Named Entity Recognition and Coreference Resolution in Natural Language Processing

Dr.Nourelhouda ZERARKA

Outline

- Introduction
- 2 Entity Types and Applications
- NER Approaches
- 4 Challenges & Solutions
- 5 Introduction to Coreference Resolution
- 6 Techniques of Coreference Resolution

What is Named Entity Recognition?

- Process of identifying and classifying named entities in text
- Named entities = real-world objects with proper names
- Example:
 - "[Apple] is planning to open a new store in [Paris] next [March]"
 - Apple = ORGANIZATION
 - Paris = LOCATION
 - March = DATE

Why is NER Important?

- Information Extraction: detecting essential elements in the text, such as names of people, places, dates, and more.
- Search Engine Optimization: like Local and Contextual Search Optimization
- Question Answering Systems: identify the main focus of a user's question by recognizing entities
- Content Recommendation: NER allows recommendation systems to build detailed user profiles based on the entities they engage with.

Historical Context

• 1990s: Rule-based systems

Early 2000s: Statistical methods (HMM, CRF)

• 2010s: Neural Networks

Present: Transformer-based models

Common Entity Types

- PERSON: Names of people
- ORGANIZATION: Companies, institutions
- LOCATION: Cities, countries, addresses
- DATE/TIME: Temporal expressions
- MONEY: Monetary values
- PERCENT: Percentage values

Interactive Example

Identify entities in the following text:

"[John Smith] joined [Microsoft] in [2020] as CEO. The company's headquarters in [Redmond], [Washington] reported [\$50 million] in profits last [quarter]."

PERSON: John Smith

ORG: Microsoft

DATE: 2020, quarter

LOC: Redmond, Washington

MONEY: \$50 million

Domain-Specific Entities

Biomedical

- GENE
- PROTEIN
- DISEASE
- DRUG

E-commerce

- PRODUCT
- BRAND
- CATEGORY
- PRICE

Computer science

- Software
- programming language
- hardware
- code

Rule-based Approach

- Uses pattern matching and dictionaries
- Pros:
 - Easy to implement
 - Interpretable results
 - No training data needed
- Cons:
 - Limited coverage
 - High maintenance
 - Rigid rules

Rule-based Example

```
import re
def find_dates(text):
    pattern = r' d\{1,2\}/d\{1,2\}/d\{4\}'
    dates = re.findall(pattern, text)
    return dates
def find_emails(text):
    pattern = r' b[A-Za-z0-9...%+-]+0[A-Za-z0-9.-]
+ \. [A-Z|a-z]{2,} \b'
    emails = re.findall(pattern, text)
    return emails
```

Machine Learning Approach

- Traditional ML algorithms (CRF, HMM, SVM)
- Features:
 - Word-level features
 - Context features
 - Part-of-speech tags
 - Gazetteer features
- Pros and Cons:
 - Better generalization than rules
 - Requires feature engineering
 - Needs annotated data

Deep Learning Approach

- Neural network architectures
 - BiLSTM-CRF
 - Transformer-based models
- Popular models:
 - BERT
 - RoBERTa
 - SpaCy
- Advantages:
 - No feature engineering
 - Better performance

Common Challenges

- Ambiguity: same name different entities
- Nested entities: named entities are contained within other named entities.
- Multi-word entities: Determining where multi-word entities start and end can be difficult.
- Domain adaptation: Different domains use specialized language and have unique entity types
- Out-of-vocabulary words: in social media, where slang, abbreviations, and new names emerge frequently

Ambiguity Examples

- "Washington"
 - PERSON: George Washington
 - LOCATION: Washington state
 - ORGANIZATION: Washington Post
- "Apple"
 - ORGANIZATION: Apple Inc.
 - PRODUCT: Apple iPhone
 - FOOD: apple fruit

What is Coreference Resolution?

- **Definition:** Finding all expressions that refer to the same entity in a text
- Example:

Sarah opened the door. She was tired after work. The young doctor needed rest.

• All blue text refers to the same entity (Sarah)

Why is it Important?

• Applications:

- Machine Translation: identify the gender or formality of entities in English and apply the correct pronouns in the target language.
- Information Extraction: IE system can correctly identify and connect entities involved in relationships, even if they are mentioned in different sentences.
- Question Answering: CR helps identify the correct antecedents, allowing the QA system to provide specific, accurate responses.
- Text Summarization: summarization models can recognize when information about an entity is repeated under different names or pronouns. This allows the system to reduce redundancy, producing a more concise summary.

Types of Coreference

- **Pronominal**: when pronouns (he," "she," "they," "it") are used to refer back to a previously mentioned entity in the text.
 - "The cat chased the mouse. It was fast."
- Nominal: noun phrases that refer to the same entity but do not use pronouns. It uses general nouns or descriptions.
 - "Tim Cook leads Apple. The man announced new products."
- Named Entity: different mentions of the named entities refer to the same thing across a text.
 - "Microsoft released Windows 11. The company wants to sweep the world of IT."

Rule-Based Approaches

Key Rules:

- Number Agreement
 - "The books... they..." (plural plural)
- Gender Agreement
 - "Mary... she..." (feminine feminine)
- Person Agreement
 - "I... me... my..." (1st person)
- Distance Heuristics (check for the closest noun phrase)
 - Sarah entered the room. She saw a book on the table. It looked interesting."

Feature-Based Methods

Syntactic Features

- Grammatical role: Gender, Number, Person.
- Parse tree distance: Comparing syntactic positions.

Semantic Features

- Named entity type: "person," "organization," "location"
- Semantic roles "doctor" and "she" are both human

Machine Learning Approaches

Common Models:

- Mention-Pair Model
 - Classifies pairs as coreferent or not (each possible mention pair is evaluated for coreference, then the pairs with the highest probabilities are linked.)
- Entity-Mention Model
 - group multiple mentions together under the assumption that they refer to the same entity,
- Neural Models
 - End-to-end learning
 - Contextual embeddings

Implementation Example

```
def resolve_coreference(text):
    # Step 1: Mention Detection
    mentions = detect_mentions(text)

# Step 2: Feature Extraction
    features = extract_features(mentions)

# Step 3: Classification
    pairs = create_mention_pairs(mentions)
    coreferent = classify_pairs(pairs, features)
```

Common Challenges

- World Knowledge Requirement
 - "The president met with his cabinet. The commander in chief..."
- Long-distance Dependencies
- Split Antecedents
 - "John met Mary. They went to dinner."
- Bridging Anaphora
 - "Sarah bought a new phone. The screen was already scratched"

Evaluation Metrics

- MUC (Message Understanding Conference)
 - Link-based metric
- B-CUBED
 - Mention-based metric
- CEAF
 - Entity-based metric
- CoNLL F1
 - Average of above metrics

Practical Example

Text Analysis:

John met Bill at his house. He offered him coffee.