Tutorial session 4: Linkage in diploid organisms

Exercise 1

- 1. What is the purpose of a three-point test cross?
- a) To calculate mutation rates.
- b) To determine the order and distances between three linked genes.
- c) To identify dominant and recessive alleles.
- d) To study unlinked genes.
- 2. In a three-point test cross, what does the deviation from a 1:1:1:1:1:1:1:1 ratio indicate?
- a) Random assortment of alleles.
- b) Mutation in one of the alleles.
- c) Linkage between genes.
- d) Equal likelihood of crossover events.
- 3. What are the genotypes with the highest frequency in a three-point test cross?
- a) Double recombinants.
- b) Single recombinants.
- c) Parental genotypes.
- d) Triple recombinants.
- 4. Which genotypes are used to determine the gene order in a three-point test cross?
- a) Parental genotypes.
- b) Single recombinant genotypes.
- c) Double recombinant genotypes.
- d) Any genotype with equal frequencies.
- 5. In a three-point test cross, how is the distance between two genes calculated?
- a) By dividing the number of double recombinants by total offspring.
- b) By multiplying the recombination frequencies of all genes.
- c) By summing single and double recombinants between the genes, dividing by total offspring, and multiplying by 100.
- d) By using only the parental genotypes.

Exercise 2

We are studying three linked genes in Drosophila: cn (eye color), vg (wing shape), and b (body color), with:

cn⁺: red-brown eye, cn: white eye

vg⁺: normal wings, vg: vestigial wings

b⁺: yellow body, b: black body

By crossing tri-hybrid Drosophila (cn⁺cn vg⁺ vg b⁺ b) with a homozygous recessive (, we obtain the following phenotypic results:

Phenotypes	Observed
(cn+ vg+ b+)	810
(cn vg b ⁺)	90
(cn ⁺ vg ⁺ b)	94
(cn ⁺ vg b)	4
(cn ⁺ vg b ⁺)	106
(cn vg b)	790
(cn vg ⁺ b ⁺)	6
(cn vg ⁺ b)	100

UMKB

Genetics

- 1. Identify the parental, single recombinant, and double recombinant phenotypes. Explain your reasoning.
- 2. Determine the gene order based on the double recombinant classes.
- 3. Calculate the distances between the genes cn and vg, cn and b, and vg and b in map units (cM).
- 4. Draw the genetic map showing the distances between each pair of genes.