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1. What is Multiple linear regression?

I. Definition: Multiple linear regression refers to a statistical
technique that is used to predict one variable based on the value of 
two or more variables. 

• The variable that we want to predict is known as the dependent
variable, while the variables we use to predict the value of 
the dependent variable are known as independent or explanatory
variables.



1. What is Multiple linear regression?

II. Multiple Linear Regression Formula
• Linear regression formula is as follow:

𝑌 = 𝛽! + 𝛽"𝑋" + 𝛽#𝑋#…… . 𝛽$𝑋$ + 𝜀

• 𝛽!: is the y-intercept, i.e., the value of y when all 𝑋% are 0.

• 𝑌 is the dependent or predicted variable.

• 𝛽% is the slope coefficient for (or the regression coefficients associateted
with) each independent variable 𝑋%.

• 𝜀 ∶ is the model’s random error (residual) term.



1. What is Multiple linear regression?

III. Assumptions of Multiple Linear Regression

• Multiple linear regression is based on the following
assumptions:

i. A linear relationship between the dependent and independent
variables

ii. The independent variables are not correlated with each other: 
The data should not show multicollinearity, which occurs when the 
independent variables are highly correlated.



1. What is Multiple linear regression?
iii. The variance of the residuals is constant: This is known as 

homoscedasticity.

iv. Independence of observation: this means that the values of 
residuals are independent. To test for this assumption, we use the 
Durbin Watson statistic.



2. Estimates of the Model Parameters

I. Estimatesofβ coefficients
• The estimates of theβ coefficients are the values thatminimize the sumof
squared errors for the sample it is calculatedusing the least square method. 
The exact formula for this coefficient is givenby amatrix notation.



Estimates of the Model Parameters

II. Interpretation of the Model coefficients

• Each β coefficient represents the change in the dependent variable y, per unit 
increase in the associated independent variable when all the other predictors are 
held constant.

• For example, β1 represents the change in the dependent variable y, per unit 
increase or decrease in x1 when x2, x3, ..., xp are held constant.

• The intercept term, β0, represents the dependent, y, when all the predictors or 
independent variable x1, x2, ..., xp, are all zero



2. Estimates of the Model Parameters

Example:
• Suppose we fit a multiple linear regression model using the predictor

variables hours studied and prep exams taken and a response variable exam 
score.

• The following table shows what the multiple linear regression output might
look like for this model:



Coefficient Std. Error t-Statistic Prob.

Constant 67,67352554 2,815802228 24,03347965 1,45819E-14

hours 5,555748295 0,899191699 6,178602739 1,01069E-05

prep_exam -0,601686805 0,914385031 24,03347965 0,519335226



2. Estimates of the Model Parameters

• From the model output, the coefficients allow us to form an estimated multiple linear
regression model:

• Exam score = 67.67 + 5.56*(hours) – 0.60*(prep exams)

• The way to interpret the coefficients are as follows:

• Each additional one unit increase in hours studied is associated with an average
increase of 5.56 points in exam score, assuming prep exams is held constant.

• Each additional one unit increase in prep exams taken is associated with an average
decrease of 0.60 points in exam score, assuming hours studied is held constant.



2. Estimates of the Model Parameters

• We can also use this model to find the expected exam score a 
student will receive based on their total hours studied and prep
exams taken. For example, a student who studies for 4 hours
and takes 1 prep exam is expected to get a score of 89.31 on 
the exam:
• Exam score = 67.67 + 5.56*(4) -0.60*(1) = 89.31



3. Fitted Values and Residuals

• A residual (error) term is calculated as 𝜀 = 𝑌! − %𝑌!, the difference between an 

actual and a predicted value of y.

• Variation of the dependent variable unexplained by the independent variables. 

• SSE= ∑!"#$ (𝑌! − %𝑌!)%



4. ANOVA Table

Source SS MS F

Regression 
𝑆𝑆𝑅 =)

!"#

$

*𝑌! − -𝑌 %
MSR = SSR / k MSR / MSE

Error SSE= ∑!"#$ (𝑌! − *𝑌!)% MSE = SSE / (n – (k+1))

Total
𝑆𝑆𝑇 =)

!"#

$

(𝑌! − -𝑌)%  



regression statistic

Coefficient of determination 0,856753884

Coefficient of determination R-squared 0,734027217
Coefficient of détermination adjusted
R-squared 0,702736301

Standard Error 5,365703261

Observations 20

ANOVA

Degree of freedom Sum squared F Valeur critique de F

Regression SSR 2 1350,756885 23,45815717 1,29156E-05

Residual SSE 17 489,4431152

Total.       SST 19 1840,2



5. Coefficient of Determination, R-squared, and 
Adjusted R-squared

• As in simple linear regression 𝑅 % measures the proportion of the total variation 
of the dependent variable that is explained by the independent variables.

• 𝑅% =SSR/SST = 1 − ⁄𝑆𝑆𝐸 𝑆𝑆𝑇

• If we start with a simple linear regression model with one predictor variable, X1, 
then add a second predictor variable, X2, SSE will decrease (or stay the same), SSR 
will increase (or stay the same), while SST remains constant, and so, R2 will 
increase (or stay the same). 

• In other words, R2 always increases (or stays the same) as more predictors are 
added to a multiple linear regression model.



5. Coefficient of Determination, R-squared, and 
Adjusted R-squared

• an alternative measure, adjusted R2, does not necessarily increase as more 
predictors are added, and can be used to help us identify which predictors
should be included in a model and which should be excluded. 

• Adjusted 𝑅# = 1 − ( ('(")
('( *+" )

)(1−𝑅#)

• while it has no practical interpretation, is useful for such model building 
purposes. 
• Simply stated, when comparing two models used to predict the same

response variable, we generally prefer the model with the higher value of 
adjusted R2



5. Coefficient of Determination, R-squared, 
and Adjusted R-squared

• Continue with our example: 

• 𝑅! = "#$%.'$
"()%.!%

= 0.734 = 73.4%

• In this example, 73.4% of the variation in the exam scores can 
be explained by the number of hours studied and the number of 
prep exams taken.

• 𝑅! = 1 − )(*.))
"()%.!%

=0.734=73.4%

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅! = 1 − ( "*
!%+ !,"

1 − 0.734 )= 0.703



6. Significance Testing of Each Variable

• Within amultiple regressionmodel,wemaywant toknowwhether a
particular x-variable ismaking auseful contribution to themodel. 

• That is, given thepresenceof theother x-variables in themodel, does a
particular x-variablehelpuspredict or explain the y-variable?

• For instance, suppose thatwehave two x-variables in themodel. The
general structureof themodel couldbe

• 𝑌%=𝛽! + 𝛽"𝑋" + 𝛽#𝑋# + 𝜀,



6. Significance Testing of Each Variable

• As anexample, to determinewhether variable x1 is a useful predictor variable in
thismodel,we could test

• /𝐻2 ∶ 𝛽# = 0
𝐻3: 𝛽# ≠ 0

• Hypothesis above were the case (is accepted), then a change in the 
value of x1 would not change y, so y and x1 are not linearly related. 
Also, we would still be left with variables x2 being present in the 
model. 



6. Significance Testing of Each Variable

• To test the the hypothesis we have to check the t-statistics or the p-value 
of the relevent coefficient 

• Coefficient P-values. The individual p-values tell us whether or not each
explanatory variable is statistically significant.

• In our example

• / 𝐻2 ∶ There is no relationship between hour studied and exam score𝛽# = 0
𝐻3: There is a significant relationship between hour studied and exam score. 𝛽# ≠ 0

• /𝐻2 ∶ There is no relationship betweenprep−examp and exam score𝛽% = 0
𝐻3: There is a significant relationship between prep−examand exam score. 𝛽% ≠ 0



ØWe can see that hours studied is statistically significant (p = 0.00) while prep exams 
taken (p = 0.52) is not statistically significant at α = 0.05.

ØSo we reject the null hypothesis and we confirm the alternative hypothesis, for the hour
studied variable, this means that each 1 unit increase (decrease) in hour studied the 
exam score move up (move down) by 5.55 unit.

Ø In the other hand according to t-statistic and p value the prep_exam has no significant 
relationship with the exam score as we cannot reject the null hypothesis. 

Prob.t-StatisticStd. ErrorCoefficient

1,45819E-1424,033479652,81580222867,67352554Constant

1,01069E-056,1786027390,8991916995,555748295hours

0,51933522624,033479650,914385031-0,601686805prep_exam



7. Testing the overall significance of the model

ØThe F-statistic is used to test the overall significance of a regression model, and it
compares the fit of the full model (with predictors) to the fit of a null model 
(without predictors). The formula for the F-statistic is:

Ø𝐹 =
!!"#!!$

%
!!$

&#%#'

ØIn other words, it tells us if the two explanatory variables combined have a 
statistically significant association with the response variable.

• / 𝐻2 ∶ 𝛽# = 𝛽% = ⋯0
𝐻3: 𝛽# ≠ 0𝑎𝑛𝑑 𝛽% ≠ 0



7. Testing the overall significance of the model

• The F-statistic helps assess whether adding independent variables to the model improves
its overall fit.

• Significance of the Model: A significant F-statistic indicates that the model, with at least 
one predictor variable, is statistically different from a model with no predictors.

In our example we find f-statistic and its associated p-value as follow:

• In this case the p-value is less than 0.05, which indicates that the explanatory
variables hours studied and prep exams taken combined have a statistically 
significant association with exam score.

F Valeur critique de F

23,45815717 1,29156E-05



8. Testing the contribution of an additional
explanatory variable

• Here's what happens to the F-statistic when you add more 
independent variables:

1.If the added variables contribute significantly to explaining the 
variance in the dependent variable:

The numerator ((SST−SSE)/k) may increase because the model with predictors
explains more variance in the dependent variable compared to the null
model.This leads to an increase in the F-statistic.

2.If the added variables do not contribute significantly:
The increase in the numerator may be small or negligible, and the F-statistic
may not increase significantly.



8. Testing the contribution of an additional
explanatory variable

• From the previous example we can calculate the F-statistic

• With only one independent variable Hour studied: F=(SSR/k)/(SSE/(n-(K+1)) 
=(1338.29/1)/(501/17)= 47.99

• With two independent variables Hour studied and prep-exam  

F= (1350.76/2)/(489.44/17)=23.46

The F-statistic is a measure of whether the overall model (including all predictors) is 
statistically different from a model with no predictors. 

In our example we find that the additional predictors do not improve the model fit, This 
suggests that the model with two predictors does not perform significantly better than a 
model with only one predictor.



8. Testing the contribution of an additional
explanatory variable

• The F-statistic tends to decrease after adding another explanatory variable,this

means that the prep-exam do not contribute meaningfully to explaining the 

variance in the dependent variable, this additional predictors do not improve the 

model fit 

• Here's what happens to the R-squared when you add more independent

variables:



8. Testing the contribution of an additional
explanatory variable

• The R-squared for the model with two explanatory variable

• The Coeffiient of determination for the model with only one 
independent variable

regression statistic

Coefficient of determination 0,856753884

Coefficient of determination R-squared 0,734027217

Coefficient de détermination adjusted R-squared 0,702736301

Standard Error 5,365703261

Observations 20

regression statistic
Coefficient of determination 0,85279119
Coefficient of determination R-squared 0,727252814

Coefficient de détermination adjusted R-squared 0,712100192
Standard Error 5,280516451
Observations 20



8. Testing the contribution of an additional
explanatory variable

• Simply stated, when comparing two models used to predict the same

response variable, we generally prefer the model with the higher value 

of adjusted R2

• In our example the model with only one independent variable 

explain better the variation in the dependent variable that the 

model with two independent variables.



9. How to Check for multicollinearity?
1. Multicollinearity refers to the presence of high correlations among independent

variables in a regression model. 
ØIt can cause issues in the estimation of regression coefficients and their interpretation.
ØHere the most important methods to test for multicollinearity:

i. Variance Inflation Factor (VIF):
ØVIF measures how much the variance of an estimated regression coefficient 

increases if the predictors are correlated.

ØFor each independent variable, calculate its VIF using the formula: 𝑉𝐼𝐹 = !
!"#&

where R2

is the coefficient of determination from regressing one independent variable against all 
the other independent variables.



9. How to Check for multicollinearity?

• Generally, a VIF value above 5 is often considered an indicator of problematic
multicollinearity.
When Ri

2 is equal to 0, and therefore, when VIF is equal to 1, the ith independent
variable is not correlated to the remaining ones, meaning that multicollinearity
does not exist.

• In general terms,
• If the 𝑉𝐼𝐹 ≤ 1 the variables are not correlated (no multicollinearity)
• If 1 < 𝑉𝐼𝐹 ≤ 5 variables are moderately correlated (there is small degree

multicollinearity)
• If 𝑉𝐼𝐹 >5 variables are highly correlated (thereis multicollinearity)



9. How to Check for multicollinearity?

• The higher the VIF, the higher the possibility that multicollinearity
exists. When VIF is higher than 5, there is significant multicollinearity
that needs to be corrected.
• We can remove the multicollinearity by using the following techniques:
i. Identify pairs of independent variables with high correlation and 

consider removing one of them.
ii. If possible, combine highly correlated variables into a single variable. 

For example, if you have variables measuring similar concepts in 
different units, consider creating an index or using principal 
component analysis.



9. How to Check for multicollinearity?

iii. Transform variables, such as taking the logarithm or square root, to 
reduce the impact of extreme values and potentially alleviate
multicollinearity.

iv. Collect more data to increase the sample size. A larger sample size 
can help stabilize estimates and reduce the impact of 
multicollinearity.

v. Centring variables: Centering involves subtracting the mean of a 
variable from all observations. Centering can sometimes help 
reduce multicollinearity, especially if variables have different scales.



9. How to Check for multicollinearity?

vi. Use Stepwise Regression: Perform stepwise regression to iteratively
add or remove variables based on statistical criteria. This can help 
select a subset of variables that minimizes multicollinearity.



10. How to Check for the heteroscedasticity?

• The variance of the residuals is constant: Multiple linear regression
assumes that the amount of error in the residuals is similar at each
point of the linear model. This scenario is known as homoscedasticity.

• Heteroscedasticity refers to the situation where the variance of the errors
(residuals) in a regression model is not constant across all levels of the 
independent variable(s).

• In other words, the spread of the residuals varies systematically as a function of 
the predictors. 



ii. The Breusch-Pagan test is used to detect heteroscedasticity in a 
regression model by examining whether the variance of the 
residuals is constant across different levels of the independent
variables. 

ØThe test involves fitting an auxiliary regression of the squared
residuals on the independent variables and testing the significance of 
the coefficients.

Ø4
𝐻%: 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 (ℎ𝑜𝑚𝑜𝑠𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦)

𝐻-: 𝑁𝑜𝑛 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 (ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦)



10. How to Check for the heteroscedasticity?

• A small p-value suggests rejection of the null hypothesis of 
homoscedasticity.

• If the F-statistic is significantly different from the critical value or if the 
p-value is below the chosen significance level (5% in our case), you
may reject the null hypothesis of homoscedasticity, suggesting the 
presence of heteroscedasticity.



10. How to Check for the heteroscedasticity?

ØIf heteroscedasticity is detected, consider using techniques such as:

i. Weighted least squares regression (WLS), 

ii. Transforming the dependent variable, 

ØTransforming the dependent variable in the context of addressing
heteroscedasticity means applying a mathematical transformation to the 
variable itself. The goal is to stabilize the variance of the residuals and make
it more constant across different levels of the independent variable(s). This 
can help meet one of the assumptions of linear regression, which is 
homoscedasticity (constant variance of residuals).



10.How to Check for the heteroscedasticity?

• Logarithmic Transformation: Taking the natural logarithm of the dependent variable (Y) 
is a common transformation. Transformed Y=ln(Y). 

• Square Root Transformation:The square root transformation is another option to 
stabilize the variance.

• Transformed 𝑌 = 𝑦

• This transformation is appropriate when the variance of Y increases with the level of X, 
but not exponentially.

• It's essential to address heteroscedasticity to obtain valid statistical inferences from your
regression model.



11. How to Check for the Autocorrelation?

iii. Autocorrelation, also known as serial correlation, refers to the 

correlation of a time series with its own past or future values. It is 

commonly checked in time series data to identify patterns or 

dependencies over time.

ØSimply put, the model assumes that the values of residuals are 

independent. To test for this assumption, we use the Durbin Watson 

statistic.



11. How to Check for the Autocorrelation?

• The null and alternative hypotheses for the Durbin-Watson test are as 
follows:

• Null Hypothesis (H0):There is no first-order autocorrelation in the 
residuals.

• Alternative Hypothesis (H1):There is first-order autocorrelation in 
the residuals.



11. How to Check for the Autocorrelation?

• The Durbin-Watson test statistic is computed using the following
formula:

• 𝑑 = ∑!"#
$ (0!+0!%&)#

∑!"&
$ 0!#

𝜀2 is the residual at time t,n is the number of observations.
In this formula, the numerator represents the sum of squared
differences between consecutive residuals, and the denominator
represents the sum of squared residuals. The test statistic d ranges 
from 0 to 4.



11. How to Check for the Autocorrelation?

• The test statistic, denoted as d, ranges between 0 and 4.
a. Value of d close to 2 indicates no first-order autocorrelation (null

hypothesis not rejected). 
b. Values significantly less than 2 suggest positive autocorrelation, 
c. Values significantly greater than 2 suggest negative autocorrelation.
• d≈2: No evidence of first-order autocorrelation.
• d<2: Evidence of positive autocorrelation.
• d>2: Evidence of negative autocorrelation.



11. How to Check for the Autocorrelation?

ØIf autocorrelation is detected, consider these technique to correct it:

i. Incorporating lagged values into your model;

ii. Differencing data  involves taking the first difference of the dependent variable 
or the independent variables. This is often done in time series analysis. 
Differencing can help remove the trend and make the data more stationary, 
reducing autocorrelation.

ØIf autocorrelation is not addressed, it can affect the reliability of statistical
inferences.



12. Example
Time period GDP growth rate (%) Unemployment rate (%) Inflation rate (%)

2010 2,1 6,5 2,5
2011 2,4 6,2 3
2012 2,7 5,8 2,8
2013 2,9 5,5 2,2
2014 2,6 5 2,5
2015 2,5 4,5 2
2016 3 4,9 2,5
2017 2,8 4,2 2,2
2018 2,2 4,1 1,8
2019 2,5 3,9 2
2020 3,1 4 1,5
2021 3,6 3,5 2,8
2022 3,2 3 2,5
2023 2,8 3,2 2



12. Example

• GDP Growth Rate" represents the percentage change in Gross 
Domestic Product (GDP) from the previous year.
• "Unemployment Rate" represents the percentage of the labor force 

that is unemployed and actively seeking employment.
• "Inflation Rate" represents the percentage change in the general price 

level of goods and services.


