قسم العلوم الإقتصادية

المهراس: تحليل السلاسل الزمنية

ليكن لينا المعلومات التالية:

t	1	2	3	4	5	6	7	8	9
х	5	6	7	-5	-1	5	10	25	65

المطلوب:

1- الحسب معاملات الارتباط الذاتي للعينة عند الايزاحات الممكنة.

2- ارسم دالة الارتباط الذاتي للعينة

الحل:

1 من اجل حساب معاملات الارتباط الذاتي للعينة نقوم بتطبيق العلاقة التالية:

$$r_k = \frac{cov(X_t, X_{t+k})}{\sqrt{Var(X_t)Var(X_{t+k})}} = \frac{\sum_{t=1}^{n-k} (X_t - \bar{X})(X_{t+k} - \bar{X})}{\sum_{t=1}^{n} (X_t - \bar{X})^2}$$

 ρ_{ν} : بعض المراجع ترمز له بالرمز

 $X_t - ar{X} \cdot X_{t-k} - ar{X}$: من اجل حسابه یجب حساب کل من

• حساب معامل الارتباط الذاتي بازاحة واحدة (بتاخير 1): المتوسط الحسابي = 13

t	1		3	4	5	6	7	8	9	المجموغ
X_{t}	5	6	7	-5	-1	5	10	25	65	117
$X_t - \bar{X}$	8-	7-	6-	18-	14-	8-	3-	12	52	/
$X_{t+1} - \bar{X}$	7-	6-	18-	14-	8-	3-	12	52	_	/
$(X_t - \bar{X})(X_{t+k} - \bar{X})$	56	42	108	252	112	24	36-	624	_	1182
$(X_t - \bar{X})^2$	64	49	36	324	196	64	9	144	2704	3590

بتطبيق القانون نجد:

$$r_1 = \frac{\sum_{t=1}^{8} (X_t - \bar{X})(X_{t+1} - \bar{X})}{\sum_{t=1}^{9} (X_t - \bar{X})^2} = \frac{1182}{3590} = 0.329$$

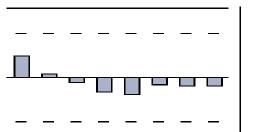
* حساب معامل الارتباط الذاتي بازاحة واحدة (بتاخير 2): المتوسط الحسابي = 13

		**			-		••			
t	1		3	4	5	6	7	8	9	المجموغ
X _t	5	6	7	-5	-1	5	10	25	65	117
$X_t - \bar{X}$	8-	7-	6-	18-	14-	8-	3-	12	52	/
$X_{t+2} - \bar{X}$	6-	18-	14-	8-	3-	12	52	-	_	/
$(X_t - \bar{X})(X_{t-2} - \bar{X})$	48	126	84	144	42	96-	156-	-	_	192
$(X_t - \bar{X})^2$	64	49	36	324	196	64	9	144	2704	3590

$$r_2 = \frac{\sum_{t=1}^{7} (X_t - \bar{X})(X_{t+2} - \bar{X})}{\sum_{t=1}^{9} (X_t - \bar{X})^2} = \frac{192}{3590} = 0.053$$

* حساب معامل الارتباط الذاتي بازاحة واحدة (بتاخير 3): المتوسط الحسابي = 13

t	1		3	4	5	6	7	8	9	المجموغ
X_{t}	5	6	7	-5	-1	5	10	25	65	117
$X_t - \bar{X}$	8-	7-	6-	18-	14-	8-	3-	12	52	/
$X_{t+3} - \bar{X}$	18-	14-	8-	3-	12	52	_	-	_	/
$(X_t - \bar{X})(X_{t+3} - \bar{X})$	144	98	48	54	168-	416-	_	_	_	240-
$(X_t - \bar{X})^2$	64	49	36	324	196	64	9	144	2704	3590


$$r_3 = \frac{\sum_{t=1}^{6} (X_t - \bar{X})(X_{t+3} - \bar{X})}{\sum_{t=1}^{9} (X_t - \bar{X})^2} = \frac{-240}{3590} = -0.067$$

بنفس الطريقة الى ان نصل الى معامل الارتباط الذاتي بازاحة 8 وهو اخر معامل يمكن حسابه

t	1		3	4	5	6	7	8	9	المجموغ
X _t	5	6	7	-5	-1	5	10	25	65	117
$X_t - \bar{X}$	8-	7-	6-	18-	14-	8-	3-	12	52	/
$X_{t+8} - \bar{X}$	52	_	_	-	-	_	_	-	_	/
$(X_t - \bar{X})(X_{t+8} - \bar{X})$	416-	_	-	-	-	-	_	-	_	416-
$(X_t - \bar{X})^2$	64	49	36	324	196	64	9	144	2704	3590

$$r_8 = \frac{\sum_{t=1}^{1} (X_t - \bar{X})(X_{t+8} - \bar{X})}{\sum_{t=1}^{9} (X_t - \bar{X})^2} = \frac{-416}{3590} = -0.116$$

2- رسم دالة الارتباط الذاتي (ACF (AC)

<u>التمرين 02:</u>

ليكن لينا المعلومات التالية:

t	1	2	3	4	5	6	7	8	9	10
х	11	5	10	2	2	8	8	2	10	12

<u>المطلوب:</u>

1- احسب معاملات الارتباط الذاتي عند الازاحة 1، 2، 3.

2- احسب معاملات الارتباط الذاتي الجزئية لنفس الازاحات السابقة

الحل:

1 من اجل حساب معاملات الارتباط الذاتي للعينة نقوم بتطبيق العلاقة التالية:

$$r_k = \frac{cov(X_t, X_{t+k})}{\sqrt{Var(X_t)Var(X_{t+k})}} = \frac{\sum_{t=1}^{n-k} (X_t - \bar{X})(X_{t+k} - \bar{X})}{\sum_{t=1}^{n} (X_t - \bar{X})^2}$$

 $X_t - ar{X}$ ، $X_{t+k} - ar{X}$: من اجل حسابه یجب حساب کل من

• حساب معامل الارتباط الذاتي بازاحة واحدة (بتاخير 1): المتوسط الحسابي = 7

t	1	2	3	4	5	6	7	8	9	10	المجموغ
X_{t}	11	5	10	2	2	8	8	2	10	12	70
$X_t - \bar{X}$	4	2-	3	5-	5-	1	1	5-	3	5	/
$X_{t+1} - \bar{X}$	2-	3	5-	5-	1	1	5-	3	5	_	/
$(X_t - \bar{X})(X_{t+k} - \bar{X})$	8-	6-	15-	25	5-	1	5-	15-	15	_	13-
$(X_t - \bar{X})^2$	16	4	9	25	25	1	1	25	9	25	140

بتطبيق القانون نجد:

$$r_1 = \frac{\sum_{t=1}^{9} (X_t - \bar{X})(X_{t+1} - \bar{X})}{\sum_{t=1}^{9} (X_t - \bar{X})^2} = \frac{-13}{140} = -0.093$$

* حساب معامل الارتباط الذاتي بازاحة واحدة (بتاخير 2): المتوسط الحسابي = 7

		**					*				
t	1	2	3	4	5	6	7	8	9	10	المجموغ
X_{t}	11	5	10	2	2	8	8	2	10	12	70
$X_t - \bar{X}$	4	2-	3	5-	5-	1	1	5-	3	5	/
$X_{t+2} - \bar{X}$	3	5-	5-	1	1	5-	3	5	-	-	/
$(X_t - \bar{X})(X_{t+2} - \bar{X})$	12	10	15-	5-	5-	5-	3	25-	ı	I	30-
$(X_t - \bar{X})^2$	16	4	9	25	25	1	1	25	9	25	140

$$r_2 = \frac{\sum_{t=1}^{8} (X_t - \bar{X})(X_{t+2} - \bar{X})}{\sum_{t=1}^{9} (X_t - \bar{X})^2} = \frac{-30}{140} = -0.214$$

* حساب معامل الارتباط الذاتي بازاحة واحدة (بتاخير 3): المتوسط الحسابي = 13

		#		•		,		-			
t	1	2	3	4	5	6	7	8	9	10	المجموغ
X _t	11	5	10	2	2	8	8	2	10	12	70
$X_t - \bar{X}$	4	2-	3	5-	5-	1	1	5-	3	5	/
$X_{t+3} - \bar{X}$	5-	5-	1	1	5-	3	5	_	_	_	/
$(X_t - \bar{X})(X_{t+3} - \bar{X})$	20-	10	3	5-	25	3	5	_	-	_	21
$(X_t - \bar{X})^2$	16	4	9	25	25	1	1	25	9	25	140

$$r_3 = \frac{\sum_{t=1}^{7} (X_t - \bar{X})(X_{t+3} - \bar{X})}{\sum_{t=1}^{9} (X_t - \bar{X})^2} = \frac{21}{140} = 0.150$$

2- احسب معاملات الارتباط الذاتي الجزئية لنفس الازاحات السابقة

3- من اجل حساب معاملات الارتباط الذاتي الجزئية نقوم بتطبيق العلاقة التالية:

$$\begin{cases} r_{kk} = \frac{r_k - \sum_{t=1}^{k-1} r_{k-1,t} r_{k-t}}{1 - \sum_{t=1}^{k-1} r_{k-1,t} r_t} & ; k = 2,3, \dots \\ k = 1, r_{kk} = r_{11} = r_1 \\ r_{kt} = r_{k-1,t} - r_{kk} r_{k-1,k-1} \end{cases}$$

- حساب معامل الارتباط الذاتي الجزئي k=2 بتطبيق العلاقات السابقة نجد

$$r_{22} = \frac{r_2 - \sum_{t=1}^{1} r_{2-1,t} r_{2-t}}{1 - \sum_{t=1}^{2-1} r_{2-1,t} r_t}$$
$$r_{11} = r_1$$

$$r_{22} = \frac{r_2 - r_{11} r_1}{1 - r_{11} r_1} = \frac{-0.214 - \left[(-0.093)(-0.093) \right]}{1 - \left[(-0.093)(-0.093) \right]} = \frac{-0.223}{0.991} = -0.225$$

$$\mathsf{k=3} \text{ (As a proof of the limits)}$$

$$r_{33} = \frac{r_3 - \sum_{t=1}^2 r_{3-1,t} r_{3-t}}{1 - \sum_{t=1}^{3-1} r_{3-1,t} r_t}$$

$$r_{11} = r_1$$

$$r_{21} = r_{11} - r_{22} r_{11}$$

$$r_{33} = \frac{r_3 - [(r_{21}r_2) + (r_{22}r_1)]}{1 - [(r_{21}r_1) + (r_{22}r_2)]}$$

$$r_{11} = r_1 = -0.093, r_{22} = -0.225$$

$$r_{21} = r_{11} - r_{22}r_{11} = -0.093 - [(-0.225)(-0.093)] = -0.114$$

بالتعويض نجد

$$r_{33} = 0.111$$

التمرين 3:

الجدول التالي يوضح قيمة المبيعات السنوية لاحدى السلع بملايين الدينارات في الفترة 1990-1998:

t	1990	1991	1992	1993	1994	1995	1996	1997	1998
X	9	11	10	12	11	9	13	11	9

المطلوب:

- 1- احسب معاملات الارتباط الذاتي عند 1=1، 2، 3.
 - 2- الحسب معاملات الارتباط الذاتي الجزئية.
 - 3- هل السلسلة مستقرة مبررا اجابتك؟

الحل

- من اجل حساب معاملات الارتباط الذاتي للعينة نقوم بتطبيق العلاقة التالية:

$$r_k = \frac{cov(X_t, X_{t+k})}{\sqrt{Var(X_t)Var(X_{t+k})}} = \frac{\sum_{t=1}^{n-k} (X_t - \bar{X})(X_{t+k} - \bar{X})}{\sum_{t=1}^{n} (X_t - \bar{X})^2}$$

 $X_t - \bar{X} \cdot X_{t+k} - \bar{X}$: من اجل حسابه یجب حساب کل من

• حساب معامل الارتباط الذاتي بإزاحة واحدة (بتأخير 1): المتوسط الحسابي = 10.55

t	1	2	3	4	5	6	7	8	9	المجموع
X _t	9	11	10	12	11	9	13	11	9	95
$X_t - \bar{X}$	1.55-	0.45	-0.55	1.45	0.45	-1.55	2.45	0.45	-1.55	/
$X_{t+1} - \bar{X}$	0.45	-0.55	1.45	0.45	-1.55	2.45	0.45	-1.55	-	/
$(X_t \\ -\bar{X})(X_{t+k} \\ -\bar{X})$	-0.697	-0.248	-0.798	0.6525	-0.697	-3.798	1.1025	-0.697	-	-5.18
$(X_t - \bar{X})^2$	2.4025	0.2025	0.3025	2.1025	0.2025	2.4025	6.0025	0.2025	2.4025	16.223

بتطبيق القانون نجد:

$$r_1 = \frac{\sum_{t=1}^{9} (X_t - \bar{X})(X_{t+1} - \bar{X})}{\sum_{t=1}^{9} (X_t - \bar{X})^2} = \frac{-5.18}{16.223} = -0.3192 \approx 0.32$$

* حساب معامل الارتباط الذاتي بإزاحة واحدة (بتأخير 2): المتوسط الحسابي = 10.55

t	1	2	3	4	5	6	7	8	9	المجموع
X _t	9	11	10	12	11	9	13	11	9	95
$X_t - \bar{X}$	1.55-	0.45	-0.55	1.45	0.45	-1.55	2.45	0.45	-1.55	/
$X_{t+2} - \bar{X}$	-0.55	1.45	0.45	-1.55	2.45	0.45	-1.55	/	/	/
$(X_t - \bar{X})(X_{t+k} - \bar{X})$	0.8525	0.6525	-0.2475	-2.2475	1.1025	-0.6975	-3.7975	/	/	-4.3825
$(X_t - \bar{X})^2$	2.4025	0.2025	0.3025	2.1025	0.2025	2.4025	6.0025	0.2025	2.4025	16.223

$$r_2 = \frac{\sum_{t=1}^{6} (X_t - \bar{X})(X_{t+2} - \bar{X})}{\sum_{t=1}^{8} (X_t - \bar{X})^2} = \frac{-4.3825}{16.223} = -0.2701$$

* حساب معامل الارتباط الذاتي بإزاحة واحدة (بتأخير 3): المتوسط الحسابي = 11

		**		•	,	•	•			
t	1	2	3	4	5	6	7	8	9	المجموع
X _t	9	11	10	12	11	9	13	11	9	95
$X_t - \bar{X}$	1.55-	0.45	-0.55	1.45	0.45	-1.55	2.45	0.45	-1.55	/
$X_{t+3} - \bar{X}$	1.45	0.45	-1.55	2.45	0.45	-1.55	/	/	/	/
$(X_t - \bar{X})(X_{t+k} - \bar{X})$	- 2.2475	0.2025	0.8525	3.5525	0.2025	2.4025	/	/	/	4.965
$(X_t - \bar{X})^2$	2.4025	0.2025	0.3025	2.1025	0.2025	2.4025	6.0025	0.2025	2.4025	16.223

$$r_3 = \frac{\sum_{t=1}^{5} (X_t - \bar{X})(X_{t+3} - \bar{X})}{\sum_{t=1}^{9} (X_t - \bar{X})^2} = \frac{4.965}{16.223} = 0.306$$

- من اجل حساب معاملات الارتباط الذاتي الجزئية نقوم بتطبيق العلاقة التالية:

$$\begin{cases} r_{kk} = \frac{r_k - \sum_{t=1}^{k-1} r_{k-1,t} r_{k-t}}{1 - \sum_{t=1}^{k-1} r_{k-1,t} r_t} \quad ; k = 2,3, \dots \\ k = 1, r_{kk} = r_{11} = r_1 \\ r_{kt} = r_{k-1,t} - r_{kk} r_{k-1,k-1} \end{cases}$$

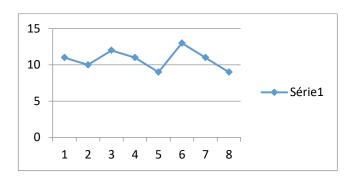
- حساب معامل الارتباط الذاتي الجزئي k=2 بتطبيق العلاقات السابقة نجد

$$r_{22} = \frac{r_2 - \sum_{t=1}^{1} r_{2-1,t} r_{2-t}}{1 - \sum_{t=1}^{2-1} r_{2-1,t} r_t}$$
$$r_{11} = r_1$$

$$r_{22} = \frac{r_2 - r_{11} r_1}{1 - r_{11} r_1} = \frac{-0.2701 - [(-0.32)(-0.32)]}{1 - [(-0.32)(-0.32)]} = \frac{-0.3725}{0.8976} = -0.4149$$

$$\mathsf{k=3} \quad \mathsf{k=3} \quad \mathsf{k$$

$$r_{33} = \frac{r_3 - [(r_{21}r_2) + (r_{22}r_1)]}{1 - [(r_{21}r_1) + (r_{22}r_2)]}$$


$$r_{11} = r_1 = -0.32, r_{22} = -0.4149$$

$$r_{21} = r_{11} - r_{22}r_{11} = -0.32 - [(-0.4149)(-0.32)] = -0.4528$$

بالتعويض نجد

$$r_{33} = 0.067$$

السلسلة مستقرة مبررا اجابتك؟ من البيان يتضح ان السلسلة غير مستقرة -1

2- حساب احصائية ستودنت

$$s_{r_k} = \frac{\sqrt{1 + \sum_{j=1}^{k-1} r_j^2}}{\sqrt{n-b+1}}$$

$$S_{r_{kk}} = \frac{1}{\sqrt{n-b+1}}$$

بالتوفيق
$$t = \frac{r}{s}$$