جامعة محمد خيضر بسكرة كلية العلوم الدقيقة وعلوم الطبيعة والحياة قسم علوم المادة السنة الثالثة ليسانس فيزياء المواد مقياس: فيزياء الجسم الصلب 1

العمل التوجيهي رقم 02 إنعراج الأشعة X في البلورات

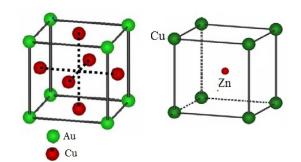
التمرين الأول

1. قارن بين شدة أشعة X النافذة عبر طبقة من الهواء وطبقة من معدن Ti سمك كل واحدة x=12 cm مستعينا بالجدول التالى:

الكتلة الحجمية (g/cm ³)	معامل الإمتصاص الكتلي (cm ² /g)	التركيز (%) معامل الإ		العنصر	
	8.5	75.5	N		
1.13×10^{-3}	12.7	23.2	О	الهواء	
	113	1.3	Ar		
4.32	204	100	Т	Γi	

 $I/I_0 pprox 10^{-3}$ الواردة حيث: X الكافية لامتصاص معظم أشعة X الواردة حيث: X المتصاص معظم أشعة X الواردة حيث: X

التمرين الثاني


باستعمال مصعد النحاس Cu لوحظ انعراج من أجل الزاوية 45. $^{\circ}$ 10 وباستعمال مصعد من المولبدان Mo لوحظ نفس الإنعراج (نفس المستوي البلوري) من أجل الزاوية $8.^{\circ}$ 4.

 $(\lambda_{K\alpha})_{Cu}=1.54~{
m A}^\circ$ علما أن طول موجة الإشعاعات $(\lambda_{K\alpha})_{Mo}=1.54~{
m A}^\circ$ علما أن طول موجة الإشعاعات التي يعطيها النحاس

التمرين الثالث

خلية التركيب البلوري للمركبين CuZn و Cu₃Au موضحة في الشكل المقابل. 1. ماهي شبكة برافي وإحداثيات الذرات المكونة للقاعدة لكلا المركبين.

2. أحسب معامل البنية لكلا المركبين.

التمرين الرابع

 $\lambda_{K\beta}=1.757\,A^\circ, \lambda_{K\alpha}=1.939\,A^\circ$ الطوال موجة أشعته المميزة تساوي: "Fe واستخدمت حزمة أشعة سينية من مصعد حديدي والموال موجة أشعته المميزة تساوي: $\lambda_{K}=1.896\,A^\circ$. $\lambda_{K}=1.896\,A^\circ$.

 $a=5.42\,A^\circ$ علما أن الحزمة النافذة استعملت لدراسة بلورة مكعبة (غير ماسية) ثابت شبكتها

- ماهو طول موجة الشعاع النافذ من المرشحة.
- 2. ماهي زاوية براغ θ_1 الموافقة للانعكاس (300).
 - 3. في الحقيقة لايظهر هذا الانعكاس، ماذا تستنتج؟
- 4. عند استعمال نفس الحزمة دون امرارها بالمرشح يظهر انعكاس عند الزاوية θ_1 ، فماهي قرائن المستويات المحدثة له.
 - 5. ماهو التركيب البلوري للبلورة المستعملة.

التمرين الخامس

أجريت تجربة انعراج ديباي- شرر لمسحوق مكعب التركيب البلوري، وكانت أقطار دوائر مخطط الانعراج D بالملمتر:

192.9	182	155.8	126.6	120	99	67.4	57.7	$D(\pm 0.05mm)$
-------	-----	-------	-------	-----	----	------	------	-----------------

طول موجة أشعة X المستخدمة يساوي $^{\circ}A$ 1.54 ومحيط حجرة ديباي mm

- أشر على المستويات المنعرجة واستنتج نوع الشبكة أحسب ثابتها.
- 2. استخرج عبارة دقة القياس لثابت الشبكة واستنتج الزوايا التي تعطي أفضل النتائج.