MOHAMED KHIDER UNIVERSITY OF BISKRA.

FACULTY OF EXACT SCIENCES AND NATURAL AND LIFE SCIENCES

DEPARTMENT OF BIOLOGY

Semester2: THERMODYNAMICS AND CHEMISTRY OF MINERAL SOLUTIONS

CHAPTER I Part 2 Level: 1st year LMD

Dr: Ismail DAOUD

Academic year: 2024/2025

Page 1

<u>3. The pH of saline solutions:</u>

We call salt any neutral species which, in solution. They are always trained in neutralization by reaction between acid and base.

Acid : (na, Ca, Va) + base : (nb, Cb, Vb) \rightarrow Salt + H₂O

Examples: NaCl, NH4NO3.

3.1. The pH of a solution of strong acid and strong base:

Consider the following neutralization reaction:

In aqueous solution, there is total dissolution of the salt: NaCl(s) (Sodium chloride)

$$NaCl_{(s)} + H_2O \rightarrow Na^+ + Cl^-$$

Cl⁻: Conjugate base (very weak) of a strong acid (HCl), Cl⁻: does not modify the pH of the solution: Cl⁻: is inactive (indifferent or spectator ion), it does not participate in any acid-equilibrium basic.

Na⁺: Conjugated acid (very weak) of a strong base (NaOH), Na⁺: does not modify the pH of the solution: Na⁺: is inactive (indifferent or spectator ion), it does not participate in any acid-base equilibrium.

$$pH(NaCl) = pH(H_2O) = \frac{1}{2} pke = 7$$
 at t=25 C°

<u>Conclusion:</u> Salts of strong acids and strong bases dissociate in water without changing the pH, the solution remains neutral.

3.2. The pH of a solution of strong acid and weak base:

Consider the following neutralization reaction:

 $\begin{array}{rrrr} HCl &+& NH_3 & \rightarrow & NH_4Cl_{(s)} &+ H_2O \\ (S.A) & (W.B) & Salt \end{array}$

In aqueous solution, there is total dissolution of the salt: NH₄Cl(s) (Ammonium chloride)

 $NH_4Cl_{(s)} + H_2O \quad \rightarrow \ NH_4{}^+ \ + \ Cl^-$

Cl⁻: Conjugate base (very weak) of a strong acid (HCl), Cl⁻: does not modify the pH of the solution: Cl⁻: is inactive (indifferent or spectator ion), it does not participate in any acid-equilibrium basic.

NH₄⁺: Conjugated acid (very weak) of a weak base (NH₃), it participates in acid-base equilibrium.

$$\begin{split} \text{If} : [\text{H}_3\text{O}^+] >> [\text{OH}^-] \quad \text{and} \quad [\text{NH}_4^+] >> [\text{NH}_3] \quad \Rightarrow \text{ the acid is weakly dissociated.} \\ \text{pH}(\text{NH}_4\text{Cl}) = \text{pH}(\text{NH}_4^+) = \text{pH}(\text{Conjugate w. acid }) = \frac{1}{2} \left(\text{pka} - \log[\text{NH}_4^+] \right) \qquad \text{at} \quad \text{t=25 } \text{C}^\circ \end{split}$$

3.3. The pH of a solution of weak acid and strong base:

Consider the following neutralization reaction:

 $\begin{array}{rcl} CH_3COOH &+& NaOH &\rightarrow& CH_3COONa_{(s)} &+H_2O\\ (W.A) && (S.B) && Salt \end{array}$

In aqueous solution, there is total dissolution of the salt: $CH_3COONa(s)$ (Sodium acetate) $CH_3COONa_{(s)} + H_2O \rightarrow CH_3COO^- + Na^+$

CH₃COO⁻: Conjugate base (very weak) of a weak acid (CH₃COOH), it participates in acidbase equilibrium.

Na⁺: Conjugated acid (very weak) of a strong base (NaOH), Na⁺: does not modify the pH of the solution: Na⁺: is inactive (indifferent or spectator ion), it does not participate in any acid-base equilibrium.

If : $[OH^-] >> [H_3O^+]$ and $[CH_3COO^-] >> [CH_3COOH] \Rightarrow$ the base is weakly protonated. pH(CH_3COONa) = pH(CH_3COO^-) = pH(Conjugate w. base) = $\frac{1}{2}$ (pke + pka + log[CH_3COO^-]) at t=25 C°

3.4. The pH of a weak acid and weak base solution:

Consider the following neutralization reaction:

 $\begin{array}{rcl} CH_3COOH &+& NH_3 &\rightarrow CH_3COONH_{4(s)} &+H_2O\\ (W.A) && (W.B) & Salt \end{array}$

In aqueous solution, there is total dissolution of the salt: $CH_3COONH_{4(s)}$ (Ammonium acetate) of concentration = C

 $CH_3COONH_{4(s)} + H_2O \rightarrow CH_3COO^- + NH_4^+$

CH₃COO⁻: Conjugate base (very weak) of a weak acid (CH₃COOH), it participates in acidbase equilibrium.

 $CH_3COOH + H_2O \rightarrow CH_3COO^- + H_3O^+$ Kal

NH₄⁺: Conjugated acid (very weak) of a weak base (NH₃), it participates in acid-base equilibrium.

 $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+ \dots Ka2$

However, the mixture between a w. A and a w. B gives a weakly acidic or weakly basic solution \Rightarrow pH is close to 7.

If : $C >> [H_3O^+]$ and $C >> [OH^-] \Rightarrow$ by making the product Ka1. Ka2

pH (CH₃COONH₄) = $\frac{1}{2}$ (pka1 + pka2) , the pH is independent of the initial concentration C.

<u>3.5. The pH of a buffer solution:</u>

A buffer solution is defined as a mixture of a weak acid AH and their conjugates base A^{-} in equal or similar proportions.

The expression for the acidity constant Ka of the HA/A⁻ couple is:

$$\begin{split} K_a &= \frac{[A^-] \cdot [H_3 O^+]}{[AH]} \implies [H_3 O^+] = \frac{K_a \cdot [AH]}{[A^-]} \\ pH &= pk_a - \log \frac{[AH]}{[A^-]} \iff pH = pk_a - \log \frac{[Acid]}{[Base]} \end{split}$$

Noticed:

A buffer solution can be obtained from:

- \blacktriangleright Weak acid AH + a weak base A.
- \blacktriangleright Weak acid HA + strong base.
- \blacktriangleright Weak base A⁻(NaA salt) + strong acid.

Buffer solutions have the property of minimizing pH variations caused by:

- \succ An addition of acid or base.
- An addition of solvent (dilution).