

الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique جامعة محمد خيضس – بسكرة –

جامعة محمد خيضى - بسكرة – كلية العلوم الاقتصادية و التجارية و علوم التسييس قسم علوم التسييس

المحاضرة الثانية:

مراجعة للبرمجة الخطية

السنـــة الجامعيـــة: 2024 / 2025

ينتظر من الطالب بعد تناوله هذه المحاضرة استذكار:

- 👍 بنية البرمجة الخطية و صيغتها الرياضية
 - 井 ايجاد الحل الأمثل في حالة التعظيم
- 井 ايجاد الحل الأمثل في حالة التخفيض

- 井 بنية البرمجة الخطية
- 井 حالات ايجاد الحل الامثل بطريقة السمبلاكس

I بنية البرمجة الخطية:

تعتبر البرمجة الخطية من بين الأدوات الرياضية المهمة في مجال اتخاذ القرارات التسييرية التي تبحث عن ايجاد حلول للمشاكل المتعلقة بتخصيص الموارد المتاحة و الامكانيات المحدودة على استخدامات مختلفة من أجل الحصول على أفضل النتائج، وهذا يتم من خلال نمذجة المشكلة و جعلها في شكل برنامج رياضي يعكس مختلف القيود التي من قدرات المؤسسة بمدف الوصول الى تحقيق الهدف بنوعيه التعظيم و التخفيض.

بمعنى آخر أن نموذج البرمجة الخطية يتكون من:

- $oldsymbol{+}$ متغيرات القوار: تعبر عن المجاهيل المراد تحديد قيمها ، حيث يرمز لها بالرمز $oldsymbol{+}$.
- دالة الهدف: هي دالة خطية على ضوئها يتم اختيار الحل الأمثل ، حيث يرمز لها بالرمز Z الذي يأخذ أحد الشكلين: MinZ في حالة التعظيم و MinZ في حالة التخفيض.وتأخذ الصيغة التالية:

$$Z = \sum_{J=1}^{n} C_J X_J = C_1 X_1 + C_2 X_2 + \dots + C_n X_n$$

القيود: هي مجموعة من المحددات التي لا يستطيع متخذ القرار التحكم فيها و لكنه يحاول الوصول الى أفضل قرار في ظلها ، حيث يتم تجسيدها في شكل متباينات و معادلات رياضية. يعبر عنها رياضيا:

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \qquad \qquad \sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad \qquad \sum_{j=1}^{n} a_{ij} x_j = b_i$$

: عدم السلبية: يشترط البرنامج الخطي أن تكون المتغيرات غير سالبة أي موجبة أو معدومة.أي $x_i \ge 0$

II ايجاد الحل بطريقة السمبلاكس

تتلخص خطواتها الأساسية في:

■ الخطوة الأولى :تحويل النموذج الخطي الى نموذج معياري:

تحويل جميع المتراجحات الى معادلات بإضافة متغيرات جديدة الى الطرف الأيسر للمتراجحات، وذلك اما متغيرات الفحوة (e) اذا كانت المتراجحة \geq ، بحيث تكون قيمتها في دالة الهدف معدومة ، واما بطرح متغيرات فحوة مع اضافة متغيرات جديدة تدعى بالمتغيرات الاصطناعية (A) اذا كانت المتراجحة \leq ، مع وجوب اظهارها في دالة الهدف بمعامل M يعمل عكس الدالة

■ الخطوة الثانية :ايجاد الحل الأولى الممكن.

تنظيم بيانات النموذج المعياري في حدول الحل الاولي، مع مراعاة أن تكون متغيرات الفحوة كمتغيرات أساسية اذا كانت المتراجحة \leq أو = كانت المتراجحة \leq أو = متغيرات اصطناعية اذا كانت المتراجحة مع أو = أو = أو المتراجحة من المتراجحة من المتراجحة المتراجحة من المتراجحة من المتراجحة من المتراجحة من المتراجحة المتراجحة من المتراجعة من المتراجحة من المتراجعة من المتر

■ الخطوة الثالثة :اختبار أمثلية الحل

. يتحقق شرط الأمثلية في مسائل التعظيم Max عندما تكون جميع قيم سطر التقييم موجبة أو معدومة (أي Δ). وفي مسائل التخفيض مشروط بأن تكون جميع قيم سطر التقييم سالبة أو معدومة

■ الخطوة الرابعة: تحسين الحل الى غاية بلوغ الحل الأمثل

للقيام بمذه الخطوة ، يتطلب الأمر تحديد ثلاثة عناصر و المتمثلة في:

- ✓ المتغيرة الداخلة(variable entrante): هي تلك المتغيرة خارج الأساس التي تتحول إلى متغيرة أساس موجبة يتم اختيارها في حالة التعظيم عن طريق اختيار أقل قيمة سالبة من قيم سطر التقييم (أكبر قيمة بالقيمة المطلقة) . اما في مسائل التخفيض فتقابل أكبر قيمة موجبة في سطر التقييم.
- المتغيرة الخارجة (variable sortante) على متغيرة أساس موجبة و التي تتحول إلى متغيرة خارج الأساس موجبة و التغيرة الخارجة (a_{ijk}) قسمة عناصر عمود الثوابت (b_i) على عناصر عمود المتغيرة الداخلة (a_{ijk}) و اختيار أصغر حاصل قسمة موجب
 - ✓ نقطة المحور (pivot): هي نقطة تقاطع عمود المتغيرة الداخلة مع سطر المتغيرة الخارجة وبناءا على تحديد العناصر الثلاثة السابقة يمكن تشكيل جدول سمبلاكس جديد كما يلى:

✓ قسمة عناصر سطر المحور على نقطة المحور فنحصل على سطر المتغيرة الداخلة:

✓ جعل كل عناصر عمود المحور أصفارا ما عدى نقطة المحور.

حساب بقية عناصر المصفوفة و كذلك الثوابت (b_i) بالعلاقة التالية:

القيمة الجديدة للعنصر = القيمة القديمة للعنصر -[(عنصر سطر المحور \times عنصر عمود المحور) \div نفطة المحور]

👉 مثال1: اوجد الحل الامثل للبرنامج الخطي التالي:

كان البرنامج الخطى هو:

الحل:

النموذج المعياري:

$$\begin{aligned} \text{MaxZ} &= 20 \; x_1 + 30 \; x_2 + 0 \; e_1 + 0 \; e_2 \\ &= \begin{cases} 2 \; x_1 + x_2 + e_1 = 1000 \\ 3 \; x_1 + 6 \; x_2 + e_2 = 2400 \\ x_1 \; , \; x_2 \; , \; e_1, \; e_2 \geq 0 \end{cases} \end{aligned}$$

جا
L

			20	30	0	0
c_k	V	b_i	\mathbf{x}_1	\mathbf{x}_2	e_1	e_2
0	e_1	1000	2	1	1	0
0	\mathbf{e}_2	2400	3	6	0	1
	Z= 0		-20	-30	0	0

جدول الحل رقم2:

			20	30	0	0
c_k	V	b_i	\mathbf{x}_1	\mathbf{x}_2	e_1	e_2
0	e ₁	600	3/2	0	1	-1/6
30	\mathbf{x}_2	400	1/2	1	0	1/6
	Z= 12000		- 5	0	0	5

جدول الحل رقم3:

			20	30	0	0
c_k	V	b_i	\mathbf{x}_1	\mathbf{x}_2	e_1	e_2
0	x ₁	400	1	0	2/3	-1/9
30	\mathbf{x}_2	200	0	1	-1/3	2/9
	Z= 14000		0	0	10/3	40/9

نلاحظ أن جميع عناصر سطر التقييم أكبر أو تساوي الصفر ، ما يعني أنه لا توجد امكانية لتحسين الحل ،لذلك فان هذا الجدول هو جدول الحل الأمثل حيث تكون النتائج المحصل عليها كما يلي:

$$\mathbf{x}_1 = 400$$
 , $\mathbf{x}_2 = 200$, $\mathbf{e}_1 = \mathbf{0}$, $\mathbf{e}_2 = \mathbf{0}$, $\mathbf{Z} = 140000$

👉 مثال2: اوجد الحل الامثل للبرنامج الخطى التالي:

MinZ=
$$3000x_1 + 1000 x_2$$

$$\begin{cases}
60 x_1 + 40x_2 \ge 2000 \\
x_2 \ge 3 \\
x_1, x_2 \ge 0
\end{cases}$$

الحا :

النموذج المعياري:

MinZ=
$$3000x_1 + 1000 x_2 + 0 e_1 + MA_1 + 0 e_2 + MA_2$$

$$60 x_1 + 40x_2 - e_1 + A_1 = 2000$$

$$x_2$$
- e_2 + A_2 = 3
 x_1 , x_2 , e_1 , e_2 , A_1 , $A_2 \ge 0$

جدول الحل رقم 1:

			3000	1000	0	M	0	M
c_k	V	b_i	\mathbf{x}_1	\mathbf{x}_2	e_1	A_1	e_2	A_2
M	A_1	100	3	2	-1	1	0	0
M	\mathbf{A}_2	3	0	1	0	0	-1	1
	Z= 103M			3M-1000	-M	0	-M	0

جدول الحل رقم2:

			3000	1000	0	M	0	M
c_k	V	b_i	\mathbf{x}_1	X ₂	e_1	A_1	e_2	A_2
M	\mathbf{A}_1	94	3	0	-1	1	2	0
1000	X_2	3	0	1	0	0	-1	1
Z= 94M+3000			3M-3000	0	-M	0	2M-1000	0

جدول الحل رقم3:

			3000	1000	0	M	0	M
c_k	V	b_i	X ₁	X ₂	e_1	A_1	\mathbf{e}_2	A_2
3000	\mathbf{x}_1	94/3	1	0	-1/3	1/3	2/3	0
1000	X_2	3	0	1	0	0	-1	0
Z= 97000			0	0	-1000	1000-M	1000	-M

جدول الحل رقم4:

			3000	1000	0	M	0	M
c_k	V	b_i	\mathbf{x}_1	X ₂	e_1	A_1	e_2	A_2
0	e_2	47	3/2	0	-1/2	1/2	1	0
1000	X_2	50	3/2	1	-1/2	1/2	0	0
Z= 50000			-1500	0	-500	500-M	0	-M