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Exercise 1 Let z ∈ C, x, y ∈ R, r ∈ R∗+, θ ∈ [0; 2π[ and i2 = −1.

1. Rewrite each z into polar form (reiθ).

a) z = 6, b) z = 6i, c) z = 2 + 2i, d) z = −2 + 2i, e) z = 3 +
√

3i.

2. Rewrite z from polar into x+ iy form.

a) z = 3e
5π
4
i, b) z = 5e

7π
4
i, c) z = re

π
12
i, d) z =

√
16e

2π
3
i.

3. Compute the following, simplifying the results into x+ iy form.

a) z = (2 + 2i)8, b)

√
3 +
√

3i.

4. Let z =
√

(1+i)√
2

,

(a) Compute z, and simplifying the results into x+ iy form.

(b) Deduce the values of cos(π8 ) and sin(π8 )

Exercise 2 Let z, w ∈ C and i2 = −1.

1. Let z = 1 + i and w = zn with n ∈ Z.

(a) Determine the values of n for which w is a pure imaginary number (Re(w) = 0).

(b) Determine the values of n for which w is a real number (Im(w) = 0).

2. Let w = z−i
z+1 with z 6= −1. Determine the set of points M with affix z of which

(a) w is a pure imaginary number (Re(w) = 0).

(b) w is a real number (Im(w) = 0).

Exercise 3 Let z, z0 = x0 + y0 i ∈ C, r ∈ R∗+ and i2 = −1. Solve the following inequations.

1. |z − z0| ≤ r.

2. |2z + i| ≤ |z + 1|.

3.
∣∣∣ z−3z−5

∣∣∣ ≤ r, with z 6= 5(Left to the student).

4. |2z + z0| ≤ |z + z1|, with z0, z1 ∈ C (Left to the student).

Exercise 4 Let z ∈ C and i2 = −1. Solve the following equations

a) 5z + 2i = (i+ 1)z − 3, b)
z − i
z + 1

= 4i, c) 2z + iz = 3, d) z2 + zz = 0.

e) z2 + 2z + 2 = 0, f) − 2z2 + 6z − 5 = 0, g) 2z2 − z(1 + 5i)− 2(1− i) = 0.
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Exercise 5 We consider the following polynomial P (z) = z3 + 9iz2 + 2(6i− 11)z− 3(4i+ 12), with Z ∈ C.

1. Demonstrate that the equation P (z) = 0 admits a real solution z1.

2. Determine a polynomial Q(z) such that P (z) = (z − z1)Q(z).

3. Solve the equation P (z) = 0 in C.

4. Demonstrate that the points of the complex plane corresponding to the solutions of the equation
P (z) = 0 are aligned.

Exercise 6 Let Zn be a complex number defined by:

Zn =

{
8, if n = 0;
1+i
√
3

4 Zn−1, else.

and (Mn)n∈N are the points of affix Zn on the complex plane P.

1. Calculate z based on n.

2. For any natural number n, calculate the ratio

Zn − Zn−1
Zn

.

3. We note |Zn| = rn, gives the limit of rn when n tends towards infinity. What geometric interpretation
can we give?

Exercise 7

1. Show that
∀ u, v ∈ C : |u+ v|2 + |u− v|2 = 2

(
|u|2 + |v|2

)
2. Show that the following equivalence is false

for u ∈ C and v ∈ C : u = v ⇔ |u| = |w|.

Exercise 8 (Left to the student). We consider the following polynomial P (z) = z3 + 2(
√

2− 1)z2− 4(
√

2−
1)z − 8, with z ∈ C.

1. Compute P (2). Determine a factorization of P (z) by (z − 2).

2. Solve the equation P (z) = 0 in C.

Exercise 9 (Left to the student) We consider the function f of the plane which at any point M associates
the affix point:

w =
z + i

z − 2i
, with z 6= 2i.

1. For z 6= 2i, we set z = 2i+ reiθ, with and r > 0 and θ ∈ [0; 2π[. Write w − 1 using r and θ.

2. A is the affix point 2i,

(a) Determine the set E1 of points M for which |w − 1| = 3.

(b) Determine the set E2 of points M for which arg(w − 1) = π
4 .

(c) Represent the sets E1 and E2
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Course note: Let’s consider the complex number z = x+ iy.

• z = x− iy (See figure 1, left side).

• ∀(z1, z2) ∈ C2, z1 + z2 = z1 + z2

• The modulus of z is defined by: |z| =
√
x2 + y2.

• For any complex number we have : |z|2 = z z.

• For any integer n we have |zn| = |z|n.

• The polar form of a complex number z = x+ iy is given by

z = r(cos(θ) + i sin(θ)), with r = |z| ≥ 0 and θ = arg(z) ∈ R (see figure 1, right side).

• The exponential form of a complex number z = x+ iy is given by

z = reiθ, with r = |z| ≥ 0 and θ = arg(z) ∈ R.

• If z = reiθ then
z = r (cos(θ) + i sin(θ)) .

• For any natural number n we have

zn = rneinθ = rn (cos(nθ) + i sin(nθ)) .
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Figure 1: Graphical illustrations of the conjugate of a complex number and its trigonometric form.
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Solution of the Exercise 1

1. Rewrite each z into polar form (reiθ).

(a) z = 6 = 6 + 0i⇒ |z| =
√

62 + 02 = 6. So,

z = 6(1 + 0i) = 6(cos(θ) + i sin(θ))⇒
{

cos(θ) = 1
sin(θ) = 0

⇒ θ = 2πk, k ∈ Z.

As θ ∈ [0, 2π[ then θ = 0⇒ z = 6(cos(0) + i sin(0)).

(b) z = 6i = 0 + 6i⇒ |z| =
√

02 + 62 = 6. So,

z = 6(0 + i) = 6(cos(θ) + i sin(θ))⇒
{

cos(θ) = 0
sin(θ) = 1

⇒ θ =
π

2
⇒ z = 6(cos

(π
2

) + i sin(
π

2
)
)
.

(c) z = 2 + 2i⇒ |z| =
√

22 + 22 = 2
√

2. So,

z = 2
√

2

(√
2

2
+ i

√
2

2

)
= 2
√

2(cos(θ) + i sin(θ))⇒

{
cos(θ) =

√
2
2

sin(θ) =
√
2
2

⇒ θ =
π

4

Hence,

z = 2
√

2(cos
(π

4
) + i sin(

π

4
)
)
.

(d) z = −2 + 2i⇒ |z| =
√

(−2)2 + 22 = 2
√

2. So,

z = 2
√

2

(
−
√

2

2
+ i

√
2

2

)
= 2
√

2(cos(θ) + i sin(θ))⇒

{
cos(θ) = −

√
2

2

sin(θ) =
√
2
2

⇒ θ =
3π

4
.

Hence,

z = 2
√

2

(
cos

(
3π

4

)
+ i sin

(
3π

4

))
.

4



(e) z = 3 +
√

3i⇒ |z| =
√

32 + (
√

3)2 = 2
√

3. So,

z = 2
√

3

(√
3

2
+ i

1

2

)
= 2
√

3(cos(θ) + i sin(θ))⇒

{
cos(θ) =

√
3
2

sin(θ) =
√
1
2

⇒ θ =
π

6
.

Hence,

z = 2
√

3
(
cos(

π

6
) + i sin(

π

6
)
)
.

2. Rewrite z from polar into x+ y i form.

(a) z = 3e
5π
4
i

z = 3

(
cos

(
5π

4

)
+ i sin

(
5π

4

))
= 3

(
cos
(
π +

π

4

)
+ i sin

(
π +

π

4

))
= 3

(
− cos

(π
4

)
+ i sin

(π
4

))
=
−3
√

2

2
+ i

3
√

2

2
.

(b) z = 5e
7π
4
i

z = 5

(
cos

(
7π

4

)
+ i sin

(
7π

4

))
= 5

(
cos
(

2π − π

4

)
+ i sin

(
2π − π

4

))
= 5

(
cos
(
−π

4

)
+ i sin

(
−π

4

))
=

5
√

2

2
− i5
√

2

2
.

(c) z = re
π
12
i

z = re
π
12
i

= 5
(

cos
(

2π − π

4

)
+ i sin

(
2π − π

4

))
{

cos
(
π
12

)
= ?

sin
(
π
12

)
= ?

We have {
cos2(θ) + sin2(θ) = 1
cos(2θ) = cos2(θ)− sin2(θ)

=⇒
{

cos2(θ) = 1− sin2(θ)
cos(2θ) = 1− 2 sin2(θ)

=⇒

{
cos(θ) =

√
1− sin2(θ)

sin(θ) =

√
1−cos(2θ))

2 .

Hence, if we put θ = π
12 then we will have the following
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 cos( π12) =
√

1− sin2( π12)

sin( π12) =

√
1−cos(π

6
))

2

=⇒

 cos
(
π
12

)
=

√
2+
√
3

2

sin
(
π
12

)
=

√
2−
√
3

2

So,

z = r

(√
2 +
√

3

2

)
+ i r

(√
2−
√

3

2

)
.

(d) z =
√

16e
2π
3
i

z =

√
16e

2π
3
i = 4e

π
3
i

= 4
(

cos
(π

3

)
+ i sin

(π
3

))
= 2 + i2

√
3.

3. Compute the following, then simplifying the results into x+ y i form.

(a) Case of z = (2 + 2i)8

Let w = 2 + 2i. Note that |w| =
√

22 + 22 = 2
√

2 and arg(w) = π
4 , so

z = w8 = (2 + 2i)8

=
[
2
√

2
(

cos
(π

4

)
+ i sin

(π
4

))]8
=

(
2
√

2
)8(

cos

(
8π

4

)
+ i sin

(
8π

4

))
=

(
2
√

2
)8

= 4096.

(b) Case of (3 +
√

3i)
3
2

Let w = 3 +
√

3.

Note that |w| =
√

32 +
√

3
2

= 2
√

3 and arg(w) = π
6 , so

z = (3 +
√

3i)
3
2 = w

3
2

=
[
2
√

3
(

cos
(π

6

)
+ i sin

(π
6

))] 3
2

=
(

2
√

3
) 3

2

(
cos

(
3π

4

)
+ i sin

(
3π

4

))
=

(
2
√

3
) 3

2
(
− cos

(π
4

)
+ i sin

(π
4

))
=

(
2
√

3
) 3

2

(
−
√

2

2
+ i

√
2

2

)
.

4. Let z =
√

(1 + i)
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(a) Compute z, and simplifying the results into x+ y i form.

Let’s z = x+ iy and w = 1 + i.

w = z2 =⇒
{
z2 = w
|z|2 = |w| =⇒


x2 + y2 =

√
2

x2 − y2 = 1
2xy = 1

adding the first and the second above equation we obtain x =

√√
2+1
2 and y =

√√
2−1
2 i.e.

z =

√√2 + 1

2

+ i

√√2− 1

2

 .

(b) Deduce the values of cos(π8 ) and sin(π8 ) from the first question we have

w =
√

2

(√
2

2
+ i

√
2

2

)
=
√

2
(

cos
(π

4

)
+ i sin

(π
4

))
so, √

w = w
1
2 =

(
2

1
4 cos

(π
8

))
+ i
(

2
1
4 sin

(π
8

))
= z.

By identification we find: 2
1
4 cos

(
π
8

)
=

√√
2+1
2

2
1
4 sin

(
π
8

)
=

√√
2−1
2

=⇒

 cos
(
π
8

)
=

√
2+
√
2

4

sin
(
π
8

)
=

√
2−
√
2

4

Solution of the Exercise 2

1. Note that

z = 1 + i =
√

2
(

cos
(π

4

)
+ i sin

(π
4

))
=⇒ w = zn = 2

n
2

(
cos
(nπ

4

)
+ i sin

(nπ
4

))
. (1)

(a) Case w is a pure imaginary number

Re(w) = 0 =⇒ cos
(nπ

4

)
=⇒ nπ

4
=
π

2
+ kπ =⇒ n = 2 + 4k, with k ∈ Z.

(b) Case w is a pure real number

Im(w) = 0 =⇒ sin
(nπ

4

)
=⇒ nπ

4
= kπ =⇒ n = 4k, with k ∈ Z.

2. Let w = z−i
z+1 with z = x+ iy, v = (x+ 1)− iy and z 6= −1.

w =
z − i
z + 1

=
x+ (y − 1)i

(x+ 1) + iy

=
x+ (y − 1)i

(x+ 1) + iy
× (x+ 1)− iy

(x+ 1)− iy

=

(
x(x+ 1) + y(y − 1)

|v|2

)
+ i

(
(x+ 1)(y − 1)− xy

|v|2

)
.
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(a) Case w is a pure imaginary number.

Re(w) = 0 =⇒ x(x+ 1) + y(y − 1) = 0

=⇒ x2 + 2
1

2
x+

1

4
+ y2 − 2

1

2
y +

1

4
=

1

2

=⇒
(
x− −1

2

)2

+

(
y − 1

2

)2

=
1

2
.

From this last equation, we conclude that the values of z, such that w is a pure imaginary number,

are the points belonging to the circle with center (−12 ,
1
2) of radius

√
2
2 without the point (−1, 0)

(because z 6= −1).

(b) w is a pure real number.

Im(w) = 0 =⇒ (x+ 1)(y − 1)− xy = 0

=⇒ xy − x+ y − 1− xy = 0

=⇒ y = x+ 1.

From this last equation, we conclude that the values of z, so that w is a real number, are the
points belonging to the line y = x+ 1 without the point (−1, 0).

Solution of the Exercise 3

Let z, z0 = x0 + i y0 ∈ C, r ∈ R∗+ and i2 = −1.

1. Case |z − z0| ≤ r.

|z − z0| ≤ r =⇒
(√

(x− x0)2 + (y − y0)2
)2
≤ r2 =⇒ (x− x0)2 + (y − y0)2 ≤ r2.

According to this last result, we conclude that the solutions of the inequality are the set of points
belonging to the disk delimited by the circle with the center (x0, y0) and radius r.

Remark 1 In the previous inequality, if we replace the operator ” less or equal than (≤)” by ”strictly
less than” (<), then the solutions of the inequality are the set of points that belonging only to the interior
of disk delimited by the circle with center (x0, y0) of radius r.

2. Case |2z + i| ≤ |z + 1|.

|2z + i| ≤ |z + 1| =⇒ |2x+ i(2y + 1)| ≤ |(x+ 1)− iy|
=⇒ |2x+ i(2y + 1)|2 ≤ |(x+ 1)− iy|2

=⇒ 4x2 + (2y + 1)2 ≤ (x+ 1)2 + y2

=⇒ 4x2 + 4y2 + 4y + 1 ≤ x2 + 2x+ 1 + y2

=⇒
(
x2 − 2

1

3
x+

1

9

)
+

(
y2 + 2

2

3
x+

4

9

)
≤ 1

9
+

4

9

=⇒
(
x− 1

3

)2(
y +

2

3

)2

≤

(√
5

3

)2

.

According to this last result, we conclude that the solutions of the inequality are the set of points

belonging to the disk delimited by the center circle (13 ,
−2
3 ) of radius

√
5
3 .
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Solution of the Exercise 4

Let z ∈ C and i2 = −1. Solve the following equations.

1. Case of the equation 5z + 2i = (i+ 1)z − 3,

5z + 2i = (i+ 1)z − 3 =⇒ 5z − (i+ 1)z = −3− 2i

=⇒ z =
−3− 2i

4− i

=⇒ z =
(−3− 2i)(4 + i)

(4− i)(4 + i)
.

So,

z =
−10

17
+ i
−12

17
.

2. Case of the equation z−i
z+1 = i.

z − i
z + 1

= i =⇒ z − i = iz + i =⇒ (1− i)z = 2i =⇒ z =
2i

1− i
=⇒ z =

2i(1 + i)

(1− i)(1 + i)
.

So,
z = −1 + i.

3. Case of the equation 2z + iz = 3.

Let’s assume that z = x+ iy with x, y ∈ R.

2z + iz = 3 =⇒ 2x+ i(2y) + i(x− iy) = 3 =⇒ (2x+ y) + i(x+ 2y) = 3 + i 0.

So, to find the solution to the above equation, we must solve the following system of linear equations:{
2x + y = 3
x + 2y = 0

After the resolution of this system, we get x = 2 and y = −1, hence the solution if the original equation
is :

z = 2− i.

4. Case of the equation z2 + zz = 0.

Let’s assume that z = x+ iy with x, y ∈ R.

z2 + zz = 0 =⇒ z(z + z) = 0 =⇒
{
z = 0
z + z = 0

=⇒
{

(x, y) = (0, 0)
x = 0, and y∈ R

hence, the solution of the original equation is the set of the pure imaginary numbers (z ∈ i× R).

5. Case of the equation z2 + 2z + 2 = 0.

∆ = 22 − 4 ∗ 2 = −4 =⇒
√

∆ = ±2i =⇒
{
z1 = −2−2i

2 = −1− i
z2 = −2+2i

2 = −1 + i.

6. Case equation −2z2 + 6z − 5 = 0,

∆ = 62 − 4 ∗ (−2) ∗ (−5) = −4 =⇒
√

∆ = ±2i =⇒
{
z1 = −6−2i

−4 = 3
2 −

1
2 i

z2 = −6+2i
−4 = 3

2 + 1
2 i.
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7. Case equation 2z2 − (1 + 5i)z − 2(1− i) = 0

∆ = (1 + 5i)2 − 4 ∗ 2 ∗ (−2)(1− i) = −8− 6i =⇒
√

∆ =?

To obtain the two solutions of the equation, we must first find the root of the determinant ∆. Suppose
that

√
∆ = w = x + iy with x and y are a real numbers. From this assumption, it is clear that the

following holds.

{
w2 = ∆
|w|2 = |∆| =⇒


x2 + y2 = 10
x2 − y2 = −8
2xy = −6

Using the first and the second above equations we obtain x = ±1 and y = ±3. From the third equation,
we note that x and y have different sign, so

√
∆ = ± (1− 3i) .

Then the solutions of the given second order equation are:{
z1 = (1+5i)−(1−3i)

4 = 2i

z2 = (1+5i)+(1−3i)
4 = 1

2 + 1
2 i

Solution of the Exercise 5

1. The equation P (z) admit a real solution =⇒ ∃x ∈ R such as P (x) = 0

P (x) = 0 =⇒ x3 + 9ix2 + 2(6i− 11)x− 3(4i+ 12) = 0

=⇒
(
x3 − 22x− 36

)
+ i
(
9x2 + 12x− 12

)
= 0

=⇒
{
x3 − 22x− 36 = 0
9x2 + 12x− 12 = 0.

Solving the second equation of this system above, we get x = −2 or x = 2
3 (∆ = 64

9 ). After replacing
x with these two values ??in the first equation, we see that only x = −2 satisfies both equations of the
system. Therefore, we conclude that the real root of the polynomial P (z) is z = −2.

2. As z = −2 is a root of P (z) then the latter can be rewritten as follows:

P (z) = (z + 2)Q(z),

with Q(z) is a second order polynomial, i.e. Q(z) = azz + bz + c. The complex coefficients a, b, and c
are to be determined.

To determine these coefficients, we can proceed in two ways, namely: by identifying P (z) with (z +
2)(azz +bz+c) or simply using the Euclidean division of P (z) on (z+2). Using the Euclidean division
we get:

P (z) = (z + 2)(z2 + (9i− 2)z − 6(3 + i)).
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z3 +9iz2 +2(6i− 11)z −3(4i+ 12) z + 2
− z2 − (2− 9i)z − (18 + 6i)

z3 +2z2

(9i− 2)z2 +2(6i− 11)z −3(4i+ 12)
−

(9i− 2)z2 +2(9i− 2)z
−2(3i+ 9)z −3(4i+ 12)

−
−2(3i+ 9)z −3(4i+ 12)

0

3. Solve the equation P (z) = 0

P (z) = 0 =⇒ (z + 2)(z2 + (9i− 2)z − 6(3 + i)) = 0 =⇒
{
z + 2 = 0
z2 + (9i− 2)z − 6(3 + i) = 0

Let’s solve the equation z2 + (9i− 2)z − 6(3 + i) = 0.We have

∆ = (9i− 2)2 + 4 ∗ 6(3 + i) = −5− 12i.

Let’s w = x+ iy, with x and y are a real numbers, the root of ∆ so

{
w2 = ∆
|w|2 = |∆| =⇒


x2 + y2 = 13
x2 − y2 = −5
2xy = −12

=⇒
{
x = 2
y = −3

=⇒
√

∆ = ±(2− 3i).

Finally, the solutions of the equation P (z) are given as follows:
z1 = −2

z2 = −(9i−2)−(2−3i)
2 = −3i

z3 = −(9i−2)+(2−3i)
2 = 2− 6i

4. The affixes of the solution are aligned?

Let’s A, B and C denotes the affixes of z1, z2 and z3 respectively.

To show that the three points are aligned, it is enough to determine the equation of the line passing
through two points, for example, A and B, and to verify that the remaining point C belongs to this
line.

By a simple calculation, we can show that the line passing through the two points A and B is written
as follows:

y =
−3

2
x− 3.

We see that the coordinates (2,-6) associated with point C verify the equation of the constructed line.
Consequently, the three points are therefore aligned.

Solution of the Exercise 6
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1. Calculate z based on n.

We see that for all n ∈ N∗, Zn+1

Zn
= 1+i

√
3

4 = constant, So (Zn) is a complex geometric sequence that

can be defined by its first term Z0 = 8 and the common ratio q = 1+i
√
3

4 . Hence the expression of (Zn)
can be rewritten as follows:

Zn = 8

(
1 + i

√
3

4

)n
, n ∈ N.

2. For any natural number n, calculate the ratio

Zn − Zn−1
Zn

=
8
(
1+i
√
3

4

)n
− 8

(
1+i
√
3

4

)n−1
8
(
1+i
√
3

4

)n
=

(
1+i
√
3

4

)
− 1(

1+i
√
3

4

) =
−3 + i

√
3

1 + i
√

3

=
3 + i

√
3

1 + i
√

3
× 1− i

√
3

1− i
√

3

= i
√

3.

3. We note |Zn| = rn, gives the limit of rn when n tends towards infinity. What geometric interpretation
can we give?

Let’s first find the expression of rn.

rn = |Zn| =

∣∣∣∣∣8
(

1 + i
√

3

4

)n∣∣∣∣∣ = 8

∣∣∣∣∣1 + i
√

3

4

∣∣∣∣∣
n

= 8


√√√√(1

4

)2

+

(√
3

4

)n

=

(
1

2

)n−3
.

Hence,

lim
n−→∞

rn = lim
n−→∞

(
1

2

)n−3
= 0.

This means that the point Mn of affix Zn, as n tend to infinity tend to the origin (0, 0) of the complex
plane P .

Solution of the Exercise 7

1. Show that : ∀ u, v ∈ C : |u+ v|2 + |u− v|2 = 2
(
|u|2 + |v|2

)
.

|u+ v|2 + |u− v|2 = (u+ v) ∗ (u+ v) + (u− v) ∗ (u− v)

= (u+ v) ∗ (u+ v) + (u− v) ∗ (u− v)

= uu+ uv + vu+ vv + uu− uv − vu+ vv

= 2uu+ 2vv

= 2
(
|u|2 + |v|2

)
.
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2. Show that the following equivalence is false

for u ∈ C and v ∈ C : u = v ⇔ |u| = |w|.

(a) ”=⇒”Let’s consider u, v ∈ C with u = x1 + iy1 and v = x2 + iy2

u = v =⇒ x1 = x2 and y1 = y2 =⇒ |u| =
√
x21 + y21 =

√
x22 + y22 = |v|.

(b) ”⇐=”This implication is not always true. Indeed, this can be shown by a simple counter-example:
if we take u = −v0 (with u 6= 0) then |u| = |v| although u 6= v.

As final result, the equivalence is false.

Solution of the Exercise 8

We consider the following polynomial P (z) = z3 + 2(
√

2− 1)z2 − 4(
√

2− 1)z − 8, with z ∈ C.

1. Compute P (2). Determine a factorization of P (z) by (z − 2).

By substitution z = 2 in the expression of the polynomial we get P (2) = 0 i.e. z = 2 is a root of P .
So, P can be rewritten as follows: P (z) = (z − 2)Q(z) with Q(z) is a second order polynomial.

2. Using the Euclidean division of P (z) on (z − 2) we obtain Q(z) = z2 + 2
√

2z + 4. Hence

P (z) = (z − 2)
(
z2 + 2

√
2z + 4

)
.

3. Solve the equation P (z) = 0 in C.

P (z) = 0 =⇒ (z − 2)
(
z2 + 2

√
2z + 4

)
=⇒

{
z − 2 = 0

z2 + 2
√

2z + 4 = 0

We have the determinant of equation z2 + 2
√

2z + 4 = 0 is:

∆ = (2
√

2)2 − 4 ∗ 4 = −8 =⇒
√

∆ = ±i 2
√

2.

So, the solutions of the equation P (z) are given as follows:
z1 = 2

z2 = 2
√
2−i 2

√
2

2 =
√

2− i
√

2

z3 = 2
√
2+i 2

√
2

2 =
√

2 + i
√

2

13


