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Exercise 1

1. Prove by induction that n3 + 2n is divisible by 3 for every n ∈ N∗.

2. n is an odd natural number ⇔ n2 is an odd natural number.

Indication : To prove equivalence, prove the left implication and the right implication
separately.

Exercise 2

Consider the following two complex numbers.

u = 1 + i and v = 1 + i
√

3

1. Determine the modulus of u and v.

2. Determine an argument of u and an argument of v.

3. Deduce the module and an argument for each of the cubic roots of u.

4. Determine the modulus and an argument of u
v
.

5. Deduce the values of

cos

(
−5π

12

)
and sin

(
−5π

12

)
.

Good luck.
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Solution of the Exercise 1 ./ (04pts)

1. To show that the given assertion is true we must check the three following steps:

(a) Check that the proposition is true for n = n0.

(b) Assume that the proposition is true for any n.

(c) Check that the proposition is true for n+ 1.

Note that a nonnegative integer number N is divisible by 3 if and only if

∃k ∈ N∗, N = 3k.

So the proof consists of checking the existence of the natural number k.

P (n = 1)?
For n = 1 we have n3 + 2n = 1 × 3 =⇒ the proposition is true for n = 1.
(0.5pts)

P (n)?
Let’s assume that the proposition is true for any n i.e. (0.5pts)

for n ∈ N∗,∃k ∈ N∗ such that n3 + 2n = 3k

P (n+ 1)?
For n+ 1 we have

(n+ 1)3 + 2(n+ 1) = n3 + 3n2 + 3n+ 1 + 2n+ 2

=
(
n3 + 2n

)
+ 3

(
n2 + n+ 1

)
= 3k + 3

(
n2 + n+ 1

)
(from the assumption that P (n) is true)

= 3
(
n2 + n+ k + 1

)
= 3k′

As n and k are ∈ N∗ then k′ = n2 + n+ k + 1 ∈ N∗, consequently P (n+ 1) is
true. (0.5pts)

From the above results we conclude that the following statement is always true.
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For every n ∈ N∗ the quantity n3 + 2n is divisible by 3. (0.5pts)

2. Before proceeding to demonstrate the equivalence, let’s recall that:

• A natural number can only be an odd number or an even number.

• We say that a natural number n is an odd number if there exists a natural
number k such that n = 2k + 1.

• We say that a natural number n is an even number if there exists a natural
number k such that n = 2k.

=⇒?

nis an odd number =⇒ ∃k ∈ N, n = 2k + 1

=⇒ n2 = (2k + 1)2

=⇒ n2 = 4k2 + 4k + 1

=⇒ n2 = 2(2k2 + 2k) + 1 = 2k′ + 1

=⇒ as k′ ∈ N then n2 is an odd number

So, the right implication is always true. (0.5pts)

⇐=?
In this case, we seek to prove the following:

n2 is an odd number =⇒ n is an odd number

It is difficult to prove this implication directly, so let us proceed on to the proof
by the contrapositive. That means we must prove that

n is not an odd number =⇒ n2 is not an odd number

In other words, we must show that:

n is an even number =⇒ n2 is an even number (0.5pts)

nis an even number =⇒ ∃k ∈ N, n = 2k

=⇒ n2 = (2k)2

=⇒ n2 = 4k2

=⇒ n2 = 2(2k2) = 2k′

=⇒ as k′ ∈ N then n2 is an even number

So, the left implication is always true. (0.5pts)

From the results of the proofing of the two implications we conclude that the fol-
lowing equivalence is always true.
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n is an odd natural number ⇔ n2 is an odd natural number. (0.5pts)

Solution of the Exercise 2 ./ (04pts)

1. The modulus of u and v:

|u| =
√

12 + 12 =
√

2 (0.5pts) and |v| =
√

12 +
√

3
2

= 2. (0.5pts)

2. The arguments of u and v:

We have

u = 1 + i =
√

2

(√
2

2
+ i

√
2

2

)
= r (cos(θ) + i sin(θ)) .

This means that: {
cos(θ) =

√
2
2

sin(θ) =
√
2
2

=⇒ θ =
π

4
. (0.5pts)

We have

v = 1 + i
√

3 = 2

(
1

2
+ i

√
3

2

)
= r (cos(θ) + i sin(θ)) .

This means that: {
cos(θ) = 1

2

sin(θ) =
√
3
2

=⇒ θ =
π

3
. (0.5pts)

3. Let’s z a complex number such that z = 3
√
u. From the above results, we can

rewrite u as follows: u =
√

2ei
π
4 . Then,{

|z3| = |u|
arg(z3)| = arg(u)

=⇒
{
|z|3 =

√
2 = 2

1
2

3arg(z)| = π
4

+ 2kπ, with k ∈ Z

=⇒
{
|z| = 2

1
6

arg(z)| = π
12

+ 2
3
kπ, with k ∈ Z (0.5pts)

So, to obtain the three cubic roots of u, we just need to take (for example) k ∈
{0, 1, , 2}. For this value, we obtain the following cubic roots.

3
√
u ∈

{
2

1
6 ei

π
12 , 2

1
6 ei

3π
4 , 2

1
6 ei

17π
12

}
. (0.5pts)
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4. The modulus and argument of u
v
. We have,

w =
u

v
=

√
2ei

π
4

2ei
π
3

=

√
2

2
ei(

π
4
− π

3 )

=

√
2

2
ei

−π
12 = reiθ

=⇒
{
|w| =

√
2
2

(0.5pts)
arg(w)| = −π

12
(0.5pts)

.

5. The question has been eliminated.

Solution of the Exercise 3 Solution of the original exercise

In the original exercise the complex numbers u and v are given as follows:

u = 1 + i and v = −1 + i
√

3

1. The modulus of u and v:

|u| =
√

12 + 12 =
√

2 and |v| =
√

(−1)12 +
√

3
2

= 2.

2. The arguments of u and v: We have

u = 1 + i =
√

2

(√
2

2
+ i

√
2

2

)
= r (cos(θ) + i sin(θ)) .

This means that: {
cos(θ) =

√
2
2

sin(θ) =
√
2
2

=⇒ θ =
π

4
.

We have

v = −1 + i
√

3 = 2

(
−1

2
+ i

√
3

2

)
= r (cos(θ) + i sin(θ))

This means that: {
cos(θ) = −1

2

sin(θ) =
√
3
2

=⇒ θ =
2π

3
.
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3. Let’s z a complex number such that z = 3
√
u.

From the above results, we can rewrite u as follows: u =
√

2ei
π
4 . Then,{

|z3| = |u|
arg(z3)| = arg(u)

=⇒
{
|z|3 =

√
2 = 2

1
2

3arg(z)| = π
4

+ 2kπ, with k ∈ Z

=⇒
{
|z| = 2

1
6

arg(z)| = π
12

+ 2
3
kπ, with k ∈ Z

So, to obtain the three cubic roots of u, we just need to take (for example) k ∈
{0, 1, , 2}. And in this case, we obtain the following cubic roots.

3
√
u ∈

{
2

1
6 ei

π
12 , 2

1
6 ei

3π
4 , 2

1
6 ei

17π
12

}
.

4. The modulus and argument of u
v
.

We have,

w =
u

v
=

√
2ei

π
4

2ei
2π
3

=

√
2

2
ei(

π
4
− 2π

3 ) =

√
2

2
ei

−5π
12 = reiθ =⇒

{
|w| =

√
2
2

arg(w)| = −5π
12

.

5. On one hand we have

u

v
=

√
2

2
ei

−5π
12 =

√
2

2

(
cos

(
−5π

12

)
+ i sin

(
−5π

12

))
.

On the other hand we have

u

v
=

1 + i

−2 + i
√

3
=

(1 + i)

(−1 + i
√

3)

(−1− i
√

3)

(−1− i
√

3)

=
−1 +

√
3

4
+ i
−1−

√
3

4

=

√
2

2

(
−1 +

√
3

2
√

2
+ i
−1−

√
3

2
√

2

)
.

Consequently, {
cos
(−5π

12

)
= −1+

√
3

2
√
2

= −
√
2+
√
6

4

sin
(−5π

12

)
= −1+

√
3

2
√
2

= −
√
2−
√
6

4
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The nth roots for a complex number

In this passage, we explain the general way of determining the nth roots of a complex
number. To do this, consider the two complex numbers u and z such that z = n

√
u = u

1
n

with n ∈ N∗.
First of all, let’s point out that the complex number u has n roots in this case.
To avoid tedious and complex calculations, when determining the n roots of u, it is

more judicious to use the exponential form of u and z rather than their Cartesian forms.
And, the steps to follow are as follows:

Step 1: Write z in its exponential form u = reiθ

Step 2: simplify the system{
|zn| = |u|
arg(zn) = arg(z) + 2kπ

=⇒
{
|z|n = r
n arg(z) = θ + 2kπ

=⇒
{
|z| = r

1
n

arg(z) = θ+2kπ
n

Step 3: determine the set of the roots.

The exponential general form of a root of u is zk = r
1
n ei

θ+2kπ
n .

At this level, to obtain the set, S, of all the roots, it is enough to replace k by n
successive integer values. For example, take k = 0 : n− 1.

S = {z0, z1, ..., zn−1}.

Example 1

Let’s u = 1 + i. find all values of v and w such that v =
√
u et 4

√
u.

u = 1 + i =
√

2

(√
2

2
+ i

√
2

2

)
=
√

2
(

cos
(π

4

)
+ i cos

(π
4

))
=
√

2ei
π
4

v=? {
|v2| = |u|
arg(z2) = arg(z) + 2kπ

=⇒
{
|v|2 =

√
2

2 arg(v) = π
4

+ 2kπ

=⇒
{
|v| = 2

1
4

arg(v) = π
8

+ kπ

So, the set of the values of v is given by:

u ∈
{

2
1
4 ei

π
8
+0 π, 2

1
4 ei

π
8
+1 π

}
=
{

2
1
4 ei

π
8 , 2

1
4 ei

9π
8

}
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w=? {
|w4| = |u|
arg(z4) = arg(z) + 2kπ

=⇒
{
|v|4 =

√
2

4 arg(v) = π
4

+ 2kπ

=⇒
{
|v| = 2

1
8

arg(v) = π+8kπ
16

In this case, we have four roots so we take four values of k If we set k = 0 : 3, then
the set of the values of v is given by:

w ∈
{

2
1
8 ei

π
16 , 2

1
8 ei

9π
16 , 2

1
8 ei

17π
16 , 2

1
8 ei

25π
16

}
.
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