المحاضرة السادسة

التباين / الانحراف المعياري

الدرس الرابع

مقاييس التشتت

محتوي المحاضرة

- مقدمة.
- التباين Variance
- التباين في المجتمع.
- التباين في العينة.
- الانحراف المعياري
- الانحراف المعياري للبيانات الغير مبوبة
- الانحراف المعياري للبيانات الغير مبوبة

1-التباين Variance

وهو احد أهم مقاييس التشتت حيث يستخدم بكثرة في الميادين التطبيقية، بحيث يعبر مقياس التباين عن متوسط مربعات الانحرافات القيم عن وسطها الحسابي.وهناك نوعان من التباين هما.

التباين في المجتمع. 1-1

أذا كانت المفردات المدروسة حول مجتمع ولتكن x1.x2.x3... لدراسة التباين أولا نرمز له بالرمز s^2 سيجما تربيع ويحسب من خلال العلاقة الآتية.

$$\sigma^2 = \frac{\sum (x - u)^2}{N}$$

. $m = \sum x/N$: أن m هو الوسط الحسابي في المجتمع ، أى أن m

مثال

مصنع لتعبئة المواد الغذائية ، يعمل به 15 عامل ، وكانت عدد سنوات الخبرة لهؤلاء العمال - مصنع لتعبئة المواد الغذائية ، يعمل به 15 عامل ، وكانت عدد سنوات الخبرة لهؤلاء العمال - مصنع لتعبئة المواد الغذائية ، يعمل به 15 عامل ، وكانت عدد سنوات الخبرة لهؤلاء العمال - مصنع لتعبئة المواد الغذائية ، يعمل به 15 عامل ، وكانت عدد سنوات الخبرة لهؤلاء العمال - مصنع لتعبئة المواد الغذائية ، يعمل به 15 عامل ، وكانت عدد سنوات الخبرة لهؤلاء العمال .

5 13 7 14 12 9 6 8 10 13 14 6 11 12 10 بفرض أن هذه البيانات تم جمعها عن كل مفردات المجتمع ، فأوجد التباين لعدد سنوات الخبرة .

الحسل

لحساب تباين سنوات الخبرة في المجتمع ، يتم استخدام المعادلة

الوسط الحسابي في المجتمع m

$$m = \frac{1}{N} \sum x$$

$$= \frac{1}{15} (5+13++7+...+12+10) = \frac{1}{15} (150) = 10$$

$$\sum (x-m)^2$$
 حساب مربعات الانحرافات $\sum (x-m)^2 = 130$ جسان:

إذا تباين سنوات الخبرة للعمال في المصنع هو :

$$s^2 = \frac{\sum (x-u)^2}{N} = \frac{130}{15} = 8.67$$

سنوات الحبرة X	(x-m)	$(x-m)^2$
5	5-10 = -5	25
13	3	9
7	-3	9
14	4	16
12	2	4
9	-1	1
6	-4	16
8	-2	4
10	0	0
13	3	9
14	4	16
6	-4	16
11	1	1
12	2	4
10	0	0
150	0	130

و يمكن حساب التباين في المجتمع أيضا وفق العلاقة الآتية.

$$\sigma^2 = \frac{1}{N} \sum x^2 - \mu^2$$

سنوات الخبرة	x ²	
x		_
5	25	$\sum x = 150$, $\sum x^2 = 1630$
13	169	
7	49	1 1
14	196	$m = \frac{1}{N} \sum x = \frac{1}{15} (150) = 10$
12	144	N^{2} 15
9	81	إذا التباين هو
6	36	2 1 - 2 2
8	64	$s^2 = \frac{1}{N} \sum x^2 - m^2$
10	100	11
13	169	$=\frac{1}{15}1630-10^2=108.67-100=8.67$
14	196	15
6	36	وهي نفس النتيجة التي تم الحصول عليها باستخدام الصيغة (4–6) .
11	121	
12	144	
10	100	
150	1630	

1-2 التباين في العينة.

يمكن أن يحسب التباين لعينة ما علي أساس انه تقديرا لتباين للمجتمع كأكل فإذا كانت مغردات عينة عشوائية $x^1.x^2.x^3....x^n$ و حجمها $x^1.x^2.x^3....x^n$ فان تباين العينة يحسب وفق العلاقة التالية ويمز له بالرمز

$$S^2 = \sum (X - \overline{X})^2 / n$$

 $\overline{x} = \sum x/n$: أي أن \overline{x} هو الوسط الحسابي لقراءات العينة ، أي أن \overline{x}

2- الانحراف المعياري

بكل اختصار يمكن تعريف الانحراف المعياري علي أساس انه الجذر ألتربيعي الموجب للتباين كما هو موضح في الشكل التالي .

وبالتالي فان الانحراف المعياري يحسب وفق العلاقة الآتية.

$$S = \sqrt{\sum (X - \overline{X})^2 / n}$$

مثال

اوجد التباين والانحراف المعياري للبيانات الآتية.

22 (15 (13 (12 (8

الإجابة

X	$X - \overline{X}$	$(X - \overline{X})^2$
8	-6	36
12	-2	4
13	-1	1
15	1	1
22	8	64
$\sum X = 70$	$\sum (X - \overline{X}) = 0$	$\sum (X - \overline{X})^2 = 106$

$$\overline{X} = \sum X / n$$

$$= 70/5 = 14$$

$$S^2 = \sum (X - \overline{X})^2 / n$$

$$= 106/5 = 21.2 -----> [Variance]$$

$$S = \sqrt{\sum (X - \overline{X})^2} / n$$

$$= \sqrt{106}/5 = \sqrt{21.2} = 4.6 -----> Standard deviation (S.D.)$$

- أما في حالة البيانات المبوية فتصبح العلاقات كالتالي.

1- التباين في العينة.

$$S^2 = \frac{\sum f(X - \overline{X})}{\sum f}$$

2- الانحراف المعياري.

$$S = \sqrt{\frac{\sum f(X - X)}{\sum f}}$$

مثال. لدينا البيانات الآتية المطلوب حساب التباين والانحراف المعياري

الدرجات 10 - 10 الدرجات 20 - 10 الدرجات 20 - 40 الدرجات 11 الكرارات 11 19 التكرارات 11 التكرارات 11 التكرارات 10 4 التكرارات

الحل حساب التباين والانحراف المعياري للبيانات المبوبة

الفئات	f	مركز الفئة (X)	f * X	X - X	$(X-\overline{X})^2$	f (X- X)2
0 - 10	1	5	5	-30	900	900
10 - 20	4	15	60	-20	400	1600
20 - 30	10	25	250	-10	100	1000
30 - 40	19	35	665	0	0	0
40 - 50	11	45	495	10	100	1100
50 - 60	5	55	275	20	400	2000
Σ	50	=	1750	-	-	6600

$$\overline{X} = \frac{\sum fX}{\sum f}$$

$$\overline{X} = 1750 / 50 = 35$$

$$S^2 = \frac{\sum f(X - \overline{X})}{\sum f}$$

التباين

$$S^2 = 6600/50 = 132$$
 ----- [variance]

الانحراف المعياري

$$S = \sqrt{6600/50} = \sqrt{132} = 11.48$$
 (S.D)

مزايا وعيوب الانحراف المعياري

من مزايا الانحراف المعياري

1-أنه أكثر مقاييس التشتت استخداما .

2- يسهل التعامل معه رياضيا .

3- يأخذ كل القيم في الاعتبار .

ومن عيوبه ، أنه يتأثر بالقيم الشاذة .