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The Damped Harmonic
Oscillator

In our description of an apple swinging back and forth at the end of a string (Section
1.1) we noted that this oscillating system is not ideal. After we set the apple in
motion, the amplitude of oscillation steadily reduces and the apple eventually comes
to rest. This is because there are dissipative forces acting and the system steadily
loses energy. For example, the apple will experience a frictional force as it moves
through the air. The motion is damped and such damped oscillations are the subject
of this chapter. All real oscillating systems are subject to damping forces and will
cease to oscillate if energy is not fed back into them. Often these damping forces
are linearly proportional to velocity. Fortunately, this linear dependence leads to an
equation of motion that can be readily solved to obtain solutions that describe the
motion for various degrees of damping. Clearly the rate at which the oscillator loses
energy will depend on the degree of damping and this is described by the quality of
the oscillator. At first sight, damping in an oscillator may be thought undesirable.
However, there are many examples where a controlled amount of damping is used
to quench unwanted oscillations. Damping is added to the suspension system of a
car to stop it bouncing up and down long after it has passed over a bump in the
road. Additional damping was installed on London’s Millennium Bridge shortly
after it opened because it suffered from undesirable oscillations.

2.1 PHYSICAL CHARACTERISTICS OF THE DAMPED HARMONIC
OSCILLATOR

A tuning fork is an example of a damped harmonic oscillator. Indeed we hear the
note because some of the energy of oscillation is converted into sound. After it is
struck the intensity of the sound, which is proportional to the energy of the tuning
fork, steadily decreases. However, the frequency of the note does not change. The

Vibrations and Waves George C. King
 2009 John Wiley & Sons, Ltd



34 The Damped Harmonic Oscillator

ends of the tuning fork make thousands of oscillations before the sound disappears
and so we can reasonably assume that the degree of damping is small. We may
suspect, therefore, that the frequency of oscillation would not be very different if
there were no damping. Thus we infer that the displacement x of an end of the
tuning fork is described by a relationship of the form

x = (amplitude that reduces with t) × cos ωt

where the angular frequency ω is about but not necessarily the same as would be
obtained if there were no damping. We shall assume that the amplitude of oscillation
decays exponentially with time. The displacement of an end of the tuning fork will
therefore vary according to

x = A0 exp(−βt) cos ωt (2.1)

where A0 is the initial value of the amplitude and β is a measure of the degree
of damping. The minus sign indicates that the amplitude reduces with time. As
we shall see, this expression correctly describes the motion of a damped harmonic
oscillator when the degree of damping is small and so the assumptions we have
made above are reasonable.

2.2 THE EQUATION OF MOTION FOR A DAMPED HARMONIC
OSCILLATOR

An example of a damped harmonic oscillator is shown in Figure 2.1. It is similar
to the simple harmonic oscillator described in Section (1.2.2) but now the mass
is immersed in a viscous fluid. When an object moves through a viscous fluid
it experiences a frictional force. This force dampens the motion: the higher the
velocity the greater the frictional force. So as a car travels faster the frictional
force increases thereby reducing the fuel economy, while the velocity of a falling
raindrop reaches a limiting value because of the frictional force. The damping force
Fd acting on the mass in Figure 2.1 is proportional to its velocity v so long as v

is not too large, i.e.

Fd = −bv (2.2)

k

viscous fluid

m

Figure 2.1 An example of a damped mechanical oscillator showing an oscillating mass
immersed in a viscous fluid.
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where the minus sign indicates that the force always acts in the opposite direction
to the motion. The constant b depends on the shape of the mass and the viscosity
of the fluid and has the units of force per unit velocity. When the mass is displaced
from its equilibrium position there will be the restoring force due to the spring
and in addition the damping force −bv due to the fluid. The resulting equation of
motion is

ma = −kx − bv (2.3a)

or

m
d2x

dt2
+ b

dx

dt
+ kx = 0. (2.3b)

We introduce the parameters

ω2
o = k/m, γ = b/m. (2.4)

In terms of these, Equation (2.3b) becomes

d2x

dt2
+ γ

dx

dt
+ ω2

ox = 0. (2.5)

This is the equation of a damped harmonic oscillator. The relationship k/m = ω2
o is

familiar from our discussion of the simple harmonic oscillator. Now we designate
this angular frequency ωo and describe it as the natural frequency of oscillation ,
i.e. the oscillation frequency if there were no damping. This allows the possibility
that the damping does change the frequency of oscillation. In the present example
the damping force is linearly proportional to velocity. This linear dependence is
very convenient as it has led to an equation that we can readily solve. A damping
force proportional to, say, v2 would be much more difficult to handle. Fortunately,
this linear dependence is a good approximation for many other oscillating systems
when the velocity is small. Equation (2.5) has different solutions depending on
the degree of damping involved, corresponding to the cases of (i) light damping ,
(ii) heavy or over damping and (iii) critical damping . Light damping is the most
important case for us because it involves oscillatory motion whereas the other two
cases do not.

2.2.1 Light damping

This condition corresponds to the mass in Figure 2.1 being immersed in a fluid
of low viscosity like thin oil or even just air. In our previous, qualitative discus-
sion of a lightly damped oscillator, Section 2.1, we suggested an expression for
the displacement that had the form x = A0 exp(−βt) cos ωt . We adopt a similar
functional form here. Then

dx

dt
= −A0 exp(−βt)(ω sin ωt + β cos ωt)
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and
d2x

dt2
= A0 exp(−βt)[2βω sin ωt + (β2 − ω2) cos ωt].

Substituting these into Equation (2.5) and collecting terms in sin ωt and cos ωt

gives

A0 exp(−βt)[(2βω − γω) sin ωt + (β2 − ω2 − γβ + ω2
o) cos ωt] = 0.

This can only be true for all times if the sin ωt and cos ωt terms are both equal to
zero. Therefore,

2βω − γω = 0

giving β = γ/2 and
β2 − ω2 − γβ + ω2

o = 0.

Substituting for β we obtain

ω2 = ω2
o − γ 2/4. (2.6)

So our solution for the equation of the lightly damped oscillator is

x = A0 exp(−γ t/2) cos ωt (2.7)

where ω = (ω2
o − γ 2/4)1/2. Equation (2.7) represents oscillatory motion if ω is

real, i.e. γ 2/4 < ω2
o is the condition for light damping. Equation (2.6) shows that

the angular frequency of oscillation ω is approximately equal to the undamped
value ωo when γ 2/4 	 ω2

o. To obtain the general solution of Equation (2.5) we
need to include a phase angle φ giving

x = A0 exp(−γ t/2) cos(ωt + φ). (2.8)

The parameters γ and ω are determined solely by the properties of the oscillator
while the constants A0 and φ are determined by the initial conditions. For conve-
nience in our following discussion we will take φ = 0. If we let γ = 0 we obtain,
as expected, our previous results for the simple harmonic oscillator.

A graph of x = A0 exp(−γ t/2) cos ωt is shown in Figure 2.2 where the steady
decrease in the amplitude of oscillation is apparent. The dotted lines represent the
exp(−γ t/2) term which forms an envelope for the oscillations. The zeros in x

occur when cos ωt is zero and so are separated by π/ω. Therefore the period of
the oscillation T , equal to twice this separation, is 2π/ω. Successive maxima are
also separated by T . We consider successive maxima An and An+1. If An occurs
at time to then

An = x(to) = A0 exp(−γ to/2) cos ωto

and
An+1 = x(to + T ) = A0 exp[−γ (to + T )/2] cos ω(to + T ).
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t

T

x

An
An+1

A0 exp(−gt/2)

to to + T

Figure 2.2 A graph of x = A0 exp(−γ t/2) cos ωt illustrating the decay in amplitude of a
damped harmonic oscillator. The dotted lines represent the exp(−γ t/2) term of Equation
(2.8), which forms an envelope of the oscillations.

Since cos ωto = cos ω(to + T ) we have

An

An+1
= exp

(
γ T

2

)
. (2.9)

We see that successive maxima decrease by the same fractional amount. The natural
logarithm of An/An+1, i.e.

ln

(
An

An+1

)
= γ T

2
,

is called the logarithmic decrement and is a measure of this decrease. Note that
the larger amplitude occurs in the numerator of this expression.

2.2.2 Heavy damping

Heavy damping occurs when the degree of damping is sufficiently large that the
system returns sluggishly to its equilibrium position without making any oscillations
at all. This corresponds to the mass in Figure 2.1 being immersed in a fluid of
large viscosity like syrup. For this case the oscillatory part of our solution, cos ωt

in Equation (2.1), is no longer appropriate. Instead we replace it with the general
function f (t), i.e.

x = exp(−βt)f (t). (2.10)

Substituting x and its derivatives into Equation (2.5) and letting β = γ/2 gives

d2f

dt2
+ (ω2

o − γ 2/4)f = 0 (2.11)

or

d2f

dt2
= α2f (2.12)
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where α2 = (γ 2/4 − ω2
o). The solutions to Equation (2.12) depend dramatically

on the sign of α2. The α2 term is negative when γ 2/4 < ω2
o and this leads to an

oscillatory solution with the complex form f (t) = A exp i(αt + φ). This solution
is not appropriate for the case of heavy damping where there is no oscillation. In
fact it corresponds to the case of light damping, discussed in Section 2.2.1. The
α2 term is positive when γ 2/4 > ω2

o. In this case Equation (2.12) has the general
solution

f (t) = A exp(αt) + B exp(−αt),

giving

x = exp(−γ t/2)[A exp(αt) + B exp(−αt)]

= A exp[−γ/2 + (γ 2/4 − ω2
o)

1/2]t + B exp[−γ/2 − (γ 2/4 − ω2
o)

1/2]t. (2.13)

This is the non-oscillatory solution that we require. The term (γ 2/4 − ω2
o)

1/2 is
clearly less than γ/2 and so the exponents of both exponential terms are negative
in sign. Hence the displacement reduces to zero with time and there is no oscillation.

2.2.3 Critical damping

An interesting situation occurs when γ 2/4 = ω2
o. Then Equation (2.12) becomes

d2f

dt2
= 0. (2.14)

This equation has the general solution

f = A + Bt, (2.15)

leading to

x = A exp(−γ t/2) + Bt exp(−γ t/2) (2.16)

where A has the dimension of length and B has the dimensions of velocity. This
is the case of critical damping. Here the mass returns to its equilibrium position in
the shortest possible time without oscillating. Critical damping has many important
practical applications. For example, a spring may be fitted to a door to return
it to its closed position after it has been opened. In practice, however, critical
damping is applied to the spring mechanism so that the door returns quickly to
its closed position without oscillating. Similarly, critical damping is applied to
analogue meters for electrical measurements. This ensures that the needle of the
meter moves smoothly to its final position without oscillating or overshooting so
that a rapid reading can be taken. Springs are used in motor cars to provide a
smooth ride. However damping is also applied in the form of shock absorbers
as illustrated schematically in Figure 2.3. Without these the car would continue
to bounce up and down long after it went over a bump in the road. A shock
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motor car

spring

wheel

shock
absorber

Figure 2.3 Schematic diagram of a car suspension system showing the spring and shock
absorber.

absorber consists essentially of a piston that moves in a cylinder containing a
viscous fluid. Holes in the piston allow it to move up and down in a damped
manner and the damping constant is adjusted so that the suspension system is close
to the condition of critical damping. You can see the effect of a shock absorber by
pushing down on the front of a car, just above a wheel. The car quickly returns
to equilibrium with little or no oscillation. You may also notice that the resistance
is greater when you push down quickly than when you push down slowly. This
reflects the dependence of the damping force on velocity.

In summary we find three types of damped motion and these are illustrated in
Figure 2.4. They correspond to the conditions:

(i) (γ 2/4 < ω2
o) Light damping; damped oscillations.

(ii) (γ 2/4 > ω2
o) Heavy damping; exponential decay of displacement.

(iii) (γ 2/4 = ω2
o) Critical damping; quickest return to equilibrium position

without oscillation.

t

x

critical damping heavy damping

light damping

Figure 2.4 The motion of a damped oscillator for the cases of light damping, heavy damping
and critical damping.
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To appreciate the physical origin of these different types of motion, we recall
that γ 2/4 is the damping term while ω2

o is proportional to the spring constant
k through ω2

o = k/m. When the damping term is small compared with k/m, the
motion is governed by the restoring force of the spring and we have damped
oscillatory motion. Conversely, when the damping term is large compared with
k/m the damping force dominates and there is no oscillation. At the point of
critical damping the two forces balance. We finally note that the relative size of
γ 2/4 compared with ω2

o also determines the response of the oscillator to an applied
periodic driving force, as we shall see in Chapter 3.

Worked example

A mass of 2.5 kg is attached to a spring that has a value of k equal to
600 N m−1. (a) Determine the value of the damping constant b that is required
to produce critical damping. (b) The mass receives an impulse that gives it
a velocity of vi = 1.5 m s−1 at t = 0. Determine the maximum value of the
resultant displacement and the time at which this occurs.

Solution

(a) For critical damping, γ 2/4 = b2/4m2 = ω2
o = k/m. Therefore,

b =
√

4mk = √
4 × 2.5 × 600 = 77.5 kg s−1.

(b) General solution for critical damping is

x = A exp(−γ t/2) + Bt exp(−γ t/2).

Therefore
v = dx

dt
= exp(−γ t/2)(B − γBt/2 − γA/2).

Initial conditions, x = 0 and v = vi at t = 0, give A = 0 and B = vi . There-
fore,

x(t) = vit exp(−γ t/2).

Maximum displacement occurs when dx/dt = 0, giving

vi exp(−γ t/2)(1 − γ t/2) = 0.

Hence
t = 2

γ
= 2m

b
= 2 × 2.5

77.5
= 6.5 × 10−2 s

and

x = 2vi

eγ
= 2mvi

eb
= 2 × 2.5 × 1.5

e × 77.5
= 3.6 × 10−2 m.
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TABLE 2.1 Typical values of Q for a variety of damped
oscillators.

Damped oscillator system Typical value of Q

Paper weight suspended on a rubber band 10
Clock pendulum 75
Electrical LCR circuit 200
Plucked violin string 103

Microwave cavity oscillator 104

Quartz crystal 106

Typical values of Q for a variety of damped oscillators are presented in Table 2.1.

2.4 DAMPED ELECTRICAL OSCILLATIONS

In our mechanical example of a mass moving through a fluid we saw that the fluid
offered a resistance that damped the motion. In the case of an electrical oscillator
it is the resistance in the circuit that impedes the flow of current. An electrical
oscillator is shown in Figure 2.8. It consists of an inductor L and capacitor C

L

R

C

Figure 2.8 The circuit of a damped electrical oscillator consisting of an inductor L, a
capacitor C and a resistor R connected in series.

as before (see Figure 1.21) but now there is also the resistor R. We charge the
capacitor to voltage VC = q/C, and then close the switch. Kirchoff’s law gives

L
dI

dt
+ RI + q

C
= 0

or

L
d2q

dt2
+ R

dq

dt
+ q

C
= 0. (2.26)

This has the identical form to Equation (2.3b),

m
d2x

dt2
+ b

dx

dt
+ kx = 0, (2.3b)
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and we recognise the analogous quantities we met before: q is equivalent to x,
L to m and k to 1/C. However, we see that R is analogous to the mechanical
damping constant b and so R/L is the equivalent of γ (= b/m). Since the above
differential equations have identical forms, their solutions also have identical forms.
The importance of this is that we can use our results for the mechanical oscillator
to immediately write down the corresponding results for the electrical case. Thus
from Equation (2.7) it follows that

q = q0 exp(−Rt/2L) cos[(1/LC − R2/4L2)1/2t] (2.27)

where q0 is the initial charge on the capacitor. This corresponds to the case of light
damping which now means that R2/4L2 < 1/LC . Since the voltage VC across the
capacitor is equal to q/C

VC = V0 exp(−Rt/2L) cos[(1/LC − R2/4L2)1/2t] (2.28)

where V0 is the initial value of the voltage. This is an oscillating voltage at an
angular frequency ω given by

ω2 = 1

LC
− R2

4L2
(2.29)

which is essentially equal to 1/LC when R2/4L2 	 1/LC . The amplitude of the
oscillating voltage decays exponentially with a time constant of R/2L and so R/L

has the dimensions of [time]−1. For R2/4L2 > 1/LC we have the case of heavy
damping and for R2/4L2 = 1/LC we have critical damping. Similarly we find that
the quality factor Q of the circuit is given by

Q = 1

R

√
L

C
. (2.30)

For example, with L = 10 mH, C = 2.5 nF and R = 10 �, Q = 200, which is
a typical value for an electrical oscillator. Again we emphasise the exact corre-
spondence between the equations and solutions that describe the mechanical and
electrical systems, so that mechanical systems can be simulated by electrical cir-
cuits. Such analogue computers can greatly facilitate the design and development
of mechanical systems.

PROBLEMS 2

2.1 A spring balance consists of a pan that hangs from a spring. A damping force Fd = −bv
is applied to the balance so that when an object is placed in the pan it comes to rest in
the minimum time without overshoot. Determine the required value of b for an object
of mass 2.5 kg that extends the spring by 6.0 cm. (Assume g = 9.81 m s−2.)

2.2 A mass of 0.50 kg hangs from the end of a light spring. The system is damped by a light
sail attached to the mass so that the ratio of amplitudes of consecutive oscillations is
equal to 0.90. It is found that 10 complete oscillations takes 25 s. Obtain a quantitative
expression for the damping force and determine the damping factor γ of the system.
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