MOHAMED KHIDER UNIVERSITY OF BISKRA. FACULTY OF EXACT SCIENCES AND NATURAL AND LIFE SCIENCES DEPARTMENT OF BIOLOGY

Semester2: THERMODYNAMICS AND CHEMISTRY OF MINERAL SOLUTIONS

CHAPTER I Part 1 Level: 1st year LMD

Dr: Ismail DAOUD

Academic year: 2024/2025

Page 1

1. Chemical equilibrium

1.1. Acid-base equilibrium

We find three definitions: Arrhenius (1887) and Brønsted-Lowry (1923), as well as the model of Lewis (1923). In solution chemistry, the most suitable theory is that of Brønsted-Lowry.

a. <u>Definition of Arrhenius (1887):</u>

An acid: is a chemical substance capable of releasing H^+ ions (protons) in aqueous solution $(H_3O^+: \text{ oxonium or hydronium ion})$.

<u>Example</u>: $HA + H_2O \rightleftharpoons A^- + H_3O^+$ (HCl, CH₃COOH,)

A base: is a chemical substance capable of releasing OH^- (hydroxide) ions in aqueous solution <u>Example:</u> BOH + H₂O \rightleftharpoons B⁺ + OH⁻ (NaOH, KOH,)

b. Definition from Bronsted and Lowry (1923):

An acid: is a chemical species capable of releasing one or more H+ protons; it is a proton donor.

<u>Example</u>: $HA + H_2O \rightleftharpoons A + H_2O$ (HCl, CH₃COOH,)

A base: is a chemical species capable of capturing one or more H^+ protons; it is a proton acceptor.

<u>Example</u>: $A^- + H + \rightleftharpoons HA$

c. Definition from Lewis (1923):

An acid: is a body that accepts a pair of electrons

<u>*Example:*</u> $H_2O + H^+ \rightleftharpoons H_3O^+$ (appearances of a dative bond).

A base: is a body donating a pair of electrons

<u>*Example:*</u> $NH_3 + H^+ \rightleftharpoons NH_4^+$ (appearances of a dative bond).

2.2. Monoacid and mono-base:

According to Bronsted, an acid is a species capable of releasing an H^+ proton to give it to another species, and a base is a species capable of capturing a proton coming from another species.

Acid \rightleftharpoons Base + (H⁺ + H₂O)

The acid and the base are said: "Conjugates); they form an acid-base couple noted: Acid/Base).

Example:

 $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$; (CH_3COOH/CH_3COO^-)

The acetate ion CH₃COO⁻ is the conjugate base of acetic acid CH₃COOH.

2.3. Poly-acids and Poly-bases:

A polyacid is a species capable of releasing 2 or more protons (H^+) to give them to another species, and a base is a species capable of fixing 2 or more protons (H^+) from another species.

<u>Example</u>: H₂SO4: H₂SO₄ + H₂O \rightleftharpoons HSO₄⁻ + H₃O⁺ HSO₄⁻ + H₂O \rightleftharpoons SO₄⁻² + H₃O⁺ <u>Example</u>: S⁻² : S⁻² + H₂O \rightleftharpoons HS⁻ + OH⁻ HS⁻ + H₂O \rightleftharpoons H₂S + OH⁻

2.4. An ampholytes solution:

An amphoteric (or ampholyte) is a chemical species that can behave either as an acid or as a base. The corresponding solutions are called "Amphoteric).

Example 1: H₂O

Couple 1: $(H_3O^+/H_2O): H_3O^+ \rightleftharpoons H_2O + H^+$

Couple 2: (H_2O/OH^-) : $H_2O \rightleftharpoons H^+ + OH^-$

Total reaction: $2H_2O \rightleftharpoons H_3O^+ + OH^-$ (Auto-protolysis reaction)

Example 2: H₂S

Couple 1: (H_2S/HS^-) : $H_2S \rightleftharpoons HS^- + H^+$

Couple 2: (HS^{-}/S^{-2}) : $HS^{-} \rightleftharpoons S^{-2} + H^{+}$

Total reaction: $2 \text{ HS}^- \rightleftharpoons \text{H}_2\text{S} + \text{S}^{-2}$

2.5. Acid-base reaction:

An acid-base reaction is a proton transfer reaction between 2 couples: Acid 1/Base 1 and Acid2/Base2

Acid 1/Base 1: Acid 1 \rightleftharpoons Base 1 + H₃O⁺

Acid 2/Base 2: Base $2 + H_2O \rightleftharpoons Acid 2$

Total reaction: Acid 1 + Base 2 \rightleftharpoons Base 1 + Acid 2

2.5.1. Equilibrium constant: water dissociation, acidity and basicity:

There are four equilibrium constants: K, Ke, Ka, Kb

a. <u>Equilibrium constant of a reaction (K):</u>

The equilibrium constant K of any acid-base reaction is given by the law of mass action:

$$a A + b B \rightleftharpoons c C + d D$$

 $\mathbf{K} = ([C]^{c} * [D]^{d}) / ([A]^{a} * [B]^{b})$

Or [A], [B], [C] and [D]: are the concentrations of species A, B, C and D at equilibrium.

b. Water dissociation constant (Ke):

The self-protolysis equilibrium of water: $2H_2O \rightleftharpoons H_3O^+ + OH^-$

$$K = \frac{[H_3O^+] \cdot [OH^-]}{[H_2O]} \qquad Ke = K \cdot [H_2O] = [H_3O^+] \cdot [OH^-]$$

Ke: ionic product of water: Ke = K. $[H_2O] = [H_3O^+]$. $[OH^-]$ Calculate the concentration of water $[H_2O]$: At t=25 C°, Ke = 10⁻¹⁴ \Rightarrow pKe = 14. We have: C(H₂O) = n(H₂O)/V(H₂O), and $\rho(H_2O) = m(H_2O)/V(H_2O) = 1 \text{ g/ml}$ (or: 1 g/cm³) We take: m(H₂O) = 1 g \Rightarrow V(H₂O) = 1 ml n(H₂O) = m(H₂O)/M(H₂O) = 1/18 = 0.05555 mol (M(H₂O) = 2 (1) +16 = 18 g/mol)) C(H₂O) = 0.0555555/1.10⁻³ \Rightarrow C(H₂O)= 55.55 mol/l.

c. Acidity constant (Ka):

Weak acid: $AH + H_2O \rightleftharpoons A^- + H_3O^+$ (Couple: HA/ A⁻) The equilibrium constant:

$$K = \frac{[H_3O^+] \cdot [A^-]}{[H_2O] \cdot [AH]}$$

The equilibrium constant of dissociation of the acid called "acidity constant Ka":

Ka= K . [H₂O] =
$$\frac{[H_3O^+] \cdot [A^-]}{[AH]}$$

Knowing that: pka= - log Ka

Noticed:

Increasing acidity: Ka $\checkmark \Rightarrow pKa \checkmark$ Increasing basicity: Ka $\checkmark \Rightarrow pKa \checkmark$

d. Basicity constant (Kb):

Weak base: $B + H_2O \rightleftharpoons BH^+ + OH^-$ (Couple: BH^+/B)

The equilibrium constant:

$$K = \frac{[BH^+] \cdot [OH^-]}{[H_2O] \cdot [B]}$$

The equilibrium constant of acid dissociation called "acidity constant Kb":

Page 4

$$Kb = K$$
 . $[H_2O] = \frac{[BH^+] \cdot [OH^-]}{[B]}$

Noticed:

The relationship between Ka and Kb: Ke = Ka . Kb

2.5.2. pH (Hydrogen potential):

<u>a. Definition of pH:</u> the acidity of an aqueous solution depends on the concentration of H_3O^+ ions.

$$pH= -\log H_3O^+$$
 ($p=-\log$; $H=H_3O^+$)

b. Relationship between pH, pKa and concentrations:

Weak acid: Acid (AH) + H₂O \rightleftharpoons Base (A⁻) + H₃O⁺ (Couple: HA/ A⁻)

$$Ka = \frac{[H_3O^+] \cdot [Base]}{[Acide]} = \frac{[H_3O^+] \cdot [A^-]}{[AH]}$$

Ka. [Acide] = $[H_3O^+]$. [Base] ⇒ $[H_3O^+] = Ka$. [Acid] / [Base] -log[H_3O^+] = -log (Ka. [Acid] / [Base]); (pH= - log H_3O^+ ; pKa= - log Ka).

 $pH=pka+\log \frac{[Base]}{[Acide]}$ Relation d'Henderson

The pH of the water:

The water auto-protolysis: $2H_2O \rightleftharpoons H_3O^+ + OH^-$ In pure water the quantities of H_3O^+ and OH^- ions are equal $\Rightarrow [H_3O^+] = [OH^-]$ At: t=25 C° Ke= 10⁻¹⁴, $[H_3O^+]$. $[OH^-] = Ke= 10^{-14} \Rightarrow [H_3O^+]^2 = Ke= 10^{-14}$ $\Rightarrow [H_3O^+] = \sqrt{Ke} = \sqrt{10^{-14}} = 10^{-7} \Rightarrow -\log[H_3O^+] = -\log 10^{-7}$

$$\mathbf{pH}(\mathbf{H}_{2}\mathbf{O})=\mathbf{7}$$

Noticed:

Neutral solution: $[H_3O^+] = [OH^-] \Rightarrow pH = 7$. Acid solution: $[H_3O^+] > [OH^-] \Rightarrow pH < 6.5$. Basic solution: $[H_3O^+] < [OH^-] \Rightarrow pH > 7.5$.

The pH of a strong monoacid (SA):

When a Strong Acid (AH) of initial concentration C_0 is dissolved in water, there is total dissociation of the acid:

Couple (HA/A⁻):

	AH	$+ H_2O$	≓	A^{-}	+ H_3O^+
t=0	\mathbf{C}_0	-		0	0
t=eq	$0 = C_0 - C_0$	-		C_0	C_{0}

In the case of slightly diluted solutions (i.e.: $C_0 > 3.10^{-7}$ mol/l), the medium is sufficiently acidic so that [OH⁻] resulting from the auto-protolysis of water is negligible compared to [H₃O⁺].

This means that: $[H_3O^+] = C_0$; $pH = -log[H_3O^+] = -log C_0$. $\Rightarrow pH = -log C_0$; $([H_3O^+] = C_0)$.

Validity of the approximation:

For me to be sure and the acid is strong it is necessary that: $[H_3O^+] \ge 10[OH^-]$.

Demonstration:

$$\begin{split} & [H_3O^+] \cdot [H_3O^+] \ge 10 \ [OH^-] \cdot [H_3O^+] \\ & [H_3O^+]^2 \ge 10 \ Ke \ \Rightarrow \ at \ t=25C^\circ, \ Ke = 10^{-14} \ \Rightarrow [H_3O^+]^2 \ge 10 \cdot 10^{-14} \Rightarrow [H_3O^+]^2 \ge 10^{-13} \\ & \Rightarrow [H_3O^+] \ge \sqrt{10^{-13}} = \ 10^{-6.5} \Rightarrow -\log[H_3O^+] \le -\log 10^{-6.5} \Rightarrow \qquad (\ \log \ 10^x = x) \end{split}$$

$$\Rightarrow$$
 pH \leq 6.5

Summary:

Strong Acid (SA):

pH (SA) = -log C₀ ([H₃O⁺] = C₀). With **pH** \leq 6.5 (at t=25C°)

The pH of a strong mono-base (SB):

A Strong base (B) with initial concentration C_0 , We have total protonation of the base: Couple (BH⁺/B):

	В	$+ H_2O$	⇒	BH^+	+ <i>OH</i> ⁻
t=0	\mathbf{C}_0	-		0	0
t=eq	$0 = C_0 - C_0$	-		\mathbf{C}_0	C_0

In the case of slightly diluted solutions (i.e.: $C_0 > 3.10^{-7}$ mol/l), the medium is sufficiently basic so that $[H_3O^+]$ resulting from the auto-protolysis of water is negligible compared to [OH ⁻].

This means that: $[OH^-] = C_0$; $[H_3O^+] \cdot [OH^-] = C_0 \cdot [H_3O^+] \implies Ke = C_0 \cdot [H_3O^+] \implies [H_3O^+] = Ke / C_0 \cdot C_0 + C_0 = C_0$ $-\log[H_3O^+] = -\log (Ke / C_0) \quad (\log A/B = \log A - \log B)$ $\implies pH = -\log Ke + \log C_0, \implies pH = pKe + \log C_0, \quad [OH^-] = C_0$

Validity of the approximation:

So that I am sure and the base is strong it is necessary that: $[OH^-] \ge 10 [H_3O^+]$

Demonstration:

$$\begin{split} & [OH^{-}] \cdot [H_{3}O^{+}] \geq 10 \ [H_{3}O^{+}] \cdot [H_{3}O^{+}] \\ & \text{Ke} \geq 10 \ [H_{3}O^{+}]^{2} \quad \Rightarrow \text{ at } t = 25 \text{C}^{\circ} \ ; \ \text{Ke} = 10^{-14} \Rightarrow 10^{-14} \geq 10 \ [H_{3}O^{+}]^{2} \Rightarrow 10^{-15} \geq [H_{3}O^{+}]^{2} \\ & \Rightarrow \sqrt{10^{-15}} = 10^{-7.5} \geq [H_{3}O^{+}] \Rightarrow -\log 10^{-7.5} \leq -\log [H_{3}O^{+}] \qquad (\ \log 10^{x} = x) \end{split}$$

 \Rightarrow pH \geq 7.5

Summary:

Strong Base (SB):

pH (SB) = **pKe** + log C₀, ([OH⁻] = C₀). With **pH** ≥ 7.5 (at t=25C°)

> The pH of a weak monoacid (WA):

When a weak acid (HA) of initial concentration C_0 is dissolved in water, there is a partial dissociation of the acid:

Couple (HA/A⁻): $AH + H_2O \rightleftharpoons A^- + H_3O^+$ (Couple : HA/A^-)

The water auto-protolysis equilibrium: $2H_2O \rightleftharpoons H_3O^+ + OH^-$

Four species are present at equilibrium concentration: $[AH], [A^-], [H_3O^+]$ and $[OH^-]$

We can write four relationships between these four unknowns:

1. Ionic product: $Ke = [H_3O^+]$. $[OH^-]$ (1)

2. Couple acidity constant (HA/A⁻): Ka = $[A^-]$. $[H_3O^+]/[AH]$ (2)

3. Concentration of the constituent elements of the acid-base couple: $C_0 = [AH] + [A^-]$(3)

4. Electro-neutrality of the solution: $[H_3O^+] = [A^-] + [OH^-] \dots (4)$

First approximation:

The medium is acidic: $[H_3O^+] >> [OH^-]$, i.e. the $[OH^-]$ is negligible compared to $[H_3O^+]$ The relation (4) becomes: $[H_3O^+] = [A^-]$ (5)

Second approximation:

The dissociation of the acid is weak, i.e.: the concentration of the conjugated mono-base is negligible compared to that of the acid AH, this means that: $[A^-] \ll [AH]$

The relation (3) becomes: $C_0 = [AH] \dots (6)$

The relation (2) + (5) + (6), we obtain: Ka = $[H_3O^+]^2 / [AH] \Rightarrow [H_3O^+]^2 = Ka \cdot [AH]$

 $\Rightarrow [H_3O^+] = \sqrt{(\text{Ka}.[\text{AH}])} \Rightarrow -\log[\text{H}_3\text{O}^+] = -\log(\text{Ka}.[\text{AH}])^{1/2}; \quad (\log \text{A/B} = \log \text{A} - \log \text{B})$

 $\Rightarrow pH = \frac{1}{2} (-\log Ka - \log[AH]) \Rightarrow pH = \frac{1}{2} (pKa - \log[AH]) \Rightarrow pH = \frac{1}{2} (pKa - \log C_0).$

Validation Domain:

The medium is acidic: $[AH] \ge 10 [A^-]$

Demonstration:

$$\begin{split} [AH] &\geq 10 \ [A^{-}] \Rightarrow 10^{-1} \geq [A^{-}]/[AH] \Rightarrow \log 10^{-1} \geq \log [A^{-}]/[AH] \Rightarrow -1 \geq \log [A^{-}]/[AH] \\ \Rightarrow pKa-1 \geq pKa + \log [A^{-}]/[AH] \\ According to Henderson relation: pH= pKa + \log ([base]/[acid]) \\ \Rightarrow pKa -1 \geq pH \quad \Rightarrow pH \leq pKa -1. \end{split}$$

<u>Use of the dissociation coefficient (α_a):</u>

The weak acid approximation relies on the assumption of weak dissociation.

We call: (α_a): dissociation coefficient = Number of moles dissociated from AH/Initial number of moles of AH, $\alpha_a = x/C_0$

Material equilibruim:

	AH	+ H_2O	≓	A^{-}	+ H_3O^+
t=0	C_0	-		0	0
t=eq	C ₀ - X	-		X	Х
$\alpha_a = \mathbf{X}/C_0$	$C_0(1-\alpha_a)$	-		$C_0 \alpha_a$	$C_0 \alpha_a$

 $Ka = [A^{-}] \cdot [H_{3}O^{+}] / [AH] = C_{0}\alpha_{a} \cdot C_{0}\alpha_{a} / C_{0}(1-\alpha_{a}) = C_{0}\alpha_{a}^{2} / (1-\alpha_{a}) \implies Ka = C_{0}\alpha_{a}^{2} / (1-\alpha_{a})$

• If $\alpha_a \le 0.1$ (the dissociation is weak; less than 10%) \Rightarrow we can neglect the α_a in front of 1: The relationship becomes: Ka = C₀. $\alpha_a^2 \Rightarrow \alpha_a = \sqrt{(ka/C_0)} \le 10^{-1} \Rightarrow ka/C_0 \le 10^{-2}$.

Note:

This is Ostwald's law which indicates that dissociation increases with dilution and a much diluted weak electrolyte behaves like a strong electrolyte. This is why the calculation of the pH of acids and bases is applicable for solutions which are not too diluted.

Summary:

> The pH of a weak mono-base (WB):

A weak base (B) with initial concentration C_0 , We have partial protonation of the base:

Couple (BH⁺/B): B + H₂O \rightleftharpoons BH⁺ + OH⁻

The water auto-protolysis equilibrium: $2H_2O \rightleftharpoons H_3O^+ + OH^-$

Four species are present at equilibrium concentration: [B], [BH⁺], [H₃O⁺] and [OH⁻]

We can write four relationships between these four unknowns:

1. Ionic product: $Ke = [H_3O^+]$. $[OH^-]$ (1)

2. Couple basicity constant (BH⁺/B): Kb = $[BH^+]$. $[OH^-] / [B]$ (2)

3. Concentration of the constituent elements of the acid-base couple: $C_0 = [B] + [BH^+]$(3)

4. Electro-neutrality of the solution: $[BH^+] + [H_3O^+] = [OH^-]$ (4)

First approximation:

The medium is basic: $[OH^-] >> [H_3O^+]$, i.e. the $[H_3O^+]$ is negligible compared to $[OH^-]$ The relation (4) becomes: $[BH^+] = [OH^-] \dots (5)$

Second approximation:

The protonation of the base is weak, i.e.: the concentration of the conjugated monoacid is negligible compared to that of base B, this means that: $[BH^+] \ll [B]$.

The relation (3) becomes: $C_0 = [B]$(6)

 $Kb = [BH^+] . [OH^-] / [B](2)$ (Ka. Kb = Ke; $Ke = [H_3O^+] . [OH^-]$)

 $\Rightarrow \text{Ke/Ka} = \text{[BH^+] Ke/[B] [H_3O^+]} \quad \Rightarrow \text{Ke} \cdot \text{[B]} \cdot \text{[H_3O^+]} = \text{Ka} \cdot \text{[BH^+]} \cdot \text{Ke}$

 $\Rightarrow Ka = [B] . [H_3O^+] / [BH^+](7)$

(7) + (5) + (6), we obtained: Ka = C₀. [H₃O⁺] / [OH⁻] \Rightarrow Ka = C₀. [H₃O⁺]² / Ke

 $\Rightarrow [H_3O^+]^2 = (Ka \text{ Ke } /C_0) \Rightarrow [H_3O^+] = \sqrt{(Ka \text{ Ke } /C_0)} \Rightarrow -\log[H_3O^+] = -\log(Ke \text{ Ka } /C_0)^{1/2};$

 $(\log A/B = \log A - \log B, \log A.B = \log A + \log B)$

 \Rightarrow pH= ½ (-log Ka - log Ka + logC₀) \Rightarrow pH= ½ (pKe + pKa + logC₀)

Validation Domain:

The medium is basic: $[B] \ge 10 [BH^+]$

Demonstration:

$$\begin{split} &[B] \geq 10 \ [BH^+] \Rightarrow 10^{-1} \geq [BH^+]/[B] \Rightarrow [B]/[BH^+] \geq 10 \Rightarrow \log[B]/[BH^+] \geq \log 10 \\ &\Rightarrow pKa + \log[B]/[BH^+] \geq pKa + 1 \ (\text{Henderson relation: } pH = pKa + \log ([base]/[acid])) \\ &\Rightarrow pH \geq pKa + 1. \end{split}$$

Use of the dissociation coefficient (α_b) :

The weak basis approximation relies on the assumption of weak protonation

We call: (α_b): dissociation coefficient = Number of moles dissociated from [B]/ Initial number of moles of [B], $\alpha_b = x/C_0$.

Material equilibruim:

	В	$+ H_2O$	≓	BH^+	$+ OH^{-}$
t=0	\mathbf{C}_0	-		0	0
t=eq	C ₀ - X	-		X	Х
$\alpha_b = X/C_0$	$C_0(1-\alpha_b)$	-		$C_0 \alpha_b$	$C_0 \alpha_b$

$$\begin{split} & \text{Kb} = [BH^+] \cdot [OH^-] / [B] \quad (\text{Ka} \cdot \text{Kb} = \text{Ke} ; \text{ Ke} = [H_3O^+] \cdot [OH^-]) \\ & \Rightarrow \text{Ke}/\text{Ka} = [BH^+] \text{ Ke}/ [B] [H_3O^+] \quad \Rightarrow \text{ Ke} \cdot [B] \cdot [H_3O^+] = \text{ Ka} \cdot [BH^+] \cdot \text{Ke} \\ & \Rightarrow \text{ Ka} = [B] \cdot [H_3O^+] / [BH^+] \Rightarrow \text{ Ka} = \text{Ke} \cdot [B] / [BH^+] [OH^-] \Rightarrow \text{ Ka} = \text{Ke} C_0(1 - \alpha_b) / C_0 \alpha_b \cdot C_0 \alpha_b \\ & \Rightarrow \text{ Ka} = \text{Ke} (1 - \alpha_b) / C_0 \alpha_b^2 \end{split}$$

• If $\alpha_b \leq 0.1$ (the protonation is weak; less than 10%) \Rightarrow we can neglect the α_b in front of 1: The relationship becomes: Ka = Ke/C₀ α_b ² $\Rightarrow \alpha_b = \sqrt{(Ke/KaC_0)} \leq 10^{-1} \Rightarrow Ke/KaC_0 \leq 10^{-2}$.

Summary:

$$\begin{split} & \text{Weak base (WB):} \\ & pH(WB) = \frac{1}{2} \; (pKe + pKa + \log C_0) \quad \ \, . \ \, (t = 25C^\circ) \\ & \text{With:} \ \ \, 1/ \; pH \; \geq \; pKa + 1; \ \ \, 2/ \; \text{If} \; \; \alpha_b \leq 0.1 \; \Rightarrow \; Ke/KaC_0 \leq \; 10^{-2}. \end{split}$$

> The pH of an amphoteric solution:

Consider the solution of a NaHA salt (Example: Na HCO₃) of concentration C. The total dissociation of salt in water is written as: NaHA_(solid) \rightarrow Na⁺ + HA⁻ HA⁻ is an ampholyte since it is the acid pair: HA⁻/A⁻² and the base of H₂A/HA⁻

	Couple (H_2A/HA^-) :	H_2A	+	H_2O	⇒	HA⁻	+	H_3O^+
	Couple (HA ^{-/} A ⁻²) :	HA	+	H_2O	\rightleftharpoons	A-2	+	H_3O^+
	Totale :	2HA ⁻			\rightleftharpoons	H_2A	+	A ⁻²
The balance of this overall reaction indicates that: $[H_2A] = [A^{-2}]$								
Ka1: acidity constant: $H_2A/HA^- \Rightarrow Ka_1 = [HA^-] \cdot [H_3O^+]/[H_2A]$								
Ka2: acidity constant: HA ^{-/} A ⁻² \Rightarrow Ka ₂ = [A ⁻²] . [H ₃ O ⁺]/ [HA ⁻]								
$Ka_1 . Ka_2 = ([HA^-] . [H_3O^+]/[H_2A]) . ([A^{-2}] . [H_3O^+]/[HA^-]) = [H_3O^+]^2 . ([A^{-2}]/[H_2A]) . ([A^{-2}]/[H_2A])$								
$[H_2A] = [A^{-2}]$								

Ka₁. Ka₂ = $[H_3O^+]^2 \Rightarrow pH = \frac{1}{2} (pKa_1 + pKa_2)$ (We note that pH is independent of concentration (C)).

Noticed:

An ampholyte is a substance that contains a negative charge and hydrogen (regardless of the number of negative charges or hydrogen atoms).