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o Lem (Ol (LB gaia el (Adaitl GLacIaT e (ausdlin o say ik Lat ulu
Ole gosmad! Golad! w yudd AlesS

This chapter is considered one of the most important sections that form the foundation of
linear algebra theories. It serves as a fundamental part for subsequent concepts like linear

applications, matrices, determinants, and is also a continuation of the previous lesson on sets.

Algebraic structures & paudl il 1.3

Internal composition 4wl ddead! 1.1.3

1.1.3 : Definition - «iJ jad

J?#®4¢géspxaEJE

Let E be a set such that E # () .
E b owyd 38 hy EXE Jo 5,2 &5 JF Gl s Gules of 1515 —ad 5 ogple oms

We call an internal composition law or internal composition every application defined on

EXE and taking its values in E.
3}:\3_«1:9 ...J_cAc*ZJ%AL_)ég\Q—OJ}apg

We usually symbolize it with the symbols: x, A, L ..., so we write, for example:
EXE —- FE
T
(z,y) = x*y

LGl o 8885 1) B b Gl s  Gulas ogfg

The operation  is Internal composition to E if the following is true:

Vm,yGE:x*yGE‘
E (5 6p8hue x Sals |1 Gulesd) o) Jois o &

that is, we say that the internal composition % is stable in E

1.1.3 : Example - Jkis
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9+8=17¢ F oI .E b &ulsts dules sl + ieg E = {0,1,6,9,8)} 6 gaseall ol
Let the set E = {0,1,6,9,8} from which + is not an internal composition in E. Because
9+8=17¢ FE

2.1.3 : Example - Jiis

(+) is an internal composition in R. R Guls-\y dules (4)

To prove that (+) is an internal composition in R, we need to show that for all a,b € R, their
sum a + b is also in R.

In other words, we need to demonstrate that the set of real numbers is closed under addition.
Since R represents the set of all real numbers, it includes both rational and irrational numbers.
Addition of two real numbers results in another real number, regardless of whether they are
rational or irrational. This property is a fundamental characteristic of real numbers, and it

follows that (+) is indeed an internal composition in R.

Group 8 ml  2.1.3

(e g b Lgh oS 3 ponadl ) (B Aegelly Aewlw¥! B podl Ad) Gua] B e JI1 pial
Aol g Olslindll g J gaomdl g Slaletles 16 ;¥ 53 pomall A jondl ol Oladiul g pgd Joi
321 O DLl 0is y Gl g clindll LB a8l godl Zelaiie dolall oo Catual 8 o 3 4 ylad
£ 32 O das 31 O 5318 BALASIw! 2 Jladll Lo 95 I) ABLd] Oy sldl ple (o3 Aaged! JSlunadl
Ol ot &y, 0ad vt Halal 1 guald Lide caaiay jolodl Sl gl (B9 Aan 3 y0 ) 9 Saled!

e A a0 Buelie O 9o
Groups are considered one of the fundamental and important algebraic structures in abstract
algebra. They are essential for understanding and grasping other abstract algebraic structures,
such as rings, fields, and vector spaces. Group theory is used in classifying sets of regularly
arranged points in space, making it crucial in the field of crystallography. Additionally, it plays
a significant role in exploring the relationship between the molecular structure of matter and
a specific group. Nowadays, it is challenging to envision any advancement in the theoretical

structure of molecules without the assistance of group theory.
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2.1.3 : Definition - wad yad

62, g pal) b 13 Galsly Sule®s b3gje B gate G Lad bpej NS (G, +) o Jgbs
oS
We say that (G, *) forms a group, where G is a set equipped with an internal operation *, if

the following four conditions are satisfied:
(x) Internal law S 0l (x) (1

Ve,ye G, xz*xyed.

(x) Associated law RECELS ople (x) (2

Ve,y,2 € G, (xxy)xz=x*(yx*2).

259 b pois dhdy oplo « (3

(x) A law that accepts a single neutral element

dee G, VreG,xxe=zx and exz=u,

FEach element of G has an opposite with respect to the law (*)

VeeG, 'eCG: zxx'=2'xzx=ec.

7! ja b ol jopg o —glaer oy o

a' is called the opposite of x and is represented by x~*.

If we add the condition b 4l o | )
Ve,y e G, xxy=yx*x,

we say that (G, ) forms a commutative group Gubyad o p0 de\\.) (G, *) o) Jgos

3.1.3 : Example - JL’C»

—

The set (R, +) forms a commutative group Gubyad o0 j IS (R, +) &8 gasenl!
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To prove that the set (R, +) forms a commutative group, we need to show that it satisfies the
four group axioms: closure, associativity, identity element, and inverse element.

Additionally, for commutativity, we need to demonstrate that the operation (4) is commutative.
Let’s go through each axiom:

Closure: For any two real numbers a and b, their sum a + b is also a real number, so closure
is satisfied.

Associativity: For all real numbers a, b, and ¢, the addition operation is associative, meaning
(a+b)+c=a+ (b+ c¢). This property holds in R.

Identity Element: There exists an identity element, denoted as 0, such that for any real
number a, a + 0 = 0 + a = a. In this case, the identity element is 0.

Inverse Element: For each real number a, there exists an inverse element, denoted as —a,
such that a + (—a) = (—a) + a = 0. This property holds because every real number has an
additive inverse in R.

Commutativity: The operation of addition is commutative in R, meaning that for any real
numbers ¢ and b, a + b = b + a.

Since all five properties are satisfied, the set (R, +) forms a commutative group.

g 4.1.3 : Example - J 30 )

—af ) e b3 jull Gulblad) o \apbill G gasn Z(E) g E # ) &S gateal! ol
Let the set E # 0 and £L(FE) be the set of bijective applications with the composition

operation

EXE —- FE
o:
(f,9) = foyg
Gl o) 60 \E&u (E,0) & gassal)
LThe set (E, o) forms a non-commutative group )
Let (G, ) be a group. By (Gx) S
3.1.3 : Definition - wid yad
Let H C G be a subgroup of G if: Zo\;\ngmdﬁ}}éijCGIﬂ
ec H ecH e

Unwversity of Mohamed Kheidar, Biskra 141 Brahim Brahimi-Jihane Abdelli



Algebraic structures &y pSd\ ) 1.3 Vector Spaces &as-\u)) e Linal)

For every x,y € H then zxy € H. .x*yEngx,yeH\l{d}g\m °

For every x € H then v~ ' € H. .x_leHU}beHd;\b,-‘\m °

The ring ddlad! 3.1.3

OF o (e ts Gudidae 9 jioliall (4o 4e gome (4o ATl @gs § i JSed oo Aalsd)
O O paie (Y (pledeall Al O s Las (A gemall B (5 paliade (lideall ois () 985
dols juaie L2 O 58T O o (Eald ) ALOYL Ae gamall G2 juaic Lyl oo 4e gamall

e gamall B i JSI LuSe yaie g Oldeall wsd
A rings is an important algebraic structure composed of a set of elements and two internal
operations. These operations must be closed within the set, meaning that the result of ap-
plying these operations to any two elements in the set must also be an element within the
set. Additionally, there should exist a neutral element for one of the operations and an inverse

element for each element in the set.

4.1.3 : Definition - «ad yad

tob Lo s 1) Gl JTiS W51 A g+ oabalS 1) onlasll bsgjel) (4, A, %) o Jgis

We say that (A, A, %) with the two internal law x and A forms a ring if the following is true:

(A, %) is a commutative group Gl opej (A, %) (1
A is associative Guess A (2

Ve,y,z € A (zAy)Az = zA(yAz).
* is distributive on A A e Gojg x (3
Ve,y,z € Az (yAz) = (x xy)Ax % 2).
If the condition is met b 4l gass 1s)

Jdee A: Vre A zxAe=elAx =rx,
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Soas-lg Gals (A, A %) &alsd) of Jeis

we say that the ring (A, A, *) is a unit ring.
If the condition is met b pal) gass 1s)

Ve,y e A: xAy=yAx,

Salyas GBS (A, A %) a8 o Jebs

we say that the ring (A, A, %) is a commutative ring.

5.1.3 : Example - JI.?A

Suasly dabas Gals JIGs (R, +,X) 68 gaseal)

The set (R, +,X) forms a unit commutative ring.

To prove that the set (R, 4, X) forms a unit commutative ring, we need to show that it satisfies

all the properties of a unit commutative ring:

1)

Closure under addition: For all real numbers a and b, a + b is a real number, which

satisfies closure under addition.

Closure under multiplication: For all real numbers a and b, a - b is a real number, which

satisfies closure under multiplication.

Associativity of addition and multiplication: Addition and multiplication of real numbers

are both associative operations, so this property holds.

Commutativity of addition and multiplication: Addition and multiplication of real num-

bers are both commutative operations, so this property holds.

Existence of additive identity (unit element): The real number 0 serves as the additive

identity since for all real numbers a, we have a + 0 =0+ a = a.

Existence of multiplicative identity (unit element): The real number 1 serves as the

multiplicative identity since for all real numbers a, we have a- 1 =1-a = a.

Existence of additive inverses: For every real number a, there exists an additive inverse

—a such that a + (—a) = (—a) +a = 0.
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8) Distributive property: The distributive property holds for multiplication over addition in

the set of real numbers, i.e., for all real numbers a, b, and ¢, a- (b+c¢) =a-b+a-c.

Since all these properties are satisfied by the set (R, +, X), it forms a unit commutative ring.

Field Jisd! gi muuspd! 4.1.3

(o A gazns (o 095 Al ABLnI| (pe Iidiad JAEnT 6 pin USia 58 Shudly 1 3 Jasd!
O coma Cldoall ois .0 piall g aandl tdcsls 31 Oldaall J3Y) lo (ds yad ae oliall
MW Joid Jgd> e Wisig do g pid) (po Ao gos uli g As gamedl J1s B pdlus O 4S5
o2 el 1) 93 Cali 4yl JSologhl 0 Jliess Wndall slue Wi g doewdd! slie ¥ g Ad ot

polatly Olusby 31 g 9 53 (e aiadl
A field in mathematics is a more complex algebraic structure than a ring. It consists of a set
of elements with at least two defined mathematical operations: addition and multiplication.
These operations must be closed within the set and meet a set of conditions. Examples of fields
include real numbers, rational numbers, and complex numbers, among others. These algebraic

structures play a fundamental role in various branches of mathematics and the sciences.

5.1.3 : Definition - «aJ yad

\53A9*0§f\§.\5-\ﬂ\ @M\)O;g,ﬂ\db_&gi\eﬂ}\ﬁﬂﬂﬁ%gwawW\ Q¢\ dsiu
:é_) \B . A .
We say that the set K where K # ¢ s a field endowed with the two internal laws x and A if

the following statements is true:
(K, %, A) is a ring. aas (K, x,A) (1

A Sl Gulesl) Sumidl Ll post) ¢ {e} zas wpej (Ko(3,4A) (2
(K_¢ey, A) is a group, where {e} is the neutral element with respect to the internal

operation A
If the condition holds. b i) gass 1s)

Ve,y e K: zAy=yAz,
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\g) K,*, \Q_\\\}J‘ u‘ dgm

We say that the structure (K, %, A) is a commutative field.

6.1.3 : Example - Jti

gu»@m»&ﬁ<@+ &S gaseal)

The set (Q,+,-) forms a commutative field.

To prove that the set (Q,+, -) forms a commutative field, we need to show two things:

(Q, +) is an abelian group (commutative group) under addition. (Q\ 0,-) is an abelian group

(commutative group) under multiplication, where Q\ 0 is the set of nonzero rational numbers.

Let’s prove these two properties:

1)

(Q, +) is an abelian group:

Closure: For any two rational numbers a and b in Q, a + b is also a rational number, so

closure under addition holds.

Associativity: Addition is associative for all rational numbers. That is, for any a, b, c €

Q, (a+b)+c=a+(b+c).

Identity Element: The identity element for addition is 0, as a +0 = 0 + a = a for all
a € Q.

Inverse Element: For every a € Q, the additive inverse (negative) of a is —a, and
a+ (—a)=(—a)+a=0.

Commutativity: Addition is commutative, meaning a +b = b+ a for all a,b € Q.

Therefore, (Q, +) is an abelian group.

(Q\0,-) is an abelian group:

Closure: For any two nonzero rational numbers a and b, a - b is also a nonzero rational

number, so closure under multiplication holds.

Associativity: Multiplication is associative for all nonzero rational numbers. That is,
for any a,b,c € Q\ 0, (a-b)-c=a-(b-c).
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Identity Element: The identity element for multiplication is 1, asa-1=1-a = a for
alla € Q\ 0.

Inverse Element: For every nonzero rational number a, the multiplicative inverse (re-
ciprocal) of a'is £, and a- + =2 .a =1.
Commutativity: Multiplication is commutative, meaning a-b = b-a for all a,b € Q)\ 0.

Therefore, (Q\ 0, -) is an Abelian group.

Since both conditions are satisfied, the set (Q, +, ) forms a commutative field.

Vector space oeladdl slaadl 2.3

£ 3ol Jion 431 3 claddl ol Olyad Lgrde id AN J guadll @l (o s joudl as e
07 Les ) Sl (518 ghuaall hdaindl Sl Ia| e desblin (o outay il Lol ‘,m.uyu

W el il g Ol pamall Jund (e Auisledl J guadll o g ot ALeSS ay
This part is one of the most important chapters upon which linear algebra theories are built.
It represents the fundamental part for what will follow in terms of concepts, such as linear
applications, matrices, determinants, etc. It also serves as a continuation of the lessons from

previous chapters, such as the chapter on sets and algebraic structures...

6.2.3 : Definition - «ad yad

tGbler 6390 ol 13 K Jbodd) Jasd) Mo o126 cbob W1 E £ 0 e gesall o Jois
We say that the set E # () is a vector space on the commutative field K if it has the
following:

i2as g EXE g 9 ;2a) eubidl & Guls )y dules gf (SHs —ad S oglo @
The law of an internal structure or internal operation, i.e. the application defined
from EXE towards E where:

EXE — F
(u,v) = u+wv

feas B ogss KXE go 0,20 dnbil) &1 6us )1 Sales of ()8 cad 5 oglo @
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The law of an external structure or external operation, i.e. the defined application
from KXE towards E where:

KXE — FE
(Nu) — X-u
which fulfills the following conditions: S bg i) gase L
Vu,v e E:u+v=v+u (1
Vu,v,w € E:u+ (v+w) = (u+v)+w. (2
There is a neutral element O € E where zas 0p € £ E3h> pois a%9 (3

Vue E:u+0g = u.

Every element u € E accepts an opposite element u' where

u+u =0g.
we denote the opposite element v’ by —u. (—u) o b v phsl) jop
Vue E:1-u=u, (5
VA peKYue E: X (u-u) = (M) - u. (6
Vu,v € ENAXEK: A (u+v)=X-u+\-v. (7
Vue EVApeK: (A+p) - u=Xu+p-u. (8

il Dl > g i Lo (G

From now on, and until the end of the chapter:

(LS Jas g2 d2alal Jis J5o @

Every field we encounter is a commutative field.

Oleolu (ot Jaomd juolic g dadl (owd ‘“_,.c\.gﬁld! sbadll jolic o
The elements of the vector space are called rays, and the elements of the field are called

scalars.
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0953 O (Saedl jul (po dis g 9 p gdaedl g ladd) le JBY) Lo Jalidn elad slad Jo o
Ll

-

Every vector space contains at least the zero ray, and it cannot be empty.
(i@t slae¥) Jas o) Sads Lolad slnd a3i B e Joas K =R ol 13) o
If K =R, we say that E is a real vector space (over the field of real numbers).

(At sae ¥ Jas o) Sl pelad slad 431 B e J a3 K=C Ol 13) o

If K = C, we say that E is an imaginary ray space (over the field of complex numbers).

~\

2 7.2.3 : Example - JLie

oieg B =R2 g K =R @os : &I R Jasd o 5,200\ o \R6)1 cbinad) R? oL}

Let R? be the vector space defined on the field R, that is: we set K ::R and E = R2%. Then
—Bg R 0o poss y g R s pais o 293 (1,y) gopl ® u € B poss IS

Fach element u € E is a pair (z,y) where x is an element of R and y is an element of R,

and we write
R*={(z,y) |z € R,y e R}.

() S ol R? (Jo 0,25 o
We define on R? the internal law denoted by (+) .
‘oieg B2 o o3 pois (¢',y) g (¢,y) o)
Let (x,y) and (x',y') be two elements of R?, then:

(z,y) + ()= (z+2",y+y).

(1) &N opI R? (Jo 5,25 o
We define on R? the external law denoted by () .
:Qnng,mQAgRme(x,y)Jf}\
Let (z,y) be an element of R? and \ be an element of R, then:

pois JU phill poislly .(0,0) pgaRell ¢ 12631 ¢© gasd) Suls ) Gulagl) Samidly & 38 poisd)
~(2.y) jo b Wl ol jap 1 LI (2, —y) i) ¢ (z.9)
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The neutral element for the internal additive operation is the null vector (0,0). The opposite

element of each element (x,y) is the element (—x, —y), which we may also denote by —(x,y).

A

. J

2 8.2.3 : Example - J 20 )

g K =R @05 1 oo pf) (2ub 318 1 gl (R Jasdl Jo o200 o\2al) ool R ST
' ' E=R"
Let R™ be the vector space defined on the field R, and let n be a natural number greater than
1. We set K=R and E =R".
._,_5.\.)/'9 R 9o polas x1,29,..., 2y Las (21, %2,...,2,) RN 15} D u € E pais J4
Fach element u € E is then the vector (x1,xs, ..., T,) where T1,Ts, ..., %, are elements of R,

and we write:

R" = {(21,22,...,%,) |z €R, i =1,2,..}.

(+) Q&) oI R™ (Jo 5,25 @
We define on R™ the internal law (+)
‘oo R™ 9o wyposs (2,...,20) 9 (z1,...,2,) ol

Let (xq,...,2,) and (2),...,2)) be two elements of R™, then:

(1, ..y xn) + (2, 2h) = (xy + 2, e, + 1),

() G oW R Jo 0,5 o

Unwversity of Mohamed Kheidar, Biskra 149 Brahim Brahimi-Jihane Abdelli



Vector space &\ cbod)l .2.3 Vector Spaces &as- )} Ve Linal)

We define on R™ the external law (-)
‘oieg R 9o poss A g R" go poss (1, ..y ,) ol

Let (xq,...,x,) be an element of R™ and A be an element of R, then:

A (21,0, x0) = (AT, 0y ATy).

JU pbill possilg (0,0, .., 0) pgaall ¢ 1261 ¢ gasd) Guls) ) ulasl) umilly & sbsd) pois!
(@1, 1) b bl jep 18 W (—a, .., —a,) poi) o (21,...,T,) pois

The neutral element for the internal additive process is the null vector (0,0,...,0). The
opposite element of each element (x1,...,x,) is the element (—x1, ..., —x,), which we
may also denote by the symbol —(z1, ..., x,).
C gV R Jasdl s €7 ¢ C cbind) +\65) olay Jgual) untiy
(ln the same way, the space C and C™ can be constructed on the field R or C. D
( 5 )

9.2.3 : Example - Jkie

R g5 R go 60,2 Jlgal) (o120 ¢ Lo
The vector space of functions defined from R to R . :
Ll W R o128 +boil) Guyiny W39 .f 1 R — R Jlgxll 6 gase F(R,R) o)
Let 7 (R,R) be the set of functions f : R — R. We provide it with the vector space

structure R as follows:

cb—‘,\“ \,9)\32.\\ RR 653«__9,.2) °
We define on # (R, R) the internal law (+)
toh W 5% [+ g aieg .F(R,R) ve 03 pois g g f oli
Let f and g be elements of ﬁ(R,]R). Then f + g is defined as follows:

Ve eR, (f+9)() = f(z)+g(2).

() S op Wl F(RR) o 5,25 o
We define on .7 (R,R) the external law(-) .
Loy WS oy & +113 5% Ging R go pois A g F(R,R) oo &l f oI
Let f be a function 6f ZF (R, R) and X an element of R, then we define the product of a
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scalar with function as follows:
VeeR, (A f)(z) =\ f(z).
Or simply write 35 sbly I o
(Af)(@) = Af(z).

t D Wef 60,21 o aell GBI Gy gasl) Gumidly Esls) poisd) b5
We define the neutral element with respect to the addition as the zero function as

follows:
Ve eR, f(x)=0.

07w ol W jop of oles

We can denote it as 0.zg ).

fob f R ¢85 R go 68,200} g 6IA) 60 F(R,R) go f &Il plsll poisll o
The opposite function of the function f in F (R, R) is the function g defined from R to
R as follows:

VeeR, g(x)=—f(z).

(=) o b gesd) Gamidly f sl jo o
We denote the opposite function of f for addition by (—f).
. J

Product of vector spaces dwsladdl Oisbadll sldy  1.2.3

7.2.3 : Definition - «ad yad

Jo o K Jasdl o suel®h lebod By Ey .. B, obdy Whas ¥ K ob
tob WS (1) g (4) oxals i) gaindesll E = E\XE,X - XE,
Let K be a commutative field and let Ey, Es, ..., E, be vector spaces on the field K. We
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define by E = E1XEyX .- - XE, the two internal operations (+) and () as follows:

V)\ € Kav(l'lal‘%--'vxn)v(ylay27"'7yn) € E:

1) (x17$2>"'7xn)+(y1>y27--'7yn> = (1131+y1,96’2+y2,---751?n+yn)>
)X (x1, 29, ) = (A2, Aoy A Ty,).

2126 oD cbadl) 13D b &>l paish) ogh o)asdl cbind omy (o \R ol imy (B, +, ) 35258
— TGy +bas JU Suslysdt potisl)
Then (E,+, ) represents a vector space called the product space. The neutral element in this

space is the ray of the neutral elements of each space, and we write:

0g = (0g,,08,,...,08,).

Calculus in vector spaces dssbadd! Sisbadd| o8 Qluwsd! 2.2.3

o
*

1.2.3 : Proposition - dead

Wy Gieg A €K gu e E glily K Jasd) o o2 sbad E gl
Let E be a vector space on the field K. Let u € E and A € K. Then, we have:

0-u=0g (1

A-0p=0p (2

(—1)-u=—u (3

u=0g where \-u=0 <= A=0 (4
Au=0g= (A=0g)V (u=0g) (5

u—v jo Jou+ (—v) ¢\RY jo pg & M oms ut (—v) 6,900 (u,v) 5 855 S Gulesd) (6
;6 volesd! by A cueg
The operation that attaches to (u,v) the image u + (—v) is called subtraction, and the
vector

u+ (—v) is denoted by uw — v. Then, we have the following properties:

Mu—v)=Au— v and (A — p)u = \u — pu.
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Partial vector spaces dw | dusladdl Olsladll 3.2.3

K badd) Jast e oelad slind (£, A, %) 28I S

Let the triple (E, A, ) be a vector space on the commutative field K.

‘ 8.2.3 : Definition - uﬁl)ﬁ\

:g\b,ﬁd\@éﬁﬂslEm\ép&\zﬁahbbolemFd\sd\,&q}J\&J@
We say that the non-empty part F' of E is a partial vector space of E if the following

conditions are satisfied:

(E,A) bl 6pe il 0o Gu3js o0 (F,A) (1
(F,A) is a subgroup of the commutative group (E,A).

NVAeK, Ve eF: MzeF (2
\. J

AL o paidt Jleatw! LSy i

Or we can use the following definition:

@ 9.2.3 : Definition - i.ﬁ.u.ﬁ\

E o0 6305 p& Suljs 6Sgase F g K Jasdl Jo (o186 cbod B T
Let E be a vector space over the field K and F a non-empty subset of E..
Lh b 885 13) E e (Sjs (SR s W00 W1 F oo Jgis
We say that F is a subspace of E if the following conditions hold:

Og € F OEEF(l

u—f—vEF\i;)Ju,vEFd!\l»‘\m (2
For every u,v € F we have u+v € F

AMueFlhdue FiggreK Y 3ol o (3
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For every A € K and every u € F' we have X\ -u € F. J
.
( )

10.2.3 : Example - Jkis

E oo G$j SR 105 g ¢ {05} 0lb E (1R sl JF Js-1 o (1

For every vector space E, {0g} is always a vector subspace of E.

D P[] n Lol ) YT R )5 ) Sumndsdl Yo lRal) oy 39 a8 ) S GO oo (2
| | (K o (%0 b
The set of polynomials with real coefficients whose degrees are less than or ;equal ton,
Py, [x] is a vector space on K |

n<maas P, (2] on S S\ bao ¢ P, [2] 1ol N ge n S U1 oo Bonlg
Lcmd we have ¥n € N* then: ;@m [m] is a vector subspace of P, [x] where n < m.

v,

( wor )

* e

1.2.3 : Corollary - 4

E oo 605 pé Suljs 6Sgase F g K Jasdl o o128 +bas B o18)
Let E be a vector space on the field K and F' a non-empty subset of E.

P JW b i) 88y o) (A B oe Sj (SR sbos Fogh I
To have F be a partial subspace of E, it is sufficient for the the following conditions hold:

"v’x,yéF,VA,uGK:Ax—i—uyGF.‘
. J

4 1.2.3 : Remark - KT&?){D

o SO o126 +bo5 Loy 0 ( hxs Jis o (o126 cbad ge i (o106 sboo S e
Jasdy

Every sub-vector space of a vector space on a commutative field is also a vector space

on the same field.

FEvery vector space on some commutative field is also a sub-vector space of itself on the

 same field.
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Linear combination dda&d| z Ml  4.2.3

é 10.2.3 : Definition - u&.l)ﬂ\
he - 7 % .
I\L\.\\J\(m%%M.Em%\ﬂmncvl,vg,...,vn 01369 ‘oo saen > 1 Q\oop..o.')

Let n > 1 be an integer, and let vy, vs,...,v, , n be a vector from E. Each ray of the form:

U= AUy + AUg + -+ + A0,

01,09, Uy GREY (RS e o (K Jash oo -l Mg, Ao, Ay 2as)
(where A\, Xo, ..., \, are ladders of t}ze field K) 1t is called linear mizing of rays
V1, V2, - ., Up.
cbﬁ\ rag CAAREEA P L 2RPT D SR VIS SR TP P |

\The scales A1, Ag, ..., N\, are called linear mixing coefficients. y

4 2.2.3 : Remark - 7\1&?){»\

.vlgeéghs-éb}ls—\sl;uog\dgbgu:kwlQ&agcnzlg\;\sg

(ifn =1, then u = \vy, and we say that u is in a linear relationship with v, .

J

2 11.2.3 : Example - JI."CD

Y (1,1,1) 9 (1, 1,0) o \=al) Jhs ¢ je (B (3,3,1) g \vill (R? cbaal) o (1
In the space R3, the ray (3, 3, 1) is a linear combination of the two rays (1,1,0) and

(1,1,1) because:

(3,3,1) = 2(1,1,0) + (1,1,1).

Asg ¥ oY o= (1,1) g6 go bhs Bpe i u = (2,1) R R? sbadd) b (2

(21) = (A ) T E3) 0= oy oy o s
In the space R?, the vector u = (2,1) is not linearly related to the vector vy = (1,1)

because there is no real A until u = lambdav, which is equivalent to (2,1) = (A, \).

L Gb\e 6620 Jlgs fi 9 fo oy ofo Ty couimisd Jlgxll sbos B = F(R,R) oI (3
Let E = Z(R,R) be the space of real functions, and let fo, f1, fo and f3 be functions
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defined by:
VeeR fo(z) =1, fi(z) =z, folz)=2" fa(z)=2’.

o 60 ,%al) f &I\ cieg
then the function f defined by

Ve eR f(z)=2°—22°>— Tz —4

oY fo, fi, for 5 Olgald (BS e D

it s a linear combination of the functions fo, fi, f2, f3 because
f=/fs—2fa = Tf1 —4fo.

ogonl) I8 .7 5(R) - \ogimall cbind b (4
In the matriz space Mo 3(R) let the matriz

A:<1 1 3)‘

0 -1 4

519 ) Wligle JF o i Jo (Lgisd = ogmaal JbS 3 jo Jlb o A 60l i
1Mo hoo

We can express matrix A as a linear combination of matrices that contain zeros in all

their components except one, for example:
1 00 010 001 000 0 0 0
A= + +3 — +4 .
0 00 000 000 010 0 01

Linear correlation and independence il Jialu¥lg bl y¥1  5.2.3

11.2.3 : Definition - w24 yad

K Gl Jasd) Jo B o \2ad) cbaid) polis ge {01, 02, v,} GBI o8 Jois 1 € N* ol
Bosd {Aitic, € K e balnd) go 6518 38 381 0o 018 15) 6ps Gles 185) o s Glasae 1051

Let n € N* be a natural number. We say that a family {vy,va, - ,v,} of elements in the
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vector space E over the field K is linearly independent or a free family if, for every family of

scalars {\i};<, € K, the following condition holds:
Av1 + Agvg + -+ -+ A\yu, = 0p
where all its coefficients are zero, i.e.: {\ (w9 105 Ye R0 e ug.z—oé-
M =0k A=0, - N\ =0k

REEL AT I U= Kc\:,\_\.\.\\ Jasd\ jo09 E \59-&{“!\ ¢\aal) o y¥3e Ok g Op
Op and Ok represent the zero of the vector space E and the zero of the commutative field K,

respectively.

2 12.2.3 : Example - J 20

626 R Jimbsdl o120\ cbowll o pisd

Let us consider in real vector space R3 the rays

1 1 2 2
a; = 1 , 2 = 2 , A3 = -1 ab: —
1 3 1 —1

ol g {ar, a2, a3} 6REY [0S o ¢0 b 2 120N oueg

Hence, the ray b is a linear mizture of the rays {ai, as,as} and we have:

2 1 1 2
b = -2 |1=(11-12|+] —1
—1 1 3 1
= a; — as + as.
. J

( 3.2.3 : Remark - :\Jé#)&n

b G e 151 Lhs lime o ol o (1280 sladll polis g GlSle Gol oo Jebs e
We say of any family of vector space elements, if they are not linearly independent,

that they are linearly dependent.
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S\ sbod & o Lbbs Slalue Gullsdl GO gaseal!

kThe empty set is linearly independent in any vector space.

J

2 13.2.3 : Example - J 30 )

The polynomials 398! _,\,:33
P(X)=1-X,P(X)=5+3X —2X? and P(X)=1+3X - X°

109 2, [X]5918) o\ pif sbod b ! e GBS Slos JIGS
form a linearly dependent set in the polynomial space Z,|X] because:
312 o1 B Mimd 031D 398} ) pid o YolRe Wuass 1)

If we examine the coefficients of these polynomials, we can observe that the equation

&5\2&“0@6&5&3\&»c\,ﬁ.\om&g_’fg\.\\\sy409cbca.:_q\93;9>.-9§kﬁg\nn\ogmﬁ§-d>-\ﬂ‘
\,mo\(g\»u

has a non-trivial solution, which means there exist constants a, b, and c, not all equal to

zero, that make this equation equal to zero.
3P (X) — P(X) + 2P5(X) = 0.
3928 ) pid sbas b Wb s po sqasdl ot pid ol i

LT herefore, the polynomials are linearly dependent in the polynomial space.

J

[ 14.2.3 : Example - J 2

Slaue Slasd 03® of B pid {cos,sin} Slesd! ol coamasdl Yol bbb F(R,R) ol
Let Z (R, R) be the space of real functions, and let the statement be {cos,sin}. To prove that

this set is linearly independent: We assume that

Acos+psin =0
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—

That equivalent to o &b
VzeR Acos(z)+ psin(z) = 0.

A =050 o gluoll 03® 2 = 0 I8 oo
For x = 0 these equations give us: A = 0.
Ahs Slatwe {cos,sin} &lesh o) &T =0 s v =T 38§ g
For x = % it gives us = 0. That is, the set {cos,sin} is linearly independent.

;S Sulial) GoNRN Ly s o5 s & pe {cos?, sin? 1} Slasdt ¢ & 51 Gus b oo
On the other hand, the set {cos,sin? 1} is linearly related because we have the following

trigonometric relationship:
Ve € R: cos(x)® +sin(z)? — 1 =0.

o) 2as Gegare p B ) ¢l Jelge L

Here, all the linear combination factors are non-zero because we have:

M=1,d=1M\=—1.
- J

e )

* e

2 2.2.3 : Corollary - 4

K L) Jasd) Jo B o126 sbodll polis o {0105, ,v,} 61518 o8 Jois n € N* T
1% (120 GogaRe WIS ol (A}, € K o bioludl oo S1e = avg 15) hhs S po 95

Let n € N* we say about the family {vy,ve, - ,v,} of vector space elements E on The

commutative field K is linearly dependent if there exists a family of scalers {)‘i}ign € K that

are not all null together, check:

=1

. J

( &
15.2.3 : Example - J 20 )
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From the previous ezample notice that the vectors et o B Y ol JBad) oo
1 1 2 2
a) = 1 , 2 = 2 , A3 = -1 7b: =2
1 3 1 —1
linearly dependent Lbs &S pe

al—a2+a3—b:OR3.

S0 \;\

El/\l = 1,/\2 = —1,)\3 = ]_,/\4 =—1: /\1&1 -+ )\2@2 + /\3@3 -+ )\4[) = ORS.

LNOt all are zero together. \Ro Gwgie QIS Mmb

The base or basis wkw¥!| ¢f 3dsldll 6.2.3

St O 5S0 beie B peso Aedi g Olacdal Lgt g lasdl ot (2 guwlul p sgan oo Suclall
(W gguu g Logd yisal IS sLadll 108 LB juoliall mgd o Juied SoiSen (oeladdl sladll 5ucld
W ggun OOolaatl Clws g Adaddl OO gt Jie dalitee Gldec sl ya) Loai SoiSen

Bueldl sl alusTwls
A basis is a fundamental concept in linear algebra and holds significant applications and im-
portance. When you have a basis for a vector space, you can represent and understand the
elements in that space more comprehensively and easily. You can also perform various oper-

ations, such as linear transformations and coefficient calculations, with ease using this basis.

12.2.3 : Definition - wid yad

590 alas W1 {v1, -+, 0.} Blasd) oo Jois B (SRl sbodl) oo 6R&1 w1, v, o
By vr,- 0, 626 o B e Wb Jo 3L F o 2126 JF o 1) F o 1%6d - gl
Let vy, - -+ , v, be rays from the vector space E, we say of the set {vy,--- ,v,} that it is a

generating set for the vector space E if every ray of E can be expressed as a linear
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combination of the rays vy, --- ,v,. We write:
Yoe B, d\,... . MeK: v= v+ -+ A\,

S SR cLaal) peany dls e LB ol sxdge {vr, L0, ) Glasdt o Ly JeBs
t oW 13) koog 13} gl
We also say that the set {vy,--- ,v,} generates the space E. This is also associated with the

concept of the span generator if and only if:

E =Vect(vy, - ,v,).

2 16.2.3 : Example - JL’]’.D
Take, for example, the following rays S 3y a6 Y4 Jow o \Is

vlz<é>,v2:<g> and v3:<§> of E=R3.

TR om0 = (1) gl 3¢ GRS Jbalge {un, ) Gas

The set {vy,v2,v3} is generating R3 because each ray v = (g) from R® writes

(£)=={g)+u{d)+=(1)-

Here the factors are D Jolg! LD
Al =T, A =Y, A3 = 2.
. J
r A

17.2.3 : Example - J

Let the following rays be SN &2h \;J:!
v = (i) , Uy = (é) of F = R3.

S sbadl) oY v = (1) eleadl W RO oidge les JIES Y {ur,vn) 6209
Vect(vy,ve)

The rays {vi,vo} do not form a generative set for R3. For example, the vector v = (g) does
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not belong to the vector space Vect(vy, vy).
by | o Ly 0 = Ayvp + Agvy Las A, Ay € R 189 —boud b ol 1316
If it is true, we will find A\, Ay € R where v = A\jv1 + Aava. Who also writes:

(3) =2 (1) +2()

it gives us the following linear equations: Sl Gulasdt Glesd) sy
/\1 —|— /\2 - 0
A 2N =
A1 +3 = 0
which has no solution. A B gnd
. i,
r A

18.2.3 : Example - J

las deg Suinas) o Yo\Rall Vs Gabyasd) < 1 b a0 g0 39asl ot pif bid 22, [X] ol
P,1X] \oal) 630 Slas JLas {1, X, X2+ X7} sqasdl o pid
Let 2,[X] be the real vector space of polynomials of degree < n with real coefficients. Then,

Ghe polynomial set {1, X, X?-.. X"} forms a generating set for the space P,[X]. )

.

2.2.3 : Proposition - dugad

U PICAPXS \Jo;\ DI = {v},vh,- - ,v;} aing .E 3 oMo &les F = {v1, 02, ,0p} JS:S

T alasdl b B8 tje 0l O T g o126 S 5 1) bibg 13) IS
Let F = {v1,vq, - ,0,} be a ge;zerc;tive set of E. Hence &' = {v’l,vé, e ,vé} is also a
generative set of E if and only if every vector of F' is written as a linear mixture in the set
F.

13.2.3 : Definition - «ad yad

) B sbodl) wle) 3 B g B = (01, 0n, ..., v,) dlasd! of Jgis K Jo 0\R6 sbiod B oLy

. o\
Let E be a vector space on K. We say that the set B = (v1,vs,...,v,) of E forms a basis for
the space E if:
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B is a generating set for E. E Jodee et B (1
B is a linear independent set. L Slolwe &des- B (2
J
r

1.2.3 : Theorem - :\g.).hp

—

B 12 sboal) wlel B = (v1,v2, ..., v,) ol
Let B = (v1,vs,...,v,) be a basis of the vector.space E.
<ol s 1B b gosall polis (o (B8 g jof b9 0ol I o v € B glns of
S foas b Ao A €K
Fach vector v € E is written as a single linear combination in the elements of the set B.

That s, there are single scalers Ay, ..., \, € K where:

v = A0 + AUg + -+ ApUp.
L J

4.2.3 : Remark - 7\1&?)&\

B oW o v eloih) o Was) ond (Ary..o, A) (1

(A, ..., An) are called the coordinates of v in the basis B.
The application of form JT.\”\J\ oe bl (2
b K* — E

<)\1;)\2;---7>\n) — /\1’01 —|—)\2’02 =+ .. +)\nvn

B (o \2a) il g8 K o 1%0) sLadll oo Jlis B

Jt s a bijection from the vector space K™ to the vector space E.

Dimension of a vector space g&lad sbad “ay 7.2.3

liaall s Lgie O 6550 L1 Aue ,all (slas¥l i) Oleladd) sue I) yodes Zad¥) sLadll L3 dad
Cludls 3 a3 8 Ley (OLBLaudl (1o 42 5300 AL gams o2 Lags Lo sgin daddl O sSs O (ySan
el jatl g
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The dimension in vector space refers to the number of subspaces (or dimensions) that compose
this space. Dimension can be an important concept in various contexts, including mathematics

and physics.

I (B ¥ 51) a1 (10 Ao garme plasiuly ooladll sLiadll el (S (il 11 Glead! b
Aoy ewla™I A a¥ sue I o Bleadl s o bu.m slaall 10 o2 dadd (7 Jubied 3
Omelad cdlaly (2D) ALEN sladll (Jled) Jaiw Ao o b IS sladll b Aadd G Juield

Arwlal Aadi O cdlay (3D) AN slindll Ledcn (Aol Sl (porwlud
In a mathematical context, a vector space can be represented using a set of basis vectors (or
rays) that allows unique representation of any point in that space. Dimension in this context
indicates the number of fundamental rays required to uniquely represent any point in the space.
For example, a two-dimensional space (2D) requires two basis rays to represent a point, while

a three-dimensional space (3D) requires three basis rays.

Gl Aalinall SLALIY duie 3] pedn oeladd! sliadll o3 dadl dudigll p gle g sl juall 2
o2 &y alaa¥W) A slaal B 3, (Jlied) o Lo (an £ Led &y O (Sa

Alasi WM Lgaad (LU 9 (Aalidne Clalsd) &S
In physics and engineering, dimension in vector space refers to the number of different directions
in which a particular object can move. For example, a ball in three-dimensional space can move

in three different directions, and thus, it has three dimensions.

Ae 5o Ao game B I gLl g pailainll mgd g Sl Lewlud (0950 Loladll sLiadll L3 dad
Acelall g Aol 3 OELet (o
The dimension in vector space is fundamental for analyzing and understanding properties and

behaviors in various mathematical and scientific contexts.

14.2.3 : Definition - w24 yad

).R)ggEcg—\Rnd\;\JQﬂ\u\plao\xﬂ‘wnmaﬂgan\m\Eé\R‘mﬂﬁ Loall u\;‘g\
.,.dbgosm

If the vector space E has a basis B with a finite number of elements n, then the vector space
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E has a finite dimension, and we write:

dim(E) = Card(B) = n.

5.2.3 : Remark - %){D

-dim({0}) = 0 & pg120 12 93 {0} pgaall ¢ il

The zero space {0} has a zero dimension, i.e. dim({0}) = 0. )
2 19.2.3 : Example - J 30 )
The canonical basis for the space R? is: ‘D R? ¢Laoall @93\91\ sl i (1
1 0
o) 0]
Hence the dimension of space R? is 2. 2 o R? cLod\ a2 e Y
The vectors &6 Y (2

(00)

polil sae wis Jo Lgisy ool ST R? I el & g R? sboal) win Loyt Jlis
It also forms the basis of the space R?, and any other basis of the space R? contains

the same number of elements.

POis 1 Leva (e1, 69, ,€,) o ol J< US! n A 93 K" c\Laal) Gele dway (3
In general, the space K™ has n dimensions because each basis (e, e, -+ ,e,) contains

n elements.

n+1 Lo A (1, X, X2 - X" o® 2,[X] cbod) wlnl ¥ (dim 2,[X] = n+1) (4
pois
(dim £, [X] = n + 1) because the basis of the space P,[X] is (1, X, X?,--- , X™) which

Gontazns n+ 1 elements. y
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2 2.2.3 : Theorem - %)Jﬂp
oM 1 cdial) A 93 S\ s bos (o
In a vector space with finite dimension n, we have:
FEach linearly independent set has a mazximum of n elements,
coolul (B pose 7 oo Gogle LhS Glkiue Slos IS
Every linearly independent set consisting of n elements is a basis,
WoY) o pois n ge Gigle B 6490 Slos IS @
Every generative set is composed of at least n elements,
wm‘@&,wnwmgboﬂ%wd; °
FEvery generated set consisting of n elements is a basis.
\. J

( 15.2.3 : Definition - t.ﬁl).\'.a

oNg il SR bidl) 12 6= dlot S o

\We call the range of a set of rays, the dimension of the vector space they generate. )

4 6.2.3 : Remark - 7\1&?){»\

The following observations are easy consequences of the previous theorem:

n g8 Jo o126 n e Gigle 6201 Glas &5, e
The range of a set consisting of n rays, at most is n.
s Slime Gletd) 03® 31 13) bitog 13} 1 (B 2126 1 oo Gigle 6261 Gles Gu5;
The range of a ray system consisting of n rays is n if and only if this system is linearly

independent.

boal) Wole§ JT&S Slesd) 1B w51 13) Lidg 13) 1 (B 126 n ue dige 6261 Slas &, @
oalg ) o\l

The range of a ray system consisting of n rays is n if and only if this system forms the
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Lbasis of the vector space it generates. J

Direct sum kel ¢ gomed! 8.2.3

A Aplaadl 1) 35LAM Glaidl puadly Glusls 1 o8 i mllaas 32 >dlell ¢ gemmell
Orbgricin (slind ot Ol 18] Legion 3140 O 90 (aline (e 93 (o (uibind (o pead
g somall owd 1Sl Anlue LAY Las Logaed SiSon ot jo (msliad (Jlied) S Sle)

- uladt
The direct sum is a term used in mathematics and linear algebra to refer to the operation that
combines two distinct types of spaces without any overlap between them. If you have two finite
spaces (for example, two subspaces), you can merge them together to create a larger space

known as the direct sum.

Aals Jla (980 Cu Oludly J1 g Gladdl ol (2 liae (950 rdbead! ¢ goamad! alusiw
Alas¥ w6 9T Aalie A 99 Ol lue ot
The use of the direct sum is valuable in linear algebra and mathematics when there is a need

to combine different types of spaces or to expand dimensions.

16.2.3 : Definition - wad yad

E oo op8 s ops 26 03bad G g F ol
Let F' and G be two sub-vector spaces of E.
oS 1260) 05008 @ goseo ans G oa poiS v g F oo poi® 1 Las utv polis et 6 gotee
.__;Ec».eg F 4G ppb ol jopg .G g F ondpsd)
The set of all elements u + v where u is an element of F' and v is an element of G is called

the sum of the vector subspaces F' and G. We denote it with F' + G. Then we write:

F+G={u+v|ueFveG}
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F+G

J

.

3.2.3 : Proposition - dugad

olp E oo 01 i ons R 02306 G g F oy
Let F' and G be two sub-vector spaces of E. Then:

F + G is a sub-vector space of E. Eoe Spr S boo [+ G (1

G g F wdg ouds b Lo i &R0 sbad 51 ¢ F+ G (2

F + G is the minimal sub-vector space that simultaneously contains F and G.

@ 17.2.3 : Definition - G.L)N’.ﬁN

il o jap B b pilia go 3 G g F o) Jgi B oo onij ons 128 035100 G g F o)

' . W FOG=E
Let F' and G be two sub-vector spaces of E. We say that F' and G are in direct sum in E,
which we denote by F & G = E if:

FﬂG:{OE} ®

F+G=FE e

\. J

L 8 OMalsle OLd jo Olelad Olebad G 9 F o1 J9ad pals pe o8 G 9 F Ol 1)

If F' and G are in direct sum, we say that F' and G are two complementary sub-vector spaces
in F.
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4.2.3 : Proposition - degad

Fun,mﬂowgébr\b.—dbl?wiwd!u\g\glbbghlEcou}laKAGgFu‘Jp)
G oe poisq
We say that F' and G are complementary in E if and only if each element of E is written in

as a unique way for an element of F' and an element of G.

( 7.2.3 : Remark - Z\Jé#)b\

w:u—i-vu‘\@&G@MgF@Mowgmwm&JEwwub\dsb (1
\nb-odgbv’EGcu’EF.”—q}w:u’ﬁLv’Jrﬁd\m{p‘&;ﬁggveGguEF@
v=v qu=21u
We say that w of E is written as a single writing of an element of F' and an element
of G, which means that w = u + v where u € F, v € G, and another writing From the

form w = + v where ' € F, v € G it is inevitable that w = u' and v ="',

S12a) sboal) Jalo F S o 1Rad) sbball of Jeis Wle F @G = E Wa o 1) (2
ol o G é,x.\\

If we have FF & G = E. We say that the sub-vector space F is complementary to the

sub-vector space G and vice versa.

BSaie 3121 1y Gus 128 o fsbob b b ol dleTiel s jod) Gus il s bl sqg (3
The presence of complimentary sup-vector spaces occurs only in finite-dimensional

vector spaces.
e have F® G = E. Then olb.F@G:E\QAU\;\Sl (4

dim(£) = dim(F) + dim(G).

\. J
[ 20.2.3 : Example - J 2 )
Let Jl/.\.\ (1

F={(z,00eR*|z€eR} and G={(0,y) eR*|yeR}
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Prove that o) .,4;\
FoG=R.

baa>g (2,9) = (2,0) + (0,1) Gl &8I o Glguy

+ Y

G G/

We have F NG = {(0,0)} and since (z,y) = (z,0) + (0,y) then F + G =R%. Or we
can easily see that the following writing (x,y) = (z,0) + (0,y) is unique.

Dol Loyt o W3) Wilay G = {(2,7) € R? | 2 € R} ginsg F as-b (2
We take F and G' = {(z,z) € R? | z € R}. We can also prove that:
FeG =R’
we prove that ol —al (A
FNG ={(0,0)}.

oo (z,y) € & \:o;\ 9y =0 69\ (r,y) € F 68 ue oiwg (z,y) € FNG ol i3

(,9) = (0,0) JWg =y
If (z,y) € FNG' then, from one side (z,y) € F i.e. y =0 and also (z,y) € G’
then x = y. Therefore (z,y) = (0,0).

we prove that ol =% (B

F+G =R%
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ol oy U=v+w 2o w e G quEF y& 28 .u:(x7y)€R2\-:E!

$299€1Jési‘bl-I2=y2olbw:(ﬂ%%)EG/UG‘\A?9?J1=00§:°U:(9U1,91)EF
o

Let u = (x,y) € R%. We look forv € F and w € G' where u = v + w. Since

v = (x1,y1) € F then y; =0 and since w = (x2,y2) € G’ then o = ys. So we find

x1 and Ty where
(z,y) = (21,0) + (22, z2).

Ty =Y qri=T—y La>y =23 92 =11+ JWbe (z,y) = (z1 + 72,22) oieg
PUS)
Then (z,y) = (z1 + x9,x2). Hence x = x1 + x5 and

Yy = 2o where v1 =z —y and xo =y. We find
(I,y) = (‘T - y70> + (y7y>7

Which proves that any element of R? is the sum of an element of F' and an

element of G'.

. J
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