Université Mohamed Khider, Biskra

Faculté des Sc. Exactes et Sc. de la Nature et la Vie

Département de Mathématiques

Master 1: 2024/2025

Solution de l'exercice 5 de la Série N°3

Exercice 5. On veut tester l'égalité des variances de deux populations $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ et $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ au niveau de signification $\alpha = 0.05$. Un échantillon de taille 16 de X_1 donne une variance empirique $\tilde{s}_{1,obs}^2 = 7.62$ et un échantillon de taille 11 de X_2 donne une variance empirique $\tilde{s}_{2,obs}^2 = 3.96$. Conclure.

Solution. Il s'agit ici d'un test (bilatéral) de comparaison entre deux variances:

$$\begin{cases} H_0: & \sigma_1^2 = \sigma_2^2 \\ H_0: & \sigma_1^2 \neq \sigma_2^2 \end{cases}$$

Nous avons $\alpha = 0.05$, $n_1 = 16$, $n_2 = 11$, $\widetilde{s}_{1,obs}^2 = 7.62$ et $\widetilde{s}_{2,obs}^2 = 3.96$. La statistique de test (variable de décision) à utiliser est:

$$F(15,10) := \frac{\frac{16\widetilde{S}_1^2}{15}}{\frac{11\widetilde{S}_2^2}{10}} = \frac{\frac{16\widetilde{S}_1^2/\sigma_1^2}{15}}{\frac{11\widetilde{S}_2^2/\sigma_2^2}{10}},\tag{1}$$

qui suit la loi de Fisher à (15,10) degrés de liberté. A un seuil de signification $\alpha = 5\%$, la région critique associée est

$$W = \left\{ \left(x_1^{(1)}, ..., x_1^{(16)}; x_2^{(1)}, ..., x_2^{(11)} \right) \in \mathbb{R}^{27} \mid \frac{\frac{16\widetilde{S}_1^2}{15}}{\frac{11\widetilde{S}_2^2}{10}} \ge k_1 \text{ ou } \frac{\frac{16\widetilde{S}_1^2}{15}}{\frac{11\widetilde{S}_2^2}{10}} \le k_2 \right\},$$

où k_1 et k_2 sont deux constantes telles que

$$\mathbf{P}(F(15,10) > k_1) = \mathbf{P}(F(15,10) < k_2) = \alpha/2 = 0.025.$$

Donc k_1 est le quantile d'ordre 1 - 0.025 et k_2 est le quantile d'ordre 0.025 de la loi Fisher à (15, 10) degrés de liberté. De la table statistique de Fisher on obtient $c_1 = 2.85$. Pour k_2 on utilise l'idée suivante:

$$0.025 = \mathbf{P}(F(15, 10) \le k_2) = \mathbf{P}(F(10, 15) \ge 1/k_2).$$

De la table statistique de la loi de Fisher on obtient $1/k_2 = 2.54$, ce qui implique que $k_2 = 1/2.54 = 0.39$. La région critique est donc

$$\begin{split} W &= \left\{ \left(x_1^{(1)},...,x_1^{(16)};x_2^{(1)},...,x_2^{(11)}\right) \in \mathbb{R}^{27} \mid \\ &\qquad \qquad \frac{\frac{16\widetilde{S}_1^2}{15}}{\frac{11\widetilde{S}_2^2}{10}} \geq 2.85 \text{ ou } \frac{\frac{16\widetilde{S}_1^2}{15}}{\frac{11\widetilde{S}_2^2}{10}} \leq 0.39 \right\}, \end{split}$$

Nous avons

$$\frac{\frac{16}{15}\tilde{s}^2_{1,obs}}{\frac{11}{10}\tilde{s}^2_{2,obs}} = \frac{\frac{16}{15}7.62}{\frac{11}{10}3.96} = 1.8659.$$

Cette valeur est ni ≥ 2.94 ni ≤ 0.40 , donc on accepte l'égalité des deux variances.