1 year LMD SNV Subject: Chemistry 2

Practical Work No. 1:

pH-metric dosage (dosage of a weak acid with a strong base)

1- Reminder

The self-containment of water and pH: It results in the following balance

$$2H_2O$$
 \longrightarrow $H_3O^+ + OH^-$

Let's apply the law of mass action: $K_c(T) = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$

 $[H_3O^+] \; [OH^-] = K_c \, [H_2O]^2 = K_e \qquad / \; K_e \; The \; ionic \; product \; of \; water.$

At 25°C: $[H_3O^+][OH^-] = 10^{-14} \text{mol.} l^{-1}$

- \blacktriangleright the medium is acidic: $[H_3O^+] > 10^{-7} \text{ mol.} 1^{-1}$
- \blacktriangleright the medium is neutral: $[H_3O^+] = 10^{-7} \text{ mol.l}^{-1}$
- \blacktriangleright the medium is basic: $[H_3O^+] < 10^{-7} \text{ mol.l}^{-1}$

The concentration limit between an acidic medium and a basic medium is an extremely small number $[H_3O^+] = 10^{-7} = 0.0000001 \text{ mol.l}^{-1}$

Generally speaking, $[H_3O^+]$ is expressed by negative powers of 10, such numbers are not convenient & handle. They should be transformed using a mathematical operation that simplifies writing. Each concentration is characterized by its negative decimal logarithm (cologarithm = $1/\log$).

We pose: $pH = colog [H_3O^+] = -log [H_3O^+]$

 $pOH = colog [OH^-] = -log [OH^-]$

pK = cologt K = -log K

Example: $[H_3O^+] = 10^{-x} \text{ mol/l} \implies \log [H_3O^+] = \log 10^{-x} = 10^{-pH} \implies pH = x (x > 0)$

• pH of a strong monoacid:

A concentration C_a of strong acid, HA is introduced into the water.

The dissociation is total: $HA + H_2O \longrightarrow H^3O^+ + A^ pH = -log [H_3O^+] = log C_a$

• pH of a weak monoacid:

This time the dissociation reactions are equilibria. $HA + H_2O \longrightarrow H_3O^+ + A$ Three equations will allow us to calculate the pH:

• Law of mass action:
$$K = \frac{[H_2O^+][A^-]}{[HA][H_2O]} \Rightarrow K_a = \frac{[H_2O^+][A^-]}{[HA]}$$
(1)

- Electrical neutrality of the solution: In dissociation forms as many positive charges as charges negative. Neglecting the self-ionization of water, we have $[H_3O^+] = [A^-].....(2)$
- Conservation of A during the dissociation: $C_a = [HA] + [A^-]$(3) Equation (3) simplifies. In fact, the weak acid is very little dissociated. We neglect $[A^-]$ in front of

[HA].

We obtain the equation: $C_a = [HA]$ (4)

We enter into equation (1) the results (2) and (4)

$$K_a = \frac{ [H_2O^+] [A^-]}{C_a} \ \Rightarrow \ [H_3O^+] = (K_a \, C_a)^{1/2} \ \Rightarrow \ -log \ [H_3O^+] = \frac{1}{2} \ (-log K_a - log C_a)$$

$$pH = 1/2 (pK_a - logC_a)$$

• Colored indicators: A colored indicator is an acid-base pair whose acid form and basic form have different colors

Let K_i be the mass action constant of the equilibrium between the two forms:

$$HIn + H_2O \qquad \qquad In^- + H^3O^+ \qquad \quad K_i = \frac{ \quad [H_2O^+] \; [In^-]}{HIn} \label{eq:Ki}$$

➤ The first color is observed when: $[H_3O^+] \ge 10K_i$. either

$$pH \le pK_i - 1$$

 \triangleright The second color is observed when: $[H_3O^+] \le K_i/10$ either

$$pH \ge pK_i + 1$$

Example: Helianthin ($pK_i = 3,4$)

 $\begin{array}{ll} \blacktriangleright & \text{first color: red when} \\ \blacktriangleright & \text{second color: yellow when} \end{array} & pH \leq pK_i - 1 \Rightarrow pH \leq 2,4 \\ \blacktriangleright & \text{second color: yellow when} \\ & pH \geq pK_i + 1 \Rightarrow pH \geq 4,4 \\ \end{array}$

2- Objectives

- How to do the calibration?
- Determination of the concentration of ethanolic acid (CH₃COOH) by pH-metric assay.

3- Materials

pH-metric + electrode, stirrer, magnetic rod, graduated cylinder (150 ml), beaker (250 ml), graduated burette, funnel, volumetric pipette (10 ml).

4- Products

Buffer solutions (pH = 7, pH = 4 or pH = 10), Ethanol acid solution (CH₃COOH), Sodium hydroxide solution (NaOH) 0.1 mol/l. colored indicator and distilled water.

5- Operating Mode:

- Prepare the pH meter (calibration) using the buffer solutions.
- Refill the burette with the basic solution (NaOH)
- Using a pipette, take 10ml of CH₃COOH then add it to the graduated cylinder.
- Make up with distilled water to 150ml.
- Pour this volume into a beaker (250ml)
- Immerse the electrode and the magnetic bar in the acid solution then start stirring.
- Note the pH₀ value (initial pH)
- Add 2 to 3 drops of the colored indicator
- Add 1ml each time and note the pH
 - ✓ **Note:** In the toning area (pour the basic solution drop by drop).
 - ✓ **Data:** Table of some colored indicators,

Indicator	turning area	First color (color in acidic environment) (HA)	Second color (color in the basic environment) (A ⁻)
Helianthin (Methyl's orange)	2,4-4,4	Red	Yellow
Methyl red	4,1-6,1	Red	Yellow
Bromothymol blue	6,6-7,6	Yellow	Red
Phenolphthalein	8,2-10,2	colorless	Red