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Continuous assessment
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Exercise 1

1. Prove by induction that n® + 2n is divisible by 3 for every n € N*.

2. nis an odd natural number < n? is an odd natural number.

Indication : To prove equivalence, prove the left implication and the right implication
separately.

Exercise 2

Consider the following two complex numbers.
u=1+i and v=1+iV3
1. Determine the modulus of u and v.
2. Determine an argument of v and an argument of v.
3. Deduce the module and an argument for each of the cubic roots of u.

4. Determine the modulus and an argument of .

5. Deduce the values of

Good luck.
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Solution of the Exercise 1 ./ (04pts)
1. To show that the given assertion is true we must check the three following steps:

(a) Check that the proposition is true for n = ny.
(b) Assume that the proposition is true for any n.

(c) Check that the proposition is true for n + 1.

Note that a nonnegative integer number N is divisible by 3 if and only if

dk e N*, N = 3k.
So the proof consists of checking the existence of the natural number k.

P(n=1)?
For n = 1 we have n® + 2n = 1 x 3 = the proposition is true for n = 1.
(0.5pts)
P(n)?
Let’s assume that the proposition is true for any n i.e. (0.5pts)

for n € N*, 3k € N* such that n® + 2n = 3k

P(n+1)?
For n + 1 we have

(n+172+2n+1) = n*+3n>+3n+1+2n+2

(n® +2n) +3 (n*+n+1)

3k+3(n*+n+1) (from the assumption that P(n) is true)
3(n*+n+k+1)

= 3K

As n and k are € N* then &' = n? + n+ k + 1 € N*, consequently P(n + 1) is
true. (0.5pts)

From the above results we conclude that the following statement is always true.
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For every n € N* the quantity n® + 2n is divisible by 3. (0.5pts)
2. Before proceeding to demonstrate the equivalence, let’s recall that:

e A natural number can only be an odd number or an even number.

e We say that a natural number n is an odd number if there exists a natural
number k such that n = 2k + 1.

e We say that a natural number n is an even number if there exists a natural
number £ such that n = 2k.

=7

dkeN, n=2k+1

n? = (2k +1)?

n® =4k + 4k + 1

n? =2(2k* +2k) +1 =2k +1

as k' € N then n? is an odd number

nis an odd number

RN

So, the right implication is always true. (0.5pts)

—7
In this case, we seek to prove the following:

n? is an odd number = n is an odd number

It is difficult to prove this implication directly, so let us proceed on to the proof
by the contrapositive. That means we must prove that

2

n 1s not an odd number = 7 is not an odd number

In other words, we must show that:

n is an even number = n? is an even number (0.5pts)

nis an even number dk e N, n=2k
n® = (2k)?
n? = 4k*

n? = 2(2k%) = 2k’

as k' € N then n? is an even number

el

So, the left implication is always true. (0.5pts)

From the results of the proofing of the two implications we conclude that the fol-
lowing equivalence is always true.



n is an odd natural number < n? is an odd natural number. (0.5pts)

Solution of the Exercise 2 ./ (04pts)

1. The modulus of u and v:

lu| = V12 4+ 12 = V2 (0.5pts) and |v| =\ 12+ \/§2 = 2. (0.5pts)

2. The arguments of u and v:
We have

u:1+i:\/§<§+i g) =7 (cos(#) +isin(f)) .

This means that:

— = Z. (0.5pts)

{cos(@) =
sin(f) =

oSl

We have

v:1+i\/§:2<%+i\/7§) =1 (cos(f) +isin(6)) .

This means that:

{ cos(0) =

T

N
[\
S

3. Let’s z a complex number such that z = ¢/u.  From the above results, we can
rewrite u as follows: u = v/2¢i. T hen,

[y Ty = {2

arg(z})] = arg(u) 3arg(z)] = 5 +2km, with k€ Z

{\ZI = 2
—

NI

(0.5pts)
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+ %lmr, with k € Z
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So, to obtain the three cubic roots of u, we just need to take (for example) k €
{0, 1, ,2}. For this value, we obtain the following cubic roots.

Ju € {2%6%, 266l Q%ei%}. (0.5pts)



4. The modulus and argument of 2. We have,

u V2els

w=-—=— =
v 2e's 2
\/§ 1= 0
= —e'2 =v7¢
2
. { |w] — 2 (0.5pts)
arg(w)| = 75 (0.5pts)

5. The question has been eliminated.

Solution of the Exercise 3 Solution of the original exercise

In the original exercise the complex numbers u and v are given as follows:
u=1+i and v=—-1+iV3

1. The modulus of v and v:
| =VIEFZ=+v2 and |o]=\(~1)12+V3 =2.

2. The arguments of u and v: We have

u:1+i:\/§<§+i g) =7 (cos() + isin(f)) .

This means that:

:}0:

13

{ cos(f)
sin(6)

Sl

We have

v=—14+iV3=2 <_71+z ?) =7 (cos(f) +isin(f))

This means that:

{ o —



3. Let’s z a complex number such that z = Ju.

From the above results, we can rewrite u as follows: u = v/2¢%. Then,

B =l [P = vE=2
arg(z})] = arg(u) 3arg(z)] = 7§ +2km, with k € Z
arg(z)| = &+ 2k, withk € Z

So, to obtain the three cubic roots of u, we just need to take (for example) k €
{0, 1, ,2}. And in this case, we obtain the following cubic roots.

3

1 - 1. 1 17
Ju € {2561%, 26’1 256117#}.

4. The modulus and argument of *.

We have,
vy (T us s —OT y ﬁ
w = v _ 2i: — ﬁe’(z* ¥) = Qe” B = el — { [w] %,
v 2e'3 2 2 CI,Tg(’LU)| = 12

5. On one hand we have

u V2 i=sm 2 —br Lisi —br
- = — = — _— 1 _— .
” 5 e 5 cos 12 1 sin 12

On the other hand we have

1+ (1+4) (=1—iV3)

Uu
v —24i0V3 (—14+iV3) (=1 —iV/3)
-1+v3 —-1-3
- T4 T
V2 (143 -1-V3
= 7( 2\/5 “+1 2\/§ )
Consequently,
(o) - -
sin () = S = =4




The nth roots for a complex number

In this passage, we explain the general way of determining the nth roots of a complex
number. To do this, consider the two complex numbers u and z such that z = {/u = un
with n € N*.

First of all, let’s point out that the complex number u has n roots in this case.

To avoid tedious and complex calculations, when determining the n roots of u, it is
more judicious to use the exponential form of u and z rather than their Cartesian forms.
And, the steps to follow are as follows:

Step 1: Write z in its exponential form u = re®

Step 2: simplify the system

B =
arg(z™) = arg(z) + 2kw narg(z) = 6+ 2kw

Step 3: determine the set of the roots.

. . 1 0+2km
The exponential general form of a root of u is zp = rne’ =

At this level, to obtain the set, S, of all the roots, it is enough to replace k£ by n
successive integer values. For example, take £ =0:n — 1.
S = {20, 21, s Zn-1}-

Example 1
Let’s w = 1 + 4. find all values of v and w such that v = /u et u.

u:m:ﬁ(%ﬁﬂ-@) — 2 (eon (%) icos (7)) = v

{w — Ju . {W NG

arg(z?) = arg(z)+ 2kn 2arg(v) = §+2km

(I - 2!
e 7r
arg(v) = %

So, the set of the values of v is given by:

1,7 1,7 1 .z 1 .97
u € {24€Z8+0 T 2aels Tl ”} = {24628, 2ies }



w="7

[u . {|v|4 .

[w|
{ arg(z*) = arg(z) + 2km 4arg(v) = T+ 2kn

{ ] = 25
arg(v) = T

In this case, we have four roots so we take four values of £ If we set £k = 0: 3, then
the set of the values of v is given by:

;9 - 177 - 257

Liz L jom 1 ;17n 1 ;25w
w E 28e'l6, 28e'le, 28e'16, 28e"16 o,



