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1.2.2 A mass on a vertical spring
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Figure 1.4 An oscillating mass on a vertical spring. (a) The mass at its equilibrium position.
(b) The mass displaced by a distance x from its equilibrium position.

If we suspend a mass from a vertical spring, as shown in Figure 1.4, we have
gravity also acting on the mass. When the mass is initially attached to the spring,
the length of the spring increases by an amount �l. Taking displacements in the
downward direction as positive, the resultant force on the mass is equal to the
gravitational force minus the force exerted upwards by the spring, i.e. the resultant
force is given by mg − k�l. The resultant force is equal to zero when the mass is
at its equilibrium position. Hence

k�l = mg.

When the mass is displaced downwards by an amount x, the resultant force is
given by

F = m
d2x

dt2
= mg − k(�l + x) = mg − k�l − kx

i.e.

m
d2x

dt2
= −kx. (1.8)

Perhaps not surprisingly, this result is identical to the equation of motion (1.5) of the
horizontal spring: we simply need to measure displacements from the equilibrium
position of the mass.

1.2.3 Displacement, velocity and acceleration in simple harmonic motion

To describe the harmonic oscillator, we need expressions for the displacement,
velocity and acceleration as functions of time: x(t), v(t) and a(t). These can be
obtained by solving Equation (1.6) using standard mathematical methods. However,
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we will use our physical intuition to deduce them from the observed behaviour of
a mass on a spring.
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Figure 1.5 The functions y = cos θ and y = sin θ plotted over two complete cycles.

Observing the periodic motion shown in Figure 1.2, we look for a function x(t)

that also repeats periodically. Periodic functions that are familiar to us are sin θ and
cos θ . These are reproduced in Figure 1.5 over two complete cycles. Both functions
repeat every time the angle θ changes by 2π. We can notice that the two functions
are identical except for a shift of π/2 along the θ axis. We also note the initial
condition that the displacement x of the mass equals A at t = 0. Comparison of the
actual motion with the mathematical functions in Figure 1.5 suggests the choice of
a cosine function for x(t). We write it as

x = A cos

(
2πt

T

)
(1.9)

which has the correct form in that (2πt/T ) is an angle (in radians) that goes from
0 to 2π as t goes from 0 to T , and so repeats with the correct period. Moreover
x equals A at t = 0 which matches the initial condition. We also require that
x = A cos (2πt/T ) is a solution to our differential equation (1.6). We define

ω = 2π

T
(1.10)

where ω is the angular frequency of the oscillator, with units of rad s−1, to obtain

x = A cos ωt. (1.11)

Then

dx

dt
= v = −ωA sin ωt, (1.12)

and

d2x

dt2
= a = −ω2A cos ωt = −ω2x. (1.13)
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So, the function x = A cos ωt is a solution of Equation (1.6) and correctly describes
the physical situation. The reason for writing the constant as ω2 in Equation (1.6)
is now apparent: the constant is equal to the square of the angular frequency of
oscillation. We have also obtained expressions for the velocity v and acceleration
a of the mass as functions of time. All three functions are plotted in Figure 1.6.
Since they relate to different physical quantities, namely displacement, velocity and
acceleration, they are plotted on separate sets of axes, although the time axes are
aligned with respect to each other.

t

v

x

a

t

t

turning points

(a)

(b)

(c)

x = A cos wt

v = −Aw sin wt

a = −Aw2 cos wt

Figure 1.6 (a) The displacement x, (b) the velocity v and (c) the acceleration a of a mass
undergoing SHM as a function of time t . The time axes of the three graphs are aligned.

Figure 1.6 shows that the behaviour of the three functions (1.11)–(1.13) agree
with our observations. For example, when the displacement of the mass is great-
est, which occurs at the turning points of the motion (x = ±A), the velocity is
zero. However, the velocity is at a maximum when the mass passes through its
equilibrium position, i.e. x = 0. Looked at in a different way, we can see that
the maximum in the velocity curve occurs before the maximum in the displace-
ment curve by one quarter of a period which corresponds to an angle of π/2.
We can understand at which points the maxima and minima of the acceleration
occur by recalling that acceleration is directly proportional to the force. The force
is maximum at the turning points of the motion but is of opposite sign to the
displacement. The acceleration does indeed follow this same pattern, as is readily
seen in Figure 1.6.

1.2.4 General solutions for simple harmonic motion and the phase angle φ

In the example above, we had the particular situation where the mass was released
from rest with an initial displacement A, i.e. x equals A at t = 0. For the more
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Figure 1.7 General solution for displacement x in SHM showing the phase angle φ, where
x = A cos(ωt + φ).

general case, the motion of the oscillator will give rise to a displacement curve
like that shown by the solid curve in Figure 1.7, where the displacement and
velocity of the mass have arbitrary values at t = 0. This solid curve looks like the
cosine function x = A cos ωt , that is shown by the dotted curve, but it is displaced
horizontally to the left of it by a time interval φ/ω = φT/2π. The solid curve is
described by

x = A cos(ωt + φ) (1.14)

where again A is the amplitude of the oscillation and φ is called the phase angle
which has units of radians. [Note that changing ωt to (ωt − φ) would shift the curve
to the right in Figure 1.7.] Equation (1.14) is also a solution of the equation of
motion of the mass, Equation (1.6), as the reader can readily verify. In fact Equation
(1.14) is the general solution of Equation (1.6). We can state here a property of
second-order differential equations that they always contain two arbitrary constants.
In this case A and φ are the two constants which are determined from the initial
conditions, i.e. from the position and velocity of the mass at time t = 0.

We can cast the general solution, Equation (1.14), in the alternative form

x = a cos ωt + b sin ωt, (1.15)

where a and b are now the two constants. Equations (1.14) and (1.15) are entirely
equivalent as we can show in the following way. Since

A cos(ωt + φ) = A cos ωt cos φ − A sin ωt sin φ (1.16)

and cos φ and sin φ have constant values, we can rewrite the right-hand side of this
equation as

a cos ωt + b sin ωt,

where
a = A cos φ and b = −A sin φ. (1.17)

We see that if we add sine and cosine curves of the same angular frequency ω,
we obtain another cosine (or corresponding sine curve) of angular frequency ω.
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This is illustrated in Figure 1.8 where we plot A cos ωt and A sin ωt , and also
(A cos ωt + A sin ωt) which is equal to

√
2A cos(ωt − π/4). As the motion of a

simple harmonic oscillator is described by sines and cosines it is called harmonic
and because there is only a single frequency involved, it is called simple harmonic.
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Figure 1.8 The addition of sine and cosine curves with the same angular frequency ω. The
resultant curve also has angular frequency ω.

There is an important difference between the constants A and φ in the gen-
eral solution for SHM given in Equation (1.14) and the angular frequency ω.
The constants are determined by the initial conditions of the motion. However,
the angular frequency of oscillation ω is determined only by the properties of
the oscillator: the oscillator has a natural frequency of oscillation that is inde-
pendent of the way in which we start the motion. This is reflected in the fact
that the SHM equation, Equation (1.6), already contains ω which therefore has
nothing to do with any particular solutions of the equation. This has important
practical applications. It means, for example, that the period of a pendulum clock
is independent of the amplitude of the pendulum so that it keeps time to a high
degree of accuracy.1 It means that the pitch of a note from a piano does not
depend on how hard you strike the keys. For the example of the mass on a
spring, ω = √

k/m. This expression tells us that the angular frequency becomes
lower as the mass increases and becomes higher as the spring constant increases.

Worked example

In the example of a mass on a horizontal spring (cf. Figure 1.1) m has a value
of 0.80 kg and the spring constant k is 180 N m−1. At time t = 0 the mass
is observed to be 0.04 m further from the wall than the equilibrium position
and is moving away from the wall with a velocity of 0.50 m s−1. Obtain an

1 This assumes that the pendulum is operating as an ideal harmonic oscillator which is a good approx-
imation for oscillations of small amplitude.
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