerical vector by:

Counting the frequency of each n-gram in the text.

Representing the text as a vector of these frequencies.
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Bag of n-grams

Example

corpus = [
”The quick brown fox”,
”The quick fox jumps”,
”The brown fox is quick”
]
Vocabulary of tri-grams: [’brown fox is’, ’fox is quick’, ’quick brown fox’,
’quick fox jumps’, ’the brown fox’, ’the quick brown’, ’the quick fox’]
Bag of Trigrams Representation:

[[0, 0, 1, 0, 0, 1, 0]

[0, 0, 0, 1, 0, 0, 1]

[1, 1, 0, 0, 1, 0, 0]]
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TF-IDF

What is TF-IDF?

TF (Term Frequency):

How often word appears in document
TF (t, d) = Number of occurrences oft in d

total number of words in d

IDF (Inverse Document Frequency):

How unique the word is across documents. ie it discounts terms that
appear frequently across the entire corpus, reducing their importance.
IDF (t) = log N

1+df (t)

N: total documents
df(t): documents containing t
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Example of TF-IDF

Doc1: ”The cat sat on the mat”

Doc2: ”The dog barked at the cat”

Doc3: ”The dog and the cat played together”

calculating TF of t=”the”
For Doc1: there are 6 words in the document:TF (the) = 2

6 = 0.33
calculating IDF of t=”the”
”the” appears in all 3 documents: IDF (the) = log( 3

1+3) = −0.12
TF-IFD(the)=0.0396
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Applications in Practice

Sentiment Analysis

Product reviews

Social media
analysis

Customer feedback

Document
Classification

Email spam detection

News categorization

Topic modeling

Search Engines

Query processing

Document
ranking

Relevance scoring
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Summary

One-Hot Encoding
Simple but sparse
Good for small vocabularies

Bag of Words
Captures frequency
Loses word order

Bag of N-grams
Preserves local context
Increases vocabulary size

TF-IDF
Balances frequency and uniqueness
Good for document comparison

To conclude
These simple methods are often more suitable for small dataset because they are
computationally efficient and work well with limited data.
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Questions?

Questions!
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What are Distributed Representations?

Distributed representations are dense vector representations of text
that capture semantic and syntactic information.

Key characteristics:

Low-dimensional dense vectors
Capture contextual and semantic relationships
Enable computational processing of text

Fundamental shift from sparse, one-hot representations
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Main Types of Distributed Representations

1 Word Embeddings

2 Sentence Embeddings

3 Contextual Embeddings

4 Document Embeddings
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Word Embeddings: Conceptual Understanding

Dense vector representations of words

Capture semantic relationships between words

similar words (similar context) have similar word embedding

Example of Semantic Relationships:

king−man + woman ≈ queen
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Word Embeddings: Manual Example

Hypothetical Word Vector Space
Consider a 3-dimensional word embedding space:

Semantic Axis 1 (Emotion): Negative → Positive

Semantic Axis 2 (Intensity): Weak → Strong

Semantic Axis 3 (Concreteness): Abstract → Concrete

Example word placements:

“happiness”: [0.8, 0.7, -0.3]

“sadness”: [-0.8, 0.6, -0.4]

“mountain”: [0.2, 0.9, 0.9]
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Word Embedding Models: Overview

Three primary word embedding approaches:
1 Word2Vec
2 GloVe (Global Vectors)
3 FastText

Each model offers unique approach to capturing word semantics
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Word2Vec: Conceptual Framework

Word2Vec Approaches:

Word2Vec transforms words into numerical vectors (embeddings)
such that words with similar meanings or contexts have vectors that
are close together in the embedding space. (Predict surrounding
words based on context)

Two primary architectures:

Continuous Bag of Words (CBOW)
Skip-gram Model

Word2Vec can be used to represent:

Individual words.

Sentences (by aggregating word vectors).

Entire documents (by further aggregation)
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Word2Vec: how it works

The goal of Word2Vec is to predict either

a context words form a word if it uses skip-gram

or a target word from context words it it uses CBOW

It uses a neural network with a 1 hidden layer
it uses a large corpus of text to train the Skip-Gram or CBOW model.
During training, word embeddings ((weights in the hidden layer) are
adjusted to optimize the prediction task.
So, to Obtain Word Embeddings:

After training, it extracts the dense vector for each word from the
hidden layer.

These embeddings serve as features for each word. It encodes
semantic and syntactic properties of words based on their contexts in
the training data.
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Word2Vec: Manual Example

Hypothetical Word2Vec Semantic Space
Consider a small corpus about cooking:

Context words for “knife”:

“chef” [proximity: 0.8]
“cut” [proximity: 0.9]
“kitchen” [proximity: 0.7]

Surrounding context creates vector representation:

knife ≈ [0.5, 0.7,−0.2, 0.6, . . .]

Observation: Vector captures semantic and syntactic relationships
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GloVe: Global Vectors Approach

GloVe (Global Vectors for Word Representation) is a word embedding
technique designed to create dense, distributed vector representations for
words. It is widely used in text representation because it captures global
statistical information about words in a corpus. Once trained, GloVe
provides fixed word embeddings that can be used as features for various
NLP tasks.
For a vocabulary of size V, construct a V×V matrix X. The co-occurrence
matrix captures how often words occur together within a specified context
window in a corpus.
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GloVe: Global Vectors Approach

GloVe (Global Vectors) Characteristics:

Global statistical information about word co-occurrences

Combines global matrix factorization with local context window

Explicitly uses word-word co-occurrence statistics

Key Differences from Word2Vec:

Uses global corpus statistics

More direct optimization of co-occurrence matrix

Handles rare words more effectively
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GloVe: Manual Example

Co-occurrence Probability Analysis

Example

Co-occurrence Matrix Example:

cat dog runs jumps

cat 2 0 1 0
dog 0 2 0 1
runs 1 0 3 2
jumps 0 1 2 3
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FastText: Subword Information Embedding

FastText extends Word2Vec by incorporating subword information,
making it more robust and effective for rare or unseen words. FastText is
widely used for text representation in NLP tasks due to its ability to
handle out-of-vocabulary words and morphologically rich languages.
FastText Unique Characteristics:

Represents words as bag of character n-grams

Handles out-of-vocabulary and morphologically rich words

Creates embeddings from subword information

Key Advantages:

Better handling of rare words

Captures morphological information

More robust for morphologically complex languages
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FastText: Manual Example

Subword Representation Analysis
Consider the word “dogs”:

Example for ”dogs”: Subwords: <o, dog, ogs, gs >
Random embeddings:
<do: [0.3, -0.2, 0.4]
dog: [0.5, 0.1, -0.3]
ogs: [0.2, 0.4, 0.1]
gs>: [0.1, -0.1, 0.3]
Sum: [1.1, 0.2, 0.5]
Average: [0.275, 0.05, 0.125]
Result:
Embedding for ”dogs”: [0.275, 0.05, 0.125]

Observation: Captures both semantic and morphological information
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Word Embedding Models: Comparative Analysis

Characteristic Word2Vec GloVe FastText
Context Understanding Local Global Subword
Rare Word Handling Limited Moderate Excellent
Morphological Info No No Yes
Computational Speed Fast Moderate Slower
Global or local context local global local
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Conclusion

Distributed representations transform text processing

Multiple levels: Word, Sentence, Document

Capture rich semantic information

Crucial for modern NLP applications
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Questions?
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Evolution of Word Representations

Traditional Representations

One-Hot Encoding

Sparse Vectors

No Semantic Meaning

Advanced Embeddings

Dense Vector Representations

Semantic Relationships

Context-Independent

Embedding Evolution

From static representations to dynamic, context-aware embeddings
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Embedding Types: A Comparative Analysis

Key Differences

Representation Complexity

Semantic Capture Ability

Computational Requirements
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What are Contextual Embeddings?

Definition

The fundamental of Contextual embedding is its ability to generate word
embeddings that change based on the surrounding words. This means the
representation of a word is not static but dynamically computed based on
its context in a specific sentence.

Static Embedding
Example:

“bank” → [0.3, 0.7, 0.2]

Contextual Embedding:

“bank” in river context → [0.1, 0.2, 0.8]

“bank” in financial context → [0.7, 0.3, 0.1]
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ELMo: Bidirectional Language Modeling- Technical
Architecture

Input Processing
1 The input sentence is tokenized
2 Each word is initially represented by its character-level representation

This allows the model to handle out-of-vocabulary words and capture
morphological information
Bidirectional Language Model Training
The model is trained on a large corpus to predict:

1 Next word in a sequence (forward direction)
2 Previous word in a sequence (backward direction)

This training helps the model understand contextual relationships
Embedding Computation

For each word, ELMo combines representations from all layers

It uses a task-specific weighted combination of these layer
representations

The weights are learned during fine-tuning for specific tasks
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BERT: Bidirectional Encoder Representations

Pre-training Process BERT is pre-trained using two innovative
techniques:

Masked Language Modeling (MLM) Some percentage of input tokens
are randomly masked. The model tries to predict these masked words.
This forces BERT to develop a deep contextual understanding

Next Sentence Prediction (NSP): The model learns to predict if two
sentences are consecutive. Helps understand sentence-level
relationships. Useful for tasks like question answering
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BERT: Bidirectional Enocder Representation

Multiple layers of self-attention mechanisms

Each layer captures increasingly complex linguistic features

Lower layers capture syntactic information

Higher layers capture semantic understanding

Models

BERT-base: 12 layers, 110 million parameters

BERT-large: 24 layers, 340 million parameters
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GPT: Unidirectional Contextual Modeling

Unlike traditional contextual embedding models, GPT doesn’t just
represent words—it generates contextual representations through a
predictive process. Each token’s embedding is influenced by:

Previous tokens in the sequence

Learned probabilistic relationships

Contextual nuances captured during pre-training

contextual embedding occurs across multiple transformer layers:

Lower layers capture syntactic information

Middle layers begin integrating contextual relationships

Higher layers develop sophisticated semantic representations
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RoBERTa: Enhanced BERT Approach

Improvements over Original BERT

Removes Next Sentence Prediction entirely

Dynamically changes masking patterns during training

Increases masking rate and complexity

Trains on larger batches and for more epochs

Optimization Strategies

1 Modify pretraining approach

2 Increase model robustness

3 Improve semantic understanding
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Implementation and Challenges

Computational Requirements

High GPU demands

Significant memory usage

Pre-training complexity

Key Challenges

Balance between representation power and computational efficiency
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Emerging Trends in Contextual Embeddings

More efficient transformer architectures

Improved contextual understanding

Reduced computational requirements

Multilingual and cross-domain representations

Research Frontiers

Bridging semantic understanding across languages and domains
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Key Takeaways

Contextual Embedding Highlights

Dynamic semantic representation

Context-aware understanding

Advanced NLP capabilities

(0,0) circle (1) node
Contextual
Embeddings;

Final Reflection

Contextual embeddings represent a paradigm shift in language
understanding
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which technique to use

To select the most appropriate text representation technique, you’ll need
to evaluate several crucial factors:

Task Complexity

Available Computational Resources

Data Characteristics

Performance Requirements

Interpretability Needs
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Which technique to use

Table: Text Representation: Performance Comparison

Technique Semantic Computational Interpretability
Understanding Cost

One-Hot Encoding Very Low Low High
Bag of Words Low Moderate Moderate
TF-IDF Moderate Moderate Moderate
Word2Vec Good High Low
GloVe Good High Low
ELMo Very Good Very High Low
BERT Excellent Very High Low
RoBERTa Excellent Very High Low
GPT Excellent Very High Low
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Questions?
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