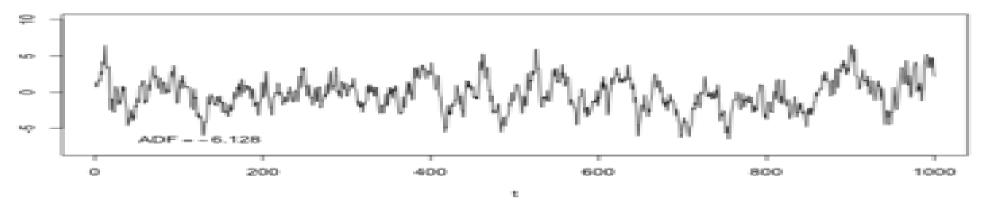
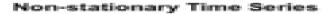
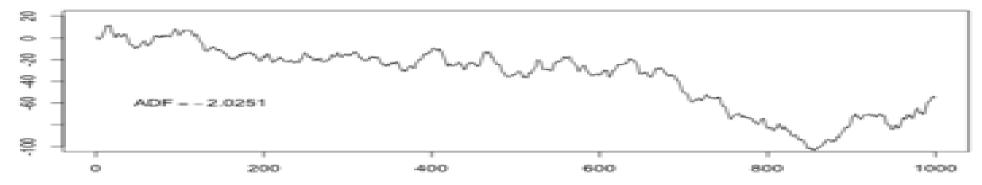
## Tests for Time Series Data

Prepared & Presented by:


Prof. GUECHARI Yasmina


#### Introduction


- There are several tests that are commonly used in time series analysis to assess various aspects of the data. The choice of test depends on the specific characteristics of the time series and the questions you want to answer.
- 1. Augmented Dickey-Fuller (ADF) Test: Used to test for stationarity
- 2. Granger Causality Test: Determines whether one time series can help predict another time series. Used to assess causality and directionality between variables in a multivariate time series.
- **3. Johansen Test:**Tests for cointegration among multiple time series variables. Used for assessing long-term relationships between variables in a multivariate time series.

- **Definition: The Augmented Dickey-Fuller (ADF)** test is a statistical test used to determine whether a univariate time series is stationary or not. **Stationarity is a fundamental assumption in time series analysis, as it implies that the statistical properties of the series do not change over time.**
- The ADF test specifically focuses on testing for the presence of a unit root in the time series data, which is a common cause of non-stationarity.

Stationary Time Series







- Hypotheses:
- . **Null Hypothesis** (*H*0): The time series has a unit root, indicating non-stationarity.
- . Alternative Hypothesis (*Ha*): The time series is stationary, indicating the absence of a unit root.

#### • Test Procedure:

- 1. Estimate the regression.
- 2. Compare the computed t-statistic with critical values from the Dickey-Fuller distribution to determine statistical significance.
- 3. If the absolute value of the computed t-statistic is greater than the critical value, reject the null hypothesis and conclude that the time series is stationary.
- 4. Otherwise, fail to reject the null hypothesis, indicating that the time series has a unit root and is non-stationary.

#### • Example of Test Procedure: stationarity test at level

Null Hypothesis: UNEMPLOYMENT\_RATE\_\_\_\_ has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=2)

|                                                       |                                                | t-Statistic                                      | Prob.* |
|-------------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fuller test<br>Test critical values: | statistic<br>1% level<br>5% level<br>10% level | -1.441726<br>-4.200056<br>-3.175352<br>-2.728985 | 0.5236 |

\*MacKinnon (1996) one-sided p-values. Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 11

According to the table the absolute value of the computed t-statistic is less than the critical value, so, accept the null hypothesis and conclude that the time series is not stationary (or has Unit root). In this case we go to the first difference

Null Hypothesis: D(UNEMPLOYMENT\_RATE\_\_\_\_) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=2)

|                                                         |                                                | t-Statistic                                      | Prob.* |
|---------------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fuller test s<br>Test critical values: | statistic<br>1% level<br>5% level<br>10% level | -5.004463<br>-4.121990<br>-3.144920<br>-2.713751 | 0.0025 |

\*MacKinnon (1996) one-sided p-values. Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 12

According to the table the absolute value of the computed t-statistic is Greater than the critical value, so, reject the null hypothesis and conclude that the time series is stationary.

- **Definition:** Cointegration tests are used to determine whether there exists a longrun relationship between two or more non-stationary time series variables.
- Before conducting cointegration tests, it's essential to check whether each individual time series is stationary or non-stationary.
- Johansen's test comes in two main forms, i.e., Trace tests and Maximum Eigenvalue test. In the context of cointegration tests, the terms "K" and " $K_0$ " are related to the number of cointegrating relationships in a set of time series data.

- Hypothesis
- $\begin{cases} H_0: there is no Cointegration (No Long run relationship between variables \\ H_a: there is a cointegration (there is a long run relationship between variables \end{cases}$
- Trace test
- H<sub>0</sub>: K = K<sub>0</sub>
- H<sub>a</sub>: K > K<sub>0</sub>
- Maximum Eigenvalue test
- H<sub>0</sub>: K = K<sub>0</sub>
- H<sub>a</sub>: K = K<sub>0</sub> + 1

 $K_0$  could be 'None, At most 1, At most 2......, K mean the number of coitegration relationship

Date: 04/20/24 Time: 11:37 Sample (adjusted): 2012 2023 Included observations: 12 after adjustments Trend assumption: Linear deterministic trend Series: UNEMPLOYMENT\_RATE\_\_\_\_ GDP Lags interval (in first differences): 1 to 1 \_\_\_\_ GDP\_GROWTH\_RATE INFL

Unrestricted Cointegration Rank Test (Trace)

| Hypothesized<br>No. of CE(s) | Eigenvalue | Trace<br>Statistic | 0.05<br>Critical Value | Prob.** |
|------------------------------|------------|--------------------|------------------------|---------|
| None *                       | 0.885172   | 43.22112           | 29.79707               | 0.0008  |
| At most 1 *                  | 0.595628   | 17.24925           | 15.49471               | 0.0269  |
| At most 2 *                  | 0.412581   | 6.384206           | 3.841465               | 0.0115  |

Trace test indicates 3 cointegrating eqn(s) at the 0.05 level \* denotes rejection of the hypothesis at the 0.05 level \*\*MacKinnon-Haug-Michelis (1999) p-values

According to the results, trace statistic value related to the hypothesis of (K=None, K=at most 1) and K=at most 2) long run relationship is greater than the critical value at 5% level of significance so, we reject the null hypothesis of (this is confirmed by the p-value too), indicates the existence of three long relationship between the variables.

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

| Hypothesized<br>No. of CE(s) | Eigenvalue | Max-Eigen<br>Statistic | 0.05<br>Critical Value | Prob.** |
|------------------------------|------------|------------------------|------------------------|---------|
| None *                       | 0.885172   | 25.97187               | 21.13162               | 0.0096  |
| At most 1                    | 0.595628   | 10.86504               | 14.26460               | 0.1611  |
| At most 2 *                  | 0.412581   | 6.384206               | 3.841465               | 0.0115  |

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level \* denotes rejection of the hypothesis at the 0.05 level \*\*MacKinnon-Haug-Michelis (1999) p-values

According to the results, Max-Eigen statistic related to the hypothesis of K= None long run relationship is greater than the critical value at 5% level of significance so, we reject the null hypothesis of no relationship (this is confirmed by the pvalue too), indicates the existence of one long run relationship between the variables.

Dependent Variable: UNEMPLOYMENT\_RATE\_\_\_\_ Method: Fully Modified Least Squares (FMOLS) Date: 04/20/24 Time: 11:42 Sample (adjusted): 2011 2023 Included observations: 13 after adjustments Cointegrating equation deterministics: C Long-run covariance estimate (Bartlett kernel, Newey-West fixed bandwidth = 3.0000)

| Variable                                                                   | Coefficient                                    | Std. Error                                | t-Statistic                       | Prob.                            |
|----------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|
| GDP_GROWTH_RATE<br>INFLATION_RATE<br>C                                     | -2.065876<br>1.688013<br>6.222981              | $0.506189 \\ 0.434823 \\ 1.574794$        | -4.081237<br>3.882073<br>3.951616 | 0.0022<br>0.0030<br>0.0027       |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Long-run variance | $0.360759 \\ 0.232910 \\ 0.866750 \\ 0.416730$ | Mean depend<br>S.D. depend<br>Sum squared | ent var                           | 4.446154<br>0.989626<br>7.512560 |

The cointegration equation is:

Unemp= 
$$6.223 + 1.688 Inf - 2.065 GDP$$

(0.4348) (0.506)

According to the equations above, both the inflation (*inf*) and GDP growth (GDP) have significant impact on the Unemployment (Unem). This mean when the inflation increase the unemployment increase too, and when the GDP increase the unemployment decrease/

#### 3. Granger causality test

- **Definition: The Granger causality test** is a statistical hypothesis test used to determine whether one time series variable Granger-causes another time series variable. Granger causality is a concept in econometrics named after Clive Granger, who introduced it in the 1960s.
- Granger Causality Test Procedure: Formulation of Hypotheses:
- Null Hypothesis (*H*0): The lagged values of one time series variable do not Granger-cause the other time series variable.
- Alternative Hypothesis (*Ha*): The lagged values of one time series variable Granger-cause the other time series variable.

#### 3. Granger causality test

#### • Decision Rule:

- **Comparison with Critical Value:** Compare the calculated F-statistic with the critical value from the F-distribution at a chosen significance level (e.g., 0.05 or 0.01).
- **Rejection of Null Hypothesis:** If the calculated F-statistic exceeds the critical value, reject the null hypothesis and conclude that there is Granger causality from the potential causal variable to the dependent variable.

#### 3. Granger causality test

#### • Interpretation:

•

- **Direction of Causality:** The direction of Granger causality is inferred based on the lagged variables included in the unrestricted model.
  - If the lagged values of *Xt* are significant predictors of *Yt*, it suggests that *Xt* Granger-causes *Yt*.
  - Conversely, if the lagged values of *Yt* are significant predictors of *Xt*, it suggests that *Yt* Granger-causes *Xt*.
- **Bidirectional Causality:** It is possible for both variables to Granger-cause each other, indicating bidirectional causality.

Pairwise Granger Causality Tests Date: 04/20/24 Time: 11:04 Sample: 2010 2023 Lags: 1

Null Hypothesis: Obs F-Statistic Prob.

# GDP\_GROWTH\_RATEdoes not Granger Cause UNEMPLOYMENT\_RATE135.662540.0386UNEMPLOYMENT\_RATEdoes not Granger Cause GDP\_GROWTH\_RATE0.212400.6548

Pairwise Granger Causality Tests Date: 04/20/24 Time: 11:08 Sample: 2010 2023 Lags: 1

| Null Hypothesis:                                       | Obs | F-Statistic | Prob.  |
|--------------------------------------------------------|-----|-------------|--------|
| INFLATION_RATEdoes not Granger Cause UNEMPLOYMENT_RATE | 13  | 0.15255     | 0.7043 |
| UNEMPLOYMENT_RATEdoes not Granger Cause INFLATION_RATE |     | 3.41382     | 0.0944 |

#### Pairwise Granger Causality Tests Date: 04/20/24 Time: 11:11 Sample: 2010 2023 Lags: 1

| Null Hypothesis:                                      | Obs | F-Statistic | Prob.  |
|-------------------------------------------------------|-----|-------------|--------|
| GDP_GROWTH_RATE does not Granger Cause INFLATION_RATE | 13  | 0.03048     | 0.8649 |
| INFLATION_RATE does not Granger Cause GDP_GROWTH_RATE |     | 1.66294     | 0.2262 |