Université de Biskra Département de Génie Civil et d'Hydraulique

Cours de Mécanique des roches

Rock Mechanics Course

2ème partie Comportement mécanique et propriétés des massifs rocheux

Une contrainte est une force divisée par une surface. Si on considère une surface élémentaire *dS* de normale \vec{n} , subissant une force \vec{df} :

$$\vec{T} = \lim_{dS \to 0} \frac{\vec{df}}{dS}$$

La contrainte \vec{T} se décompose en une composante normale $\vec{\sigma_n}$ et une composante tangentielle $\vec{\tau}$

Il existe 9 composantes de contrainte sur un petit cube.

Trois contraintes normales $\sigma_{xx} \sigma_{yy} \sigma_{zz}$

Six contraintes de cisaillement $\tau_{xy} \tau_{yx} \tau_{xz} \tau_{zx} \tau_{yz} \tau_{zy}$

 σ_{ij} , τ_{ij} {i : direction de la normale extérieure de la facette concernée ; j : axe d'orientation de la contrainte}

Ces composantes peuvent être groupées dans une matrice.

$$σ_{xx}$$
 τ_{yx} τ_{zx}
τ_{xy} σ_{yy} τ_{zy}
τ_{xz} τ_{yz} σ_{zz}

L'équilibre du cube impose que les contraintes de cisaillement qui se correspondent soient égales.

 $\boldsymbol{\tau}_{xy} = \boldsymbol{\tau}_{yx}; \quad \boldsymbol{\tau}_{xz} = \boldsymbol{\tau}_{zx}; \quad \boldsymbol{\tau}_{yz} = \boldsymbol{\tau}_{zy}$

La matrice est donc symétrique.

$$σ_{xx}$$
 τ_{xy} τ_{xz}
τ_{xy} σ_{yy} τ_{yz}
τ_{xz} τ_{yz} σ_{zz}

Il existe une orientation des axes selon laquelle toutes les contraintes de cisaillement disparaissent (transformation de la contrainte). Les contraintes restantes sont les contraintes principales.

Les déformations sont des déplacements par unité de longueur causées par les contraintes. Dans le domaine élastique, elles sont liées par le module d'Young.

 $E = d\sigma_x / d\epsilon_x$

Les déformations dans la direction de contrainte entraînent toujours des déformations dans les autres directions. Les déformations sont liées entre elles par le coefficient de Poisson.

 σ_1

Relations contraintes déformations

Dans le cas d'un matériau isotrope, si l'on reprend en compte le coefficient de Poisson v, la loi de Hooke devient :

$$\sigma_{ij} = \frac{\mathrm{E}}{1+\nu} \left(\varepsilon_{ij} + \frac{\nu}{1-2\nu} \varepsilon_{kk} \delta_{ij} \right)$$

Avec :

 δ_{ij} le symbole de Kronecker et ϵ_{kk} la notation abrégée de la trace du tenseur des déformations (somme des termes diagonaux du tenseur).

On peut aussi l'écrire sous forme matricielle

$$oldsymbol{\sigma} = rac{\mathrm{E}}{1+
u} \left(arepsilon + rac{
u}{1-2
u} \mathrm{Tr}\left(arepsilon
ight) \mathbf{I}
ight)$$

Les relations ci-dessus peuvent être inversées pour donner :

$$arepsilon_{ij} = rac{1}{\mathrm{E}} \left[\left(1 +
u
ight) \sigma_{ij} -
u \sigma_{kk} \delta_{ij}
ight].$$

Ou, sous forme matricielle

$$oldsymbol{arepsilon} oldsymbol{arepsilon} = rac{1}{\mathrm{E}} \left((1+
u) oldsymbol{\sigma} -
u \mathrm{Tr}(oldsymbol{\sigma}) \mathbf{I}
ight)$$

La forme explicite très simple de ces relations (donnant les déformations en fonction des contraintes)

$$\begin{pmatrix} \varepsilon_{11} = \frac{1}{E} \left(\sigma_{11} - \nu \left(\sigma_{22} + \sigma_{33} \right) \right) & \varepsilon_{12} = \frac{1+\nu}{E} \sigma_{12} & \varepsilon_{13} = \frac{1+\nu}{E} \sigma_{13}, \\ & \cdots & \varepsilon_{22} = \frac{1}{E} \left(\sigma_{22} - \nu \left(\sigma_{11} + \sigma_{33} \right) \right) & \varepsilon_{23} = \frac{1+\nu}{E} \sigma_{23}, \\ & \cdots & \cdots & \varepsilon_{33} = \frac{1}{E} \left(\sigma_{33} - \nu \left(\sigma_{11} + \sigma_{22} \right) \right) \end{pmatrix}$$

Montre bien la signification physique du module de Young E et du coefficient de Poisson v

Les contraintes et déformations planes peuvent être représentées par des cercles de Mohr.

Mohr a émis l'hypothèse que la contrainte de cisaillement à la rupture sur le plan de rupture est fonction unique de la contrainte normale sur ce plan.

$$\tau = \left(\frac{\sigma_1 - \sigma_3}{2}\right) \sin 2\alpha$$

et $\sigma_n = \left(\frac{\sigma_1 + \sigma_3}{2}\right) + \left(\frac{\sigma_1 - \sigma_3}{2}\right) \cos 2\alpha$

Compression Simple ou Uniaxiale

La résistance à la compression uniaxiale est la contrainte ultime d'un échantillon de roche cylindrique (50 mm de diamètre et 100 à 120 mm de hauteur) sous chargement axial. C'est la plus importante des propriétés mécaniques de la roche, utilisée en dimensionnement, analyse et modélisation. En parallèle avec la mesure de la charge, on mesure aussi les déformations axiales et radiales.

F

 $\sigma_a = F/S$

 $\frac{H}{D} = 2$

Essai Cerema Toulouse Photo Muriel GASC

Lo ou H

Phase 1 : C'est une première phase dite de serrage, où les microfissures existantes se referment, entraînant une non-linéarité initiale de la courbe.

Phase 2 : La roche a un comportement linéairement élastique de $\sigma_a{}^s$ à $\sigma_a{}^F$, axialement et radialement. On définit alors un module d'Young E et un coefficient de Poisson v.

Phase 3 : La courbe de contrainte-déformation axiale est quasi linéaire et est presque réversible jusqu'à σ_a^L , mais la courbe de déformations volumiques ne l'est plus. Cette phase correspond à la création et à l'ouverture de microfissures, par flambement parallèle à l'axe de l'éprouvette. La stabilité globale est toujours assurée.

Phase 4 : Au-delà de σ_a^L , la roche a un comportement instable. La roche subit une rapide accélération de la microfissuration et de l'augmentation du volume. La contrainte σ_a^M est la résistance à la compression simple, aussi notée Rc.

Phase 5 : La rupture est fragile et la roche a dépassé la contrainte de pic, mais est encore intacte, même si la structure interne est fortement perturbée. L'échantillon subit un radoucissement des déformations (rupture).

Phase 6 : La roche se rompt en plusieurs blocs plutôt qu'en une structure intacte et la roche présente une résistance résiduelle σ_a^R

Représentation dans le plan de Mohr

Contrainte-déformation uniaxiale au et après le pic.

Les roches se rompent généralement sous faible déformation, typiquement autour de 0.2 à 0.4%. Les roches fragiles, p. ex. les roches cristallines, ont une déformation faible à la rupture, alors que les roches tendres comme les schistes et les argilites tendent à avoir une déformation relativement élevée à la rupture.

La plupart des roches, incluant les roches ignées cristallines, métamorphiques et sédimentaires, se comportent de manière fragile sous compression uniaxiale. Quelques roches tendres, principalement d'origine sédimentaire, ont un comportement ductile.

Ordre de grandeur de la résistance d'une roche

MPa

Valeurs de résistance à la compression uniaxiale σ_c	Termes descriptifs de résistance	
σ _c > 200 MPa	Résistance extrêmement élevée	
100 MPa < σ_{c} < 200 MPa	Résistance très élevée	
50 MPa < σ _c < 100 MPa	Résistance élevée	
25 MPa < σ_c < 50 MPa	Résistance moyenne	
5 MPa < σ_c < 25 MPa	Résistance faible	
$1 \text{ MPa} < \sigma_c < 5 \text{ MPa}$	Résistance très faible	
$\sigma_c < 1 \text{ MPa}$	Résistance extrêmement faible	

Classification des résistances des roches selon AFTES (Association Française des Tunnels et de l'Espace Souterrain)

GPa

Valeurs du module de Young	Termes descriptifs de raideur	
E > 50 GPa	Matrice extrêmement raide	
20 GPa < E < 50 GPa	Résistance très raide	
5 GPa < E < 20 GPa	Matrice raide	
1 GPa < E < 5 GPa	Matrice moyennement raide	
0,1 GPa < E < 1 GPa	Matrice peu raide	
E < 0,1 GPa	Matrice très peu raide	

Classification des raideurs des roches selon AFTES (Association Française des Tunnels et de l'Espace Souterrain)

Coefficient de poisson v

pour la plupart des roches, le coefficient de Poisson se situe entre 0,15 et 0,4

Compression Triaxiale

En profondeur, la roche est soumise à des contraintes axiales et radiales (triaxiales), et la résistance à la compression est plus forte en conditions triaxiales.

L'état de compression triaxiale vraie signifie 3 contraintes principales différentes. On admet souvent pour simplifier que les 2 contraintes radiales sont égales à la contrainte principale mineure (essai triaxial axisymétrique).

L'essai de compression simple semble suggérer un comportement fragile et des caractéristiques "post-pic" presque nulles. Les résultats issus des essais triaxiaux ont largement contredit cette observation.

Le comportement de la roche en compression triaxiale change avec l'augmentation de la pression de confinement:

(a) La résistance maximale augmente;

(b) Le comportement après le pic change graduellement de fragile à ductile.

Dans le domaine élastique, le comportement contraintedéformation est le même qu'en compression uniaxiale.

- Un matériau ductile va se déformer (« s'écouler ») plastiquement sans se rompre ou se rompre après de grandes déformations permanentes.
- > Un matériau fragile va se rompre: la rupture localisée va se propager

Passage du comportement fragile au comportement ductile avec durcissement (Inspiré de Marc Panet 1975)

Remarque : En profondeur (température élevée, pression importante), les roches se déforment plus ductilement qu'en surface

Résistance à la traction

Les roches ont généralement une faible résistance à la traction, due aux microfissures préexistantes. L'existence de ces microfissures peut également être la cause de la rupture soudaine de la roche en traction sous une faible contrainte.

La résistance à la traction de la roche peut être obtenue à partir de plusieurs types d'essais. L'essai de traction le plus connu est l'essai brésilien.

Résistance au cisaillement

La roche résiste à l'effort de cisaillement par deux mécanismes internes, cohésion et frottement interne. La cohésion est une mesure de liaison interne de la roche. Le frottement interne résulte du contact entre les particules, et est défini par l'angle de frottement interne.

La résistance au cisaillement de la roche peut être déterminée par l'essai de cisaillement direct et par des essais de compression triaxiale.

Résistance au cisaillement par essais triaxiaux

A partir d'une série de tests triaxiaux, les contraintes max (σ 1) sont obtenues pour différentes contraintes latérales (σ 3). En traçant les cercles de Mohr, on définit la courbe intrinsèque et on obtient la cohésion et l'angle interne de frottement.

Test	σ ₃ (MPa)	σ ₁ (MPa)
1	0	41.2
2	1	52.6
3	3	74.1
4	5	90.3
5	10	122
6	15	151
7	20	172

Résistance et critères de résistance

La limite de résistance est définie par la contrainte à laquelle le matériau commence à se déformer de façon plastique. Cela représente généralement une limite supérieure à la charge qui peut-être appliquée.

Un critère de résistance limite est une hypothèse qui concerne la limite de contrainte sous n'importe quel état de contraintes. Ceci est généralement décrit par trois contraintes principales.

Critère de Mohr-Coulomb pour la roche

Le critère suppose qu'un plan de cisaillement se développe dans le matériau rocheux. Quand une rupture apparaît, les contraintes développées sur le plan de rupture sont sur la surface limite (enveloppe en 2D).

C'est le même qu'en mécanique des sols. La résistance au cisaillement se représente dans le plan de Mohr par une droite d'équation :

 $\tau = c + \sigma_n \tan \phi$

Du diagramme des cercles de Mohr

 $\sigma_n = \frac{1}{2} (\sigma_1 + \sigma_3) + \frac{1}{2} (\sigma_1 - \sigma_3) \cos 2\theta$

 $\tau = \frac{1}{2} \left(\sigma_1 - \sigma_3 \right) \sin 2\theta$

En combinant les deux équations ci-dessus avec $\tau = c + \sigma_n \tan \phi$

$$\frac{1}{2} (\sigma_1 - \sigma_3) \sin 2\theta = c + \left[\frac{1}{2} (\sigma_1 + \sigma_3) + \frac{1}{2} (\sigma_1 - \sigma_3) \cos 2\theta\right] \tan\phi$$
$$\sigma_1 = \frac{2c + \sigma_3 \left[\sin 2\theta + \tan\phi \left(1 - \cos 2\theta\right)\right]}{\sin 2\theta - \tan\phi \left(1 + \cos 2\theta\right)}$$

La roche se fracture avec la formation d'un plan de cisaillement a-b, par ex., l'état des contraintes sur le plan ab satisfait la condition de résistance au cisaillement. Dans le diagramme, lorsque le cercle de Mohr touche l'enveloppe de résistance de Mohr-Coulomb, la condition de la contrainte sur le plan ab atteint celle du critère de résistance.

A partir du cercle de Mohr, le plan de rupture est défini

par: $\theta = \frac{1}{4} \pi + \frac{1}{2} \phi$

$$\sigma_1 = \frac{2c \cos\phi + \sigma_3 (1 + \sin\phi)]}{1 - \sin\phi}$$

 $\sigma_{c} = \frac{2 c \cos \varphi}{1 - \sin \phi}$ $\sigma_{t} = \frac{2 c \cos \varphi}{1 + \sin \phi}$

Les résistances actuelles à la traction des roches sont inférieures au critère. Un seuil de traction est normalement fixé à une valeur de la contrainte de traction uniaxiale, σ_t , égale à environ 1/10 σ c.

Le critère de Mohr-Coulomb peut aussi être représenté dans un graphique σ 1– σ 3.

Dans le plan des contraintes principales, ce critère ne prend pas en compte la forme arrondie de la courbe de rupture observée expérimentalement aux faibles contraintes et pour les sollicitations en traction.

Critère de résistance de Hoek-Brown

En 1980, Hoek et Brown, deux ingénieurs anglo-saxons, proposent un nouveau critère de plasticité, empirique mais respectant la forme "optimale" de parabole dans le plan des contraintes principales. Il s'écrit de la manière suivante:

m est un paramètre qui change selon le type de roche (typiquement de 0.1 à 5).

L'enveloppe de résistance de Hoek-Brown n'est pas une ligne droite. C'est une courbe. A haut niveau de contrainte, l'enveloppe s'incurve vers le bas, et donne ainsi une évaluation de résistance inférieure à celle de l'enveloppe de Mohr-Coulomb.

C'est un critère empirique basé sur des résultats réels d'essais obtenus sur diverses roches.

Il est employé couramment en mécanique des roches et dans le dimensionnement des ouvrages.

L'essai dilatométrique

A l'instar du célèbre essai pressiométrique pour les sols, l'essai dilatométrique permet d'accéder directement à la courbe de chargement de la paroi d'un forage dans un milieu rocheux.

L'essai dilatométrique est l'essai qui depuis un forage permet de mesurer les divergences et convergences des parois lorsqu'on applique sur ces parois des pressions croissantes et décroissantes. Pour ce faire il utilise un système de mesure de divergence indépendant de celui de la mise en pression du forage ; c'est en cela qu'il diffère du pressiomètre.

Le principe est le suivant : on descend dans un forage, au bout d'un train de tige, la sonde dilatométrique qui permet d'appliquer au terrain une pression orthotrope sur une longueur d'environ 1m. Au milieu de la sonde sont disposés 3 capteurs de déplacement diamétral, en général, régulièrement espacés sur le pourtour de la manchette gonflante. En mesurant la pression de gonflement et le déplacement radial indépendamment, on obtient une courbe de charge-décharge comme sur la figure cidessous.

Les meilleurs dilatomètres peuvent aller jusqu'à 30 MPa de pression et descendre à plus de 1000 m sous terre. Ils sont très utiles pour étudier le comportement du massif rocheux à l'échelle de la sonde (métrique) et dans des conditions insitu. Le dilatomètre est de par sa conception utilisé pour mesurer des caractéristiques de roches tendres à dures.

Cet essai suppose que le terrain obéit aux lois de la mécanique des milieux élastiques et que l'on est en élasticité a priori linéaire homogène et isotrope.

L'objectif principal de l'essai est de déterminer la valeur des modules élastiques, en l'occurrence, on détermine le module d'Young.

On applique une pression P sur les parois qui produisent des déplacements u. Etant donné un rayon R du forage, le rapport sans dimension u/R permet d'obtenir la déformation radiale du terrain sous l'effet de la pression P et ainsi moyennant les conditions aux limites de l'essai de remonter au module d'Young du massif au moyen de la relation générale de l'élasticité linéaire.

Si l'on prend comme hypothèse que l'on est en élasticité linéaire, homogène, et isotrope et que l'on est en déformation plane, l'équation s'écrit très simplement :

$$E = (1+\nu) D \frac{\Delta P}{\Delta u}$$

v est pris égal à 0,25 ou 0,3 et D est le diamètre du forage. Les ΔP et Δu sont estimés pour chaque cycle mais c'est souvent uniquement la deuxième charge-décharge qui est utilisée.

On constate que n'apparaissent pas dans cette formule les contraintes existant dans le massif. Ceci montre que la mesure dilatométrique n'est pas influencée par l'état de contrainte dans le massif.

Essai dilatométrique dans les Alpes à 200m

