Mohamed Khider University of Biskra Department of Material Sciences Module: Mathematics I

Academic Year: 2024/2025 The date : 24/11/2024

Guided Work Series Number 4 سلسلة الأعمال الموجهة رفم Vector Spaces الفضاءات الشعاعية

تمرین رقم – 1 – Exercise N°–

(1) نزود المجموعة ℝ بقانون التركيب الداخلي ★ المعرف كما بلي:

We provide the set \mathbb{R} with the internal composition law \bigstar defined as follows:

$$\forall x, y \in \mathbb{R} : x \bigstar y = xy + (x^2 - 1) (y^2 - 1)$$

أثبت أن \star نبديلي وليس نجميعي وأن 1 هو العنصر الحيادي. Prove that \star is commutative, not additive, and that 1 is the neutral element.

نزود المجموعة \mathbb{R}^*_+ بفانون النركبب الداخلي \star المعرف كما بلي: (2 We provide the set \mathbb{R}^*_+ with the internal composition law \star defined as follows:

$$\forall x, y \in \mathbb{R}^*_+ : x \bigstar y = \sqrt{x^2 + y^2}$$

Prove that \bigstar is commutative and additive and that 0 is the neutral element.

أثبت أنه لا بوجد في \mathbb{R}^*_+ أك عنصر نظير بالنسبة للعملية \star . Prove that there is no element in \mathbb{R}^*_+ that is an opposite with respect to the

تمرین رقم - 2 - °Exercise N

البِلَن
$$\mathbb{R} imes G = \mathbb{R}^*$$
 و \bigstar الفانون المعرف في G كما بلي: $G = \mathbb{R}^* imes \mathbb{R}$

أثدت أن (G,★) زمرة ليست تدريلية.

Let $G = \mathbb{R}^* \times \mathbb{R}$ and \bigstar be the law defined in G as follows:

$$(x,y) \bigstar (x',y') = (xx',xy'+y)$$

Prove that (G, \bigstar) is a non-commutative group.

operation \bigstar .

$$(G, \bigstar)$$
 أَثبت أن $(0, \bigstar)$ إ $(0, +\infty[\times \mathbb{R}, \bigstar)$ أَثبت أن $(2, \bigstar)$ (2) أَثبت أن (G, \bigstar)

Prove that $(]0, +\infty[\times\mathbb{R}, \bigstar)$ is a sub-group of (G, \bigstar)

نزود المجموعة $A = \mathbb{R} \times \mathbb{R}$ بالفانونېن المعرفېن کما بلې: We provide the set $A = \mathbb{R} \times \mathbb{R}$ with the two laws defined as follows:

$$(x,y) + (x',y') = (x + x', y + y')$$
 and $(x,y) * (x',y') = (xx', xy' + x'y)$

Prove that (A, +) is a commutative group. (1) أثبت أن (A, +) زمرة نبدبلبث. (1) Prove that (2) أثبت أن

 The law * is commutative.
 (A

 The law * is associative.
 (B

 Find the neutral element with respect to the law *
 (B

 Prove that (A, +, *) forms a commutative ring.
 (A, +, *) time (A, +, *) time (A, +, *)

تمرین رقم – Exercise N°- 4

- $u_1 = (1,2,3) \quad \bullet$
- $u_1 = (1, 2, 3) \text{ and } u_2 = (-1, 0, 1) \bullet$
- $u_1 = (1, 2, 0)$, $u_2 = (2, 1, 0)$ and $u_3 = (1, 0, 1)$.

تمرین رقم – Exercise N°- 5

أوجد الأشعة المولدة للفضاءات الجزئبة الذالبة من \mathbb{R}^3 :

Find the generated rays of the following subspaces of \mathbb{R}^3 :

 $F = \{(x, y, z) \in \mathbb{R}^3; x + 2y - z = 0\}$ •

$$G = \{(x, y, z) \in \mathbb{R}^3; \ x - y + z = 0 \ and \ 2x - y - z = 0\}$$
 •

Exercise N°- 6 - قمرین رقم

لبلن في \mathbb{R}^4 الأشعة

Let be in
$$\mathbb{R}^4$$
 the vectors

$$v_1 = (1, 2, 3, 4)$$
 and $v_2 = (1, -2, 3, -4).$

 $(x,1,y,1) \in Vect\{v_1,v_2\}$ • هل نستطبع إبجاد x و y جبث y جب

Can we find x and y where $(x, 1, y, 1) \in Vect\{v_1, v_2\}$?

 $(x,1,1,y) \in Vect\{v_1,v_2\}$ کېت y و y و x ابخاد y هل نسنطبع ابخاد \bullet

Can we find x and y where $(x, 1, 1, y) \in Vect\{v_1, v_2\}$?