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Solution of the Worksheet 3

Solution of the Exercise 1

1. Study the variation of the sequences.

(a) Case of (Un):

Un+1 − Un =

(
1

n+ 2
− 1

n+ 3

)
−
(

1

n+ 1
− 1

n+ 2

)
=

n+ 1− 3− n
(n+ 1)(n+ 3)

=
−2

(n+ 1)(n+ 3)
< 0

As Un+1 − Un < 0 for all n ∈ N then we conclude that (Un) is a strictly decreasing sequence.

(b) Case of (Vn): Note that, (Vn) can be rewritten as follows: Vn = n2
(

1− 1
n+1

)
= n3

n+1 .

Vn+1 − Vn =

(
(n+ 1)3

n+ 2

)
−
(

n3

n+ 1

)
=

(n+ 1)4 − (n4 + 2n3)

(n+ 1)(n+ 2)

=
2n3 + 6n2 + 4n+ 1

(n+ 1)(n+ 2)
> 0

As Vn+1 − vn > 0 for all n ∈ N then we conclude that (Vn) is a strictly increasing sequence.

(c) Case of (Wn): Note that, for any n ∈ N∗ we have (−1)n+1 = −(−1)n

Wn+1 −Wn =
(
(n+ 1)

(
(n+ 1)− (−1)n+1

))
− (n (n− (−1)n))

= (n+ 1)2 − (n+ 1)(−1)n+1 − n2 + n(−1)n

= 2n+ 2n(−1)n + 1 + (−1)n

=

{
4n+ 2 > 0, if n is an even number;
0, if n is an odd number.

As Wn+1 −Wn ≥ 0 for all n ∈ N then we conclude that (Wn) is an increasing sequence.

(d) Case of (Tn): In this case we note that the sequence is an power sequence so its preferably to
compare the ration Tn+1/Tn with 1 rather that the analysis of the sign of Tn+1 − Tn

Tn+1

Tn
=

a
1

n+1

a
1
n

= a
1

n+1
− 1

n

= a
−1

n(n+1) =

(
1

a

) 1
n(n+1)

< 1 ( because
1

a
< 1 and

1

n(n+ 1)
> 0).

As Tn+1

Tn
< 1 for all n ∈ N then we conclude that (Tn) is a strictly decreasing sequence.
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Remark: We can also show that (Tn) is a strictly decreasing sequence by doing the following:

∀n ∈ N∗, we have n+ 1 > 0 =⇒ 1

n+ 1
<

1

n

=⇒ a
1

n+1 < a
1
n (As the power function is strictly increasing)

=⇒ Tn+1 < Tn+1

By definition, it is a strictly decreasing sequence.

2. Case of (Sn).

Sn+1 − Sn =
1

n+ 1

n+1∑
i=1

Ui −
1

n

n∑
i=1

Ui

=
1

n(n+ 1)

(
n

(
n+1∑
i=1

Ui

)
− (n+ 1)

(
n∑
i=1

Ui

))

=
1

n(n+ 1)

(
n

(
n∑
i=1

Ui

)
+ nUn+1 − n

(
n∑
i=1

Ui

)
−

(
n∑
i=1

Ui

))

=
1

n(n+ 1)

(
n∑
i=1

Un+1 −
n∑
i=1

Ui

)

=
1

n(n+ 1)

(
n∑
i=1

(Un+1 − Ui)

)
.

We note that

If (Un)↘ =⇒ ∀i ≤ n, Un+1 − Ui ≤ 0 =⇒
n∑
i=1

(Un+1 − Ui) ≤ 0 =⇒ Sn+1 − Sn ≤ 0 =⇒ (Sn)↘;

If (Un)↗ =⇒ ∀i ≤ n, Un+1 − Ui ≥ 0 =⇒
n∑
i=1

(Un+1 − Ui) ≥ 0 =⇒ Sn+1 − Sn ≥ 0 =⇒ (Sn)↗ .

We conclude that the sequence (Sn) is of the same nature as Un.

Solution of the Exercise 2

I) Let (Un)n∈N be a sequence of R. What do you think of the following propositions:

1. If Un converges to a real l then U2n and U2n+1 converge to l.

This statement is true, because if a sequence converges then all its subsequences converge to the
same limit.

2. If U2n and U2n+1 are convergent, the same is true of Un.

This statement is false, because it is possible that U2n and U2n+1 converge to two different values.
For instance, if we consider the sequence Un = (−1)n, despite that the sequences U2n and U2n+1

are convergent (toward 1 and -1, respectively) the sequence (Un) is a divergent sequence.
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3. If U4n and U4n+2 are convergent, towards the same limit, it is the same for Un.

This statement is false, because nothing is known about the remaining subsequences U4n+1 and
U4n+3. For example, if we consider the sequence Un = cos(nπ) then lim

n→∞
U4n = lim

n→∞
U4n+2 = 1

but lim
n→∞

U4n+2 = lim
n→∞

U4n+3 = −1. Consequently, Un is not convergent.

4. If U2n and U2n+1 are convergent, towards the same limit, it is the same for Un.

This statement is true, because {U2n} ∪ {U2n+1} = {Un}.

II) Prove that:

1. if the sequence {Un}n∈N converges to l1 and {Vn}n∈N converges to l2, then the sequence {Un +
Vn}n∈N converges to l1 + l2.

By definition we have{
(Un) converges to l1
(Vn) converges to l2

⇐⇒
{
∀ε > 0, ∃N1 ∈ N : |Un − l1| < ε/2, for n ≥ N1.
∀ε > 0, ∃N2 ∈ N : |Vn − l2| < ε/2, for n ≥ N2.

Let N = max{N1, N2} then for all n ≥ N we have:

|(Un + Vn)− (l1 + l2)| = |(Un − l1) + (Vn − l2)|
≤ |(Un − l1)|+ |(Vn − l2)|
< ε/2 + ε/2

< ε

⇐⇒ (Un + Vn) converges to l1 + l2.

2. convergent sequences are Cauchy sequences.

Let (Un) to be a convergent sequence toward l. By definition we have{
(Un) converges to l
(Um) converges to l

⇐⇒
{
∀ε > 0, ∃N1 ∈ N : |Un − l1| < ε/2, for n ≥ N1.
∀ε > 0, ∃N2 ∈ N : |Um − l2| < ε/2, for m ≥ N2.

Let N = max{N1, N2} then for all n ≥ N , we have:

|Un − Um| = |Un − l + l − Um|
≤ |(Un − l)|+ |(Um − l)|
< ε/2 + ε/2

< ε

⇐⇒ (Un) is a Cauchy’s sequence.

Solution of the Exercise 3

Let’s consider the following real sequences:

Un =
1

n+ 1
, Vn = n

√
a with a > 1 Wn =

(−1)n + bn

n+ 1
with b ∈ R, Tn = cn with c ∈]− 1, 1[.

1. The use of the definition of the limit of a real sequence.
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(a) Case of lim
n→∞

Un = 0

|Un−0| < ε =⇒
∣∣∣∣ 1

n+ 1

∣∣∣∣ < ε =⇒ 1

n+ 1
< ε =⇒ n+1 >

1

ε
=⇒ n >

1

ε
−1 =⇒ N = E

(
1

ε
− 1

)
+1.

(b) Case of lim
n→∞

Vn = 1

|Vn−1| < ε =⇒ | n
√
a−1| < ε =⇒ n

√
a−1 < ε =⇒ a

1
n < ε+1 =⇒ 1

n
ln(a) < ln(1+ε) =⇒ n >

ln(a)

ln(1 + ε)
.

So, N = E
(

ln(a)
ln(1+ε)

)
+ 1.

(c) Case of lim
n→∞

Wn = b

|Wn − b| < ε =⇒
∣∣∣∣(−1)n + bn

n+ 1
− b
∣∣∣∣ < ε =⇒

∣∣∣∣(−1)n − b
n+ 1

∣∣∣∣ < ε. (1)

we have

−1− b ≤ (−1)n − b ≤ 1− b =⇒ |(−1)n − b| ≤ max{| − 1− b|, |1− b|}

=⇒
{
|(−1)n − b| ≤ 1 + b, if b ≥ 0;
|(−1)n − b| ≤ 1− b if b < 0

=⇒ |(−1)n − b| ≤ 1 + |b| (2)

From the inequalities (1) and (2) we deduce that

1 + |b|
n+ 1

< ε =⇒ n+ 1 >
1 + |b|
ε

=⇒ n >
1 + |b|
ε
−1 =⇒ N = E

(
1 + |b|
ε
− 1

)
+ 1 = E

(
1 + |b|
ε

)
.

(d) Case of lim
n→∞

Tn = 0. For this sequence we distinct two cases namely: case where c = 0 and the

case where c ∈]− 1, 0[∪]0, 1[.

Case of c = 0 in this case the sequence is a constant and equal zero. So, |Tn| < ε⇐⇒ 0 < ε =⇒
N = 1.

Case of c 6= 0

|Tn − 0| < ε =⇒ |cn| < ε

=⇒ |c|n < ε

=⇒ n ln(|c|) < ln(ε)

=⇒ n >
ln(ε)

ln(|c|)

=⇒ N = E

(
ln(ε)

ln(|c|)

)
+ 1.

2. For each sequence determine the smallest value of N (see the below note), when ε = 0.001, and
a = b = 2 and c = 1/2.

Case of (Vn) for a = 2 and ε = 0.001: By replacing the fixed values of a and ε in the expression of
N , which we obtained in the first question, we will have:

N = E(693.4937) + 1 = 693 + 1 = 694.
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Case of (Wn) for b = 2 and ε = 0.001: By replacing the fixed values of b and ε in the expression of
N , which we obtained in the first question, we will have:

N = E(3000) = 3000.

Case of (Tn) for c = 1/2 and ε = 0.001 By replacing the fixed values of c and ε in the expression of
N , which we obtained in the first question, we will have:

N = E(9.9657) + 1 = 9 + 1 = 10.

3. Prove, using the definition of the limit of a real sequence, that the sequences Kn and Sn are divergent,
with

Kn =
−n2 + n+ 1

n+ 1
and Sn = ln(ln(ln(n))).

Note that lim
n→∞

Kn = −∞ and lim
n→∞

Sn = +∞.

(a) Case of the sequence Kn: Using the definition of the limit we will have

Kn < A =⇒ −n2 + n+ 1

n+ 1
< A

=⇒ (−n2 − 2n− 2) + (2n+ 2) + n

n+ 1
< A

=⇒ −(n+ 1) + 2 +
n

n+ 1
< A

=⇒ −(n+ 1) + 3 < A ( since
n

n+ 1
< 1)

=⇒ n > 2−A.
=⇒ N = E(2−A) + 1.

(b) Case of the sequence Sn: Before proceeding with the analysis of the divergence of the sequence
Sn, it is first necessary to determine the domain of this sequence. To do this, let’s define the
following functions:

Sn = ln(f(n)), f(n) = ln(g(n)) and g(n) = ln(n).

Sn is defined if and only if:

f(n) > 0 =⇒ ln(g(n)) > 0 =⇒ g(n) > 1 =⇒ ln(n) > 1 =⇒ n > e =⇒ n0 = E(e) + 1 = 3.

We conclude that Sn is defined on N/{0, 1, 2}. Using the definition of the limit we will have

Sn > A =⇒ ln(ln(ln(n))) > A =⇒ n > ee
eA

=⇒ N = max

{
3, ee

eA
}
.

Solution of the Exercise 4

In each of the following cases, determine the limit, if it exists.

• lim
n→+∞

Un = lim
n→+∞

n+(−1)n
n−(−1)n = lim

n→+∞

n
(
1+

(−1)n

n

)
n
(
1− (−1)n

n

) = lim
n→+∞

1+
(−1)n

n

1− (−1)n

n

= 1 (since lim
n→+∞

(−1)n
n = 0).
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• To calculate the limit, simply multiply and divide Un by the conjugate of
√
n+ a−

√
n+ b.

lim
n→+∞

Un = lim
n→+∞

(√
n+ a−

√
n+ b

)
= lim

n→+∞

(√
n+ a−

√
n+ b

) (√
n+ a+

√
n+ b

)
√
n+ a+

√
n+ b

= lim
n→+∞

n+ a− n− b
√
n+ a+

√
n+ b

= lim
n→+∞

a− b
√
n+ a+

√
n+ b

= 0.

• To determine the limit of Un in this case, we must compare a and b, where we distinguish three possible
cases:

Case of a = b > 0: As an − bn = an − an = 0 =⇒ ∀n ∈ N, Un = 0 then:

lim
n→+∞

Un = lim
n→+∞

an − bn

an + bn
= 0.

Case of a > b > 0: As, for a > b > 0 =⇒ b
a < 1 =⇒ lim

n→+∞

(
b
a

)n
= 0 then

lim
n→+∞

Un = lim
n→+∞

an − bn

an + bn
= lim

n→+∞

an
(

1−
(
b
a

)n)
an
(

1 +
(
b
a

)n) = lim
n→+∞

1−
(
b
a

)n
1 +

(
b
a

)n = 1

Case of 0 < a < b: As, for 0 < a < b =⇒ a
b < 1 =⇒ lim

n→+∞

(
b
a

)n
= 0 then

lim
n→+∞

Un = lim
n→+∞

an − bn

an + bn
= lim

n→+∞

bn
((

a
b

)n − 1
)

bn
((

a
b

)n
+ 1
) = lim

n→+∞

(
a
b

)n − 1(
a
b

)n
+ 1

= −1

• Un = 1− 1
a + 1

a2
− 1

a3
+ ....+ (−1)n

an , with a > 0.

It is easy to notice that Un is the sum of (n+ 1)th successive terms of a geometric sequence defined by
the first term which is worth 1 and its ration r = −1

a , therefore Un can be rewritten in the following
form

Un =
1−

(−1
a

)n+1

1 + 1
a

;

so,

lim
n→+∞

Un = lim
n→+∞

1−
(−1
a

)n+1

1 + 1
a

=

{
1

1+ 1
a

, if a ∈]1,+∞[;

6 ∃, if a ∈]0, 1].

• lim
n→+∞

Un = lim
n→+∞

n2−2n
3n = lim

n→+∞
n2

3n −
(
2
3

)n
= lim

n→+∞
n2

3n − lim
n→+∞

(
2
3

)n
= 0− 0 = 0.

• lim
n→+∞

Un = ea. Indeed, we have on one hand

lim
n→+∞

Un = lim
n→+∞

eln(Un) = e
lim

n→+∞
ln(Un)

.

On the other hand,

lim
n→+∞

ln(Un) = lim
n→+∞

ln
((

1 +
a

n

)n)
= lim

n→+∞
n ln

(
1 +

a

n

)
=?
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We put y = a
n . So, when n tend to infinity y tend to zero. Then

lim
n→+∞

ln(Un) = lim
y→0

a
ln(1 + y)

y
= a.

Consequently,

lim
n→+∞

Un = e
lim

n→+∞
ln(Un)

= ea.

• It is easy to notice that Un can be simplified as following:

Un =
n∑
k=1

1√
k
− 1√

k+1
=

n∑
k=1

1√
k
−

n∑
k=1

1√
k+1

= 1 +
n∑
k=2

1√
k
−

n∑
k=2

1√
k
− 1√

n+1
= 1− 1√

n+1
. Hence,

lim
n→+∞

Un = lim
n→+∞

1− 1√
n+ 1

= 0.

• we have, for any real kx

kx− 1 < E(kx) ≤ kx =⇒
n∑
k=1

kx− 1 <

n∑
k=1

E(kx) ≤
n∑
k=1

kx

=⇒ 2

n2

n∑
k=1

(kx− 1) <
2

n

n∑
k=1

E(kx) ≤ 2

n2

n∑
k=1

kx

=⇒ 2

n2

n∑
k=1

kx− 2

n
< Un ≤

2

n2

n∑
k=1

kx

And, as
n∑
k=1

kx = x
n∑
k=1

k = xn(n+1)
2 then after simplifications we get

x

(
n+ 1

n

)
− 2

n
< Un ≤ x

(
(n+ 1)

n

)
=⇒ lim

n→+∞
x

(
n+ 1

n

)
− 2

n
< lim

n→+∞
Un ≤ lim

n→+∞
x

(
(n+ 1)

n

)
=⇒ x < lim

n→+∞
Un ≤ x

=⇒ lim
n→+∞

Un = x

Solution of the Exercise 5

Let a > 0. We define the sequence {Un}n≥0 by U0 strictly positive real numbers and by the relation:

Un+1 =
1

2

(
Un +

a

Un

)
.

1. Show that for all n ≥ 1 we have Un ≥
√
a.

To show that Un >
√
a it is enough to show that for all n ∈ N∗ we have Un+1 −

√
a > 0.

On one hand,

Un+1 −
√
a =

1

2

(
Un +

a

Un

)
−
√
a

=
U2
n − 2

√
aUn + a

2Un

=
(Un −

√
a)

2

2Un
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On the other hand, from the expression of (Un), as U0 > 0 then we deduce that Un > 0, ∀n ∈ N .

Consequently,
(Un−

√
a)

2

2Un
= Un+1 −

√
a > 0 =⇒ Un+1 >

√
a. that means that:

∀n ∈ N∗, Un >
√
a.

2. Show that {Un}n≥1 is a decreasing sequence.

Un+1 − Un =
1

2

(
Un +

a

Un

)
− Un

=
U2
n + a− 2U2

n

2Un

=
a− U2

n

2Un
< 0 (as Un >

√
a)

Therefore, the sequence (Un) is a decreasing sequence.

3. Deduce that the sequence Un converges to
√
a.

From the previous questions, we have shown that Un is lower-bounded, moreover it is a decreasing
sequence then Un is a convergent sequence. Let’s note lim

n→+∞
Un = l.

lim
n→+∞

Un+1 = lim
n→+∞

1

2

(
Un +

a

Un

)
=⇒ l =

1

2

(
l +

a

l

)
=⇒ l2 = a

=⇒
{

+
√
a

−
√
a rejected, because Un > 0.

We conclude that lim
n→+∞

Un =
√
a.

Solution of the Exercise 6

1. Let 0 < a ≤ b. Prove the following inequalities:

(a) (√
a−
√
b
)2
≥ 0 =⇒ a− 2

√
ab+ b ≥ 0

=⇒
√
ab ≤ a+ b

2
.

(b)

a ≤ b =⇒
{
a+ a ≤ a+ b
b+ a ≤ b+ b

=⇒
{

2a ≤ a+ b
b+ a ≤ 2b

=⇒ 2a ≤ a+ b ≤ 2b

=⇒ a ≤ a+ b

2
≤ b
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(c)

0 < a ≤ b =⇒
{
a ∗ a ≤ a ∗ b
b ∗ a ≤ b ∗ b

=⇒
{
a2 ≤ ab
ab ≤ b2

=⇒ a2 ≤ ab ≤ b2

=⇒ a ≤
√
ab ≤ b

2. Let U0 and V0 be strictly positive real numbers with U0 < V0. We define two sequences Un and Vn as
follow:

Un+1 =
√
UnVn and Vn+1 =

Un + Vn
2

.

(a) Let’s use the proof by induction to show that Un < Vn for all n ∈ N.

i. For n = 0, the proposition is true because we have U0 < V0.

ii. Suppose the proposition is true for n, that is, Un < Vn.

iii. Let us now show that the proposition is true for n+ 1. As 0 < Un < Vn then from the first
inequality of the first question, it follows that

√
UnVn <

Un+Vn
2 , therefore Un+1 < Vn+1. This

means that the proposition is true for n+ 1.

We conclude that Un < Vn for all n ∈ N.

(b) Show that Vn is a decreasing sequence.

Since 0 < Un < Vn for any n, based on the right side of the second inequality of the first equation
we deduce that

Un + Vn
2

< Vn =⇒ Vn+1 < Vn.

By definition this means that (Vn) is a strictly decreasing sequence.

(c) Show that (Un) is an increasing sequence.

Since 0 < Un < Vn for any n, based on the left side of the third inequality of the first equation
we deduce that

Un <
√
UnVn =⇒ Un < Un+1.

By definition this means that (Un) is a strictly increasing sequence.

(d) Deduce that the sequences Un and Vn are convergent and have the same limit.

Before checking that the two sequences have the same limit, we must first check the existence of
their limits, that is to say check if the two sequences are convergent.

• The sequence (Vn) is a decreasing sequence and it’s bounded below (0 < Vn) then we conclude
that (Vn) is convergent. Let’s denote lim

n−→+∞
Vn = lv > 0.

• As Un < Vn for any n then Un < lv. So, the sequence (Un) is an increasing sequence and it’s
bounded above (Un < lv). As a result, (Un) is convergent. Let’s denote lim

n→+∞
Un = lu > 0.

Now let’s check that the two sequences have the same limit. As the two sequences are convergent
then the following statements are correct.{

lu =
√
lulv

lv = lu+lv
2

=⇒
{
l2u = lulv
2lv = lu + lv

=⇒
{
lu = lv( because lu 6= 0)
lv = lu

Consequently,

lim
n→+∞

Un = lim
n→+∞

Vn
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Solution of the Exercise 7

We consider the two sequences:

Un = 1 +
1

2!
+

1

3!
+ ...+

1

n!
and Vn = Un +

1

n!

Show that Un and Vn converge towards the same limit.
It should be noted that in this case it is insufficient to verify that the limit of the difference (respectively

ratio) of the two sequences equals zero (respectively 1). Because obtaining these last two results hardly
means that the two sequences are convergent.

Example: Let an and bn be two numerical sequences defined by: an = n and bn = (−1)n−n2

n+1
The sequences an and bn are divergent and carrying the limit of their difference is equal to 0.
Let’s check the monotonicity of the sequences.

Un+1 − un =

(
1 +

1

2!
+

1

3!
+ ...+

1

n!
+

1

(n+ 1)!

)
−
(

1 +
1

2!
+

1

3!
+ ...+

1

n!

)
=

1

(n+ 1)!
> 0

We conclude that (Un) is an increasing sequence.

Vn+1 − Vn =

(
Un+1 +

1

(n+ 1)!

)
−
(
Un +

1

n!

)
= (Un+1 − Un) +

(
1

(n+ 1)!
− 1

n!

)
=

1

n!

(
2

n+ 1
− 1

)
≤ 0.

We conclude that (Vn) is a decreasing sequence.

lim
n→+∞

Vn − Un = lim
n→+∞

Un +
1

n!
− Un = lim

n→+∞

1

n!
= 0.

Therefore, (Un) and (Vn) are adjacent sequences. As a result, they are convergent and have the same
limit.

Solution of the Exercise 8

I) If the approximate values of a real number x with precision 10−2, 10−3, ...., 10−n... are given by:

The sequence 1.23; 1.233; ....; 1.2333...3; ... can be rewritten as follows:

Un = 1.2 +
n∑
k=2

3 ∗ 10−k, for all n ≥ 2

= 1.2 + 3 ∗ 10−2

(
n−2∑
k=0

10−k

)

= 1.2 + 3 ∗ 10−2
(

1− 10−n+1

1− 10−1

)
Note that the exact value of x is nothing other than the limit of Un . So,

x = lim
n→+∞

Un = lim
n→+∞

1.2 + 3 ∗ 10−2
(

1− 10−n++1

1− 10−1

)
= 1.2 +

3 ∗ 10−2

9 ∗ 10−1
= 1.2 +

1

30
=

37

30
.

then give the exact value of x.
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II) Consider the following sequences, defined for n ∈ N∗:

Un = 1 +
1

2
+

1

3
+

1

4
+ ....+

1

n
and Vn = ln(n+ 1)− ln(n).

1. Calculate the limit of Sn =
∑n

i=1 Vi.

x = lim
n→+∞

Sn = x = lim
n→+∞

n∑
i=1

Vi = lim
n→+∞

ln(n+ 1)− ln(1) = +∞.

2. Show that, for all n ∈ N∗ we have Vn ≤ 1
n .

Let f(x) = ln(x) then f is continuous function on [n, n+ 1] and differentiable in ]n, n+ 1[ for any
n ∈ N . Mean value theorem (see chapter 3) says there exists a real number c ∈]n, n + 1[ such
that

f ′(c) =
f(n+ 1)− f(n)

(n+ 1)− n
=

ln(n+ 1)− ln(n)

(n+ 1)− n
= ln(n+ 1)− ln(n).

But we know that f ′(c) = (ln(c))′ = 1
c and from n < c < n+ 1 we have

1

n+ 1
<

1

c
<

1

n
=⇒ 1

n+ 1
< f ′(c) <

1

n
=⇒ 1

n+ 1
< ln(n+ 1)− ln(n) <

1

n
=⇒ Vn ≤

1

n
.

3. What can we conclude about the nature of Un?

From the second question we deduce that

Sn ≤ 1 +
1

2
+

1

3
+

1

4
+ ....+

1

n
=⇒ Sn ≤ Un =⇒ lim

n→+∞
Sn ≤ lim

n→+∞
Un =⇒ +∞ ≤ lim

n→+∞
Un.

This means that (Un) is a divergent sequence because lim
n→+∞

Un = +∞.
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