University of Biskra Mathematics Department Module: Analysis 1

First year license 2024/2025

Worksheet No. 2

Exercise 1 Let $z \in \mathbb{C}$, $x, y \in \mathbb{R}$, $r \in \mathbb{R}^*_+$, $\theta \in [0; 2\pi[$ and $i^2 = -1$.

1. Rewrite each z into polar form $(re^{i\theta})$.

a)
$$z = 6$$
, b) $z = 6i$, c) $z = 2 + 2i$, d) $z = -2 + 2i$, e) $z = 3 + \sqrt{3}i$.

2. Rewrite z from polar into x + iy form.

a)
$$z = 3e^{\frac{5\pi}{4}i}$$
, b) $z = 5e^{\frac{7\pi}{4}i}$, c) $z = re^{\frac{\pi}{12}i}$, d) $z = \sqrt{16e^{\frac{2\pi}{3}i}}$.

3. Compute the following, simplifying the results into x + iy form.

a)
$$z = (2+2i)^8$$
, b) $\sqrt{3+\sqrt{3}i}$.

4. Let $z = \sqrt{\frac{(1+i)}{\sqrt{2}}}$,

- (a) Compute z, and simplifying the results into x + iy form.
- (b) Deduce the values of $cos(\frac{\pi}{8})$ and $sin(\frac{\pi}{8})$

Exercise 2 Let $z, w \in \mathbb{C}$ and $i^2 = -1$.

- 1. Let z = 1 + i and $w = z^n$ with $n \in \mathbb{Z}$.
 - (a) Determine the values of n for which w is a pure imaginary number (Re(w) = 0).
 - (b) Determine the values of n for which w is a real number (Im(w) = 0).
- 2. Let $w = \frac{z-i}{z+1}$ with $z \neq -1$. Determine the set of points M with affix z of which
 - (a) w is a pure imaginary number (Re(w) = 0).
 - (b) w is a real number (Im(w) = 0).

Exercise 3 Let $z, z_0 = x_0 + y_0 \ i \in \mathbb{C}, r \in \mathbb{R}^*_+$ and $i^2 = -1$. Solve the following inequations.

- 1. $|z z_0| \le r$.
- 2. $|2z + i| \le |\overline{z} + 1|$.
- 3. $\left|\frac{z-3}{z-5}\right| \le r$, with $z \ne 5$ (Left to the student).
- 4. $|2z + z_0| \leq |\overline{z} + z_1|$, with $z_0, z_1 \in \mathbb{C}$ (Left to the student).

Exercise 4 Let $z \in \mathbb{C}$ and $i^2 = -1$. Solve the following equations

a)
$$5z + 2i = (i+1)z - 3$$
, b) $\frac{z-i}{z+1} = 4i$, c) $2z + i\overline{z} = 3$, d) $z^2 + z\overline{z} = 0$.
e) $z^2 + 2z + 2 = 0$, f) $-2z^2 + 6z - 5 = 0$, g) $2z^2 - z(1+5i) - 2(1-i) = 0$

Exercise 5 We consider the following polynomial $P(z) = z^3 + 9iz^2 + 2(6i - 11)z - 3(4i + 12)$, with $Z \in \mathbb{C}$.

- 1. Demonstrate that the equation P(z) = 0 admits a real solution z_1 .
- 2. Determine a polynomial Q(z) such that $P(z) = (z z_1)Q(z)$.
- 3. Solve the equation P(z) = 0 in \mathbb{C} .
- 4. Demonstrate that the points of the complex plane corresponding to the solutions of the equation P(z) = 0 are aligned.

Exercise 6 Let Z_n be a complex number defined by:

$$Z_n = \begin{cases} 8, & \text{if } n = 0; \\ \frac{1+i\sqrt{3}}{4} Z_{n-1}, & \text{else.} \end{cases}$$

and $(M_n)_{n \in \mathbb{N}}$ are the points of affix Z_n on the complex plane **P**.

- 1. Calculate z based on n.
- 2. For any natural number n, calculate the ratio

$$\frac{Z_n - Z_{n-1}}{Z_n}$$

3. We note $|Z_n| = r_n$, gives the limit of r_n when n tends towards infinity. What geometric interpretation can we give?

Exercise 7

1. Show that

$$\forall u, v \in \mathbb{C}: |u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2)$$

2. Show that the following equivalence is false

for
$$u \in \mathbb{C}$$
 and $v \in \mathbb{C} : u = v \Leftrightarrow |u| = |w|$.

Exercise 8 (Left to the student). We consider the following polynomial $P(z) = z^3 + 2(\sqrt{2} - 1)z^2 - 4(\sqrt{2} - 1)z - 8$, with $z \in \mathbb{C}$.

- 1. Compute P(2). Determine a factorization of P(z) by (z-2).
- 2. Solve the equation P(z) = 0 in \mathbb{C} .

Exercise 9 (Left to the student) We consider the function f of the plane which at any point M associates the affix point:

$$w = \frac{z+i}{z-2i}$$
, with $z \neq 2i$.

- 1. For $z \neq 2i$, we set $z = 2i + re^{i\theta}$, with and r > 0 and $\theta \in [0; 2\pi]$. Write w 1 using r and θ .
- 2. A is the affix point 2i,
 - (a) Determine the set E_1 of points M for which |w 1| = 3.
 - (b) Determine the set E_2 of points M for which $arg(w-1) = \frac{\pi}{4}$.
 - (c) Represent the sets E_1 and E_2

Correction of worksheet No. 2

Course note: Let's consider the complex number z = x + iy.

- $\overline{z} = x iy$ (See figure 1, left side).
- $\forall (z_1, z_2) \in \mathbb{C}^2, \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- The modulus of z is defined by: $|z| = \sqrt{x^2 + y^2}$.
- For any complex number we have : $|z|^2 = z \ \overline{z}$.
- For any integer n we have $|z^n| = |z|^n$.
- The polar form of a complex number z = x + iy is given by

$$z = r(\cos(\theta) + i\sin(\theta))$$
, with $r = |z| \ge 0$ and $\theta = \arg(z) \in \mathbb{R}$ (see figure 1, right side).

• The exponential form of a complex number z = x + iy is given by

$$z = re^{i\theta}$$
, with $r = |z| \ge 0$ and $\theta = arg(z) \in \mathbb{R}$.

• If $z = re^{i\theta}$ then

$$z = r \left(\cos(\theta) + i \sin(\theta) \right).$$

• For any natural number n we have

$$z^n = r^n e^{in\theta} = r^n \left(\cos(n\theta) + i\sin(n\theta)\right).$$

Figure 1: Graphical illustrations of the conjugate of a complex number and its trigonometric form.

Solution of the Exercise 1

1. Rewrite each z into polar form $(re^{i\theta})$.

(a)
$$z = 6 = 6 + 0i \Rightarrow |z| = \sqrt{6^2 + 0^2} = 6$$
. So,
$$z = 6(1+0i) = 6(\cos(\theta) + i\sin(\theta)) \Rightarrow \begin{cases} \cos(\theta) = 1\\ \sin(\theta) = 0 \end{cases} \Rightarrow \theta = 2\pi k, \ k \in \mathbb{Z}.$$

As
$$\theta \in [0, 2\pi[$$
 then $\theta = 0 \Rightarrow z = 6(\cos(0) + i\sin(0)).$
(b) $z = 6i = 0 + 6i \Rightarrow |z| = \sqrt{0^2 + 6^2} = 6.$ So,

$$z = 6(0+i) = 6(\cos(\theta) + i\sin(\theta)) \Rightarrow \begin{cases} \cos(\theta) = 0\\ \sin(\theta) = 1 \end{cases} \Rightarrow \theta = \frac{\pi}{2} \Rightarrow z = 6(\cos\left(\frac{\pi}{2}\right) + i\sin(\frac{\pi}{2})).$$

(c) $z = 2 + 2i \Rightarrow |z| = \sqrt{2^2 + 2^2} = 2\sqrt{2}$. So,

$$z = 2\sqrt{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 2\sqrt{2}(\cos(\theta) + i\sin(\theta)) \Rightarrow \begin{cases} \cos(\theta) = \frac{\sqrt{2}}{2}\\ \sin(\theta) = \frac{\sqrt{2}}{2} \end{cases} \Rightarrow \theta = \frac{\pi}{4}$$

Hence,

$$z = 2\sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + i\sin(\frac{\pi}{4})\right).$$

(d) $z = -2 + 2i \Rightarrow |z| = \sqrt{(-2)^2 + 2^2} = 2\sqrt{2}$. So,

$$z = 2\sqrt{2}\left(\frac{-\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 2\sqrt{2}(\cos(\theta) + i\sin(\theta)) \Rightarrow \begin{cases} \cos(\theta) = \frac{-\sqrt{2}}{2} \\ \sin(\theta) = \frac{\sqrt{2}}{2} \end{cases} \Rightarrow \theta = \frac{3\pi}{4}$$

Hence,

$$z = 2\sqrt{2}\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$$

(e)
$$z = 3 + \sqrt{3}i \Rightarrow |z| = \sqrt{3^2 + (\sqrt{3})^2} = 2\sqrt{3}$$
. So,
 $z = 2\sqrt{3}\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = 2\sqrt{3}(\cos(\theta) + i\sin(\theta)) \Rightarrow \begin{cases} \cos(\theta) = \frac{\sqrt{3}}{2} \\ \sin(\theta) = \frac{\sqrt{1}}{2} \end{cases} \Rightarrow \theta = \frac{\pi}{6}.$

Hence,

$$z = 2\sqrt{3}\left(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})\right).$$

2. Rewrite z from polar into x + y i form.

(a) $z = 3e^{\frac{5\pi}{4}i}$

$$z = 3\left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right)$$
$$= 3\left(\cos\left(\pi + \frac{\pi}{4}\right) + i\sin\left(\pi + \frac{\pi}{4}\right)\right)$$
$$= 3\left(-\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$
$$= \frac{-3\sqrt{2}}{2} + i\frac{3\sqrt{2}}{2}.$$

(b) $z = 5e^{\frac{7\pi}{4}i}$

$$z = 5\left(\cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right)\right)$$
$$= 5\left(\cos\left(2\pi - \frac{\pi}{4}\right) + i\sin\left(2\pi - \frac{\pi}{4}\right)\right)$$
$$= 5\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$$
$$= \frac{5\sqrt{2}}{2} - i\frac{5\sqrt{2}}{2}.$$

(c) $z = re^{\frac{\pi}{12}i}$

$$z = re^{\frac{\pi}{12}i}$$
$$= 5\left(\cos\left(2\pi - \frac{\pi}{4}\right) + i\sin\left(2\pi - \frac{\pi}{4}\right)\right)$$
$$\begin{cases} \cos\left(\frac{\pi}{12}\right) = ?\\ \sin\left(\frac{\pi}{12}\right) = ?\end{cases}$$

We have

$$\begin{cases} \cos^2(\theta) + \sin^2(\theta) = 1\\ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \end{cases} \implies \begin{cases} \cos^2(\theta) = 1 - \sin^2(\theta)\\ \cos(2\theta) = 1 - 2\sin^2(\theta) \end{cases}$$
$$\implies \begin{cases} \cos(\theta) = \sqrt{1 - \sin^2(\theta)}\\ \sin(\theta) = \sqrt{\frac{1 - \cos(2\theta)}{2}}. \end{cases}$$

Hence, if we put $\theta = \frac{\pi}{12}$ then we will have the following

$$\begin{cases} \cos(\frac{\pi}{12}) = \sqrt{1 - \sin^2(\frac{\pi}{12})} \\ \sin(\frac{\pi}{12}) = \sqrt{\frac{1 - \cos(\frac{\pi}{6})}{2}} \end{cases} \implies \begin{cases} \cos(\frac{\pi}{12}) = \frac{\sqrt{2 + \sqrt{3}}}{2} \\ \sin(\frac{\pi}{12}) = \frac{\sqrt{2 - \sqrt{3}}}{2} \end{cases}$$

So,
$$z = r\left(\frac{\sqrt{2 + \sqrt{3}}}{2}\right) + i r\left(\frac{\sqrt{2 - \sqrt{3}}}{2}\right).$$

(d) $z = \sqrt{16e^{\frac{2\pi}{3}i}}$
$$z = \sqrt{16e^{\frac{2\pi}{3}i}} = 4e^{\frac{\pi}{3}i} \\ = 4\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right) \\ = 2 + i2\sqrt{3}.\end{cases}$$

- 3. Compute the following, then simplifying the results into x + y i form.
 - (a) Case of $z = (2+2i)^8$ Let w = 2+2i. Note that $|w| = \sqrt{2^2 + 2^2} = 2\sqrt{2}$ and $\arg(w) = \frac{\pi}{4}$, so

$$z = w^{8} = (2+2i)^{8}$$
$$= \left[2\sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)\right]^{8}$$
$$= \left(2\sqrt{2}\right)^{8}\left(\cos\left(\frac{8\pi}{4}\right) + i\sin\left(\frac{8\pi}{4}\right)\right)$$
$$= \left(2\sqrt{2}\right)^{8} = 4096.$$

(b) Case of $(3 + \sqrt{3}i)^{\frac{3}{2}}$ Let $w = 3 + \sqrt{3}$. Note that $|w| = \sqrt{3^2 + \sqrt{3}^2} = 2\sqrt{3}$ and $\arg(w) = \frac{\pi}{6}$, so

$$z = (3 + \sqrt{3}i)^{\frac{3}{2}} = w^{\frac{3}{2}}$$

= $\left[2\sqrt{3}\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)\right]^{\frac{3}{2}}$
= $\left(2\sqrt{3}\right)^{\frac{3}{2}}\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$
= $\left(2\sqrt{3}\right)^{\frac{3}{2}}\left(-\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$
= $\left(2\sqrt{3}\right)^{\frac{3}{2}}\left(\frac{-\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right).$

4. Let $z = \sqrt{(1+i)}$

(a) Compute z, and simplifying the results into x + y i form. Let's z = x + iy and w = 1 + i.

$$w = z^2 \Longrightarrow \begin{cases} z^2 = w \\ |z|^2 = |w| \end{cases} \Longrightarrow \begin{cases} x^2 + y^2 = \sqrt{2} \\ x^2 - y^2 = 1 \\ 2xy = 1 \end{cases}$$

adding the first and the second above equation we obtain $x = \sqrt{\frac{\sqrt{2}+1}{2}}$ and $y = \sqrt{\frac{\sqrt{2}-1}{2}}$ i.e.

$$z = \left(\sqrt{\frac{\sqrt{2}+1}{2}}\right) + i\left(\sqrt{\frac{\sqrt{2}-1}{2}}\right)$$

(b) Deduce the values of $cos(\frac{\pi}{8})$ and $sin(\frac{\pi}{8})$ from the first question we have

$$w = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) \right)$$

so,

$$\sqrt{w} = w^{\frac{1}{2}} = \left(2^{\frac{1}{4}}\cos\left(\frac{\pi}{8}\right)\right) + i\left(2^{\frac{1}{4}}\sin\left(\frac{\pi}{8}\right)\right) = z$$

By identification we find:

$$\begin{cases} 2^{\frac{1}{4}}\cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{\sqrt{2}+1}{2}} \\ 2^{\frac{1}{4}}\sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{\sqrt{2}-1}{2}} \end{cases} \implies \begin{cases} \cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{2+\sqrt{2}}{4}} \\ \sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{2-\sqrt{2}}{4}} \end{cases}$$

Solution of the Exercise 2

1. Note that

$$z = 1 + i = \sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) + i \, \sin\left(\frac{\pi}{4}\right) \right) \Longrightarrow \ w = z^n = 2^{\frac{n}{2}} \left(\cos\left(\frac{n\pi}{4}\right) + i \, \sin\left(\frac{n\pi}{4}\right) \right). \tag{1}$$

(a) Case w is a pure imaginary number

$$Re(w) = 0 \Longrightarrow \cos\left(\frac{n\pi}{4}\right) \Longrightarrow \frac{n\pi}{4} = \frac{\pi}{2} + k\pi \Longrightarrow n = 2 + 4k, \text{ with } k \in \mathbb{Z}.$$

(b) Case w is a pure real number

$$Im(w) = 0 \Longrightarrow \sin\left(\frac{n\pi}{4}\right) \Longrightarrow \frac{n\pi}{4} = k\pi \Longrightarrow n = 4k, \text{ with } k \in \mathbb{Z}.$$

2. Let $w = \frac{z-i}{z+1}$ with z = x + iy, v = (x+1) - iy and $z \neq -1$.

$$\begin{split} w &= \frac{z-i}{z+1} = \frac{x+(y-1)i}{(x+1)+iy} \\ &= \frac{x+(y-1)i}{(x+1)+iy} \times \frac{(x+1)-iy}{(x+1)-iy} \\ &= \left(\frac{x(x+1)+y(y-1)}{|v|^2}\right) + i\left(\frac{(x+1)(y-1)-xy}{|v|^2}\right). \end{split}$$

(a) Case w is a pure imaginary number.

$$\begin{aligned} Re(w) &= 0 \implies x(x+1) + y(y-1) = 0 \\ &\implies x^2 + 2\frac{1}{2}x + \frac{1}{4} + y^2 - 2\frac{1}{2}y + \frac{1}{4} = \frac{1}{2} \\ &\implies \left(x - \frac{-1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{2}. \end{aligned}$$

From this last equation, we conclude that the values of z, such that w is a pure imaginary number, are the points belonging to the circle with center $(\frac{-1}{2}, \frac{1}{2})$ of radius $\frac{\sqrt{2}}{2}$ without the point (-1, 0) (because $z \neq -1$).

(b) w is a pure real number.

$$Im(w) = 0 \implies (x+1)(y-1) - xy = 0$$
$$\implies xy - x + y - 1 - xy = 0$$
$$\implies y = x + 1.$$

From this last equation, we conclude that the values of z, so that w is a real number, are the points belonging to the line y = x + 1 without the point (-1, 0).

Solution of the Exercise 3

Let $z, z_0 = x_0 + i y_0 \in \mathbb{C}, r \in \mathbb{R}^*_+$ and $i^2 = -1$.

1. Case $|z - z_0| \le r$.

$$|z - z_0| \le r \Longrightarrow \left(\sqrt{(x - x_0)^2 + (y - y_0)^2}\right)^2 \le r^2 \Longrightarrow (x - x_0)^2 + (y - y_0)^2 \le r^2.$$

According to this last result, we conclude that the solutions of the inequality are the set of points belonging to the disk delimited by the circle with the center (x_0, y_0) and radius r.

Remark 1 In the previous inequality, if we replace the operator "less or equal than (\leq) " by "strictly less than" (<), then the solutions of the inequality are the set of points that belonging only to the interior of disk delimited by the circle with center (x_0, y_0) of radius r.

2. Case $|2z + i| \le |\overline{z} + 1|$.

$$\begin{aligned} |2z+i| &\leq |\overline{z}+1| \implies |2x+i(2y+1)| \leq |(x+1)-iy| \\ &\implies |2x+i(2y+1)|^2 \leq |(x+1)-iy|^2 \\ &\implies 4x^2 + (2y+1)^2 \leq (x+1)^2 + y^2 \\ &\implies 4x^2 + 4y^2 + 4y + 1 \leq x^2 + 2x + 1 + y^2 \\ &\implies \left(x^2 - 2\frac{1}{3}x + \frac{1}{9}\right) + \left(y^2 + 2\frac{2}{3}x + \frac{4}{9}\right) \leq \frac{1}{9} + \frac{4}{9} \\ &\implies \left(x - \frac{1}{3}\right)^2 \left(y + \frac{2}{3}\right)^2 \leq \left(\frac{\sqrt{5}}{3}\right)^2. \end{aligned}$$

According to this last result, we conclude that the solutions of the inequality are the set of points belonging to the disk delimited by the center circle $(\frac{1}{3}, \frac{-2}{3})$ of radius $\frac{\sqrt{5}}{3}$.

Solution of the Exercise 4

Let $z \in \mathbb{C}$ and $i^2 = -1$. Solve the following equations.

1. Case of the equation 5z + 2i = (i+1)z - 3,

$$5z + 2i = (i+1)z - 3 \implies 5z - (i+1)z = -3 - 2i$$
$$\implies z = \frac{-3 - 2i}{4 - i}$$
$$\implies z = \frac{(-3 - 2i)(4 + i)}{(4 - i)(4 + i)}.$$

So,

$$z = \frac{-10}{17} + i\frac{-12}{17}.$$

2. Case of the equation $\frac{z-i}{z+1} = i$.

$$\frac{z-i}{z+1} = i \Longrightarrow z-i = iz+i \Longrightarrow (1-i)z = 2i \Longrightarrow z = \frac{2i}{1-i} \Longrightarrow z = \frac{2i(1+i)}{(1-i)(1+i)}$$

So,

$$z = -1 + i.$$

3. Case of the equation $2z + i\overline{z} = 3$.

Let's assume that z = x + iy with $x, y \in \mathbb{R}$.

$$2z + i\overline{z} = 3 \Longrightarrow 2x + i(2y) + i(x - iy) = 3 \Longrightarrow (2x + y) + i(x + 2y) = 3 + i \ 0.$$

So, to find the solution to the above equation, we must solve the following system of linear equations:

$$\begin{cases} 2x + y = 3\\ x + 2y = 0 \end{cases}$$

After the resolution of this system, we get x = 2 and y = -1, hence the solution if the original equation is :

- z = 2 i.
- 4. Case of the equation $z^2 + z\overline{z} = 0$.

Let's assume that z = x + iy with $x, y \in \mathbb{R}$.

$$z^{2} + z\overline{z} = 0 \Longrightarrow z(z + \overline{z}) = 0 \Longrightarrow \begin{cases} z = 0 \\ z + \overline{z} = 0 \end{cases} \Longrightarrow \begin{cases} (x, y) = (0, 0) \\ x = 0, \text{ and } y \in \mathbb{R} \end{cases}$$

hence, the solution of the original equation is the set of the pure imaginary numbers $(z \in i \times \mathbb{R})$. 5. Case of the equation $z^2 + 2z + 2 = 0$.

$$\Delta = 2^2 - 4 * 2 = -4 \Longrightarrow \sqrt{\Delta} = \pm 2i \Longrightarrow \begin{cases} z_1 = \frac{-2-2i}{2} = -1 - i \\ z_2 = \frac{-2+2i}{2} = -1 + i. \end{cases}$$

6. Case equation $-2z^2 + 6z - 5 = 0$,

$$\Delta = 6^2 - 4 * (-2) * (-5) = -4 \Longrightarrow \sqrt{\Delta} = \pm 2i \Longrightarrow \begin{cases} z_1 = \frac{-6-2i}{-4} = \frac{3}{2} - \frac{1}{2}i \\ z_2 = \frac{-6+2i}{-4} = \frac{3}{2} + \frac{1}{2}i. \end{cases}$$

7. Case equation $2z^2 - (1+5i)z - 2(1-i) = 0$

$$\Delta = (1+5i)^2 - 4 * 2 * (-2)(1-i) = -8 - 6i \Longrightarrow \sqrt{\Delta} = ?$$

To obtain the two solutions of the equation, we must first find the root of the determinant Δ . Suppose that $\sqrt{\Delta} = w = x + iy$ with x and y are a real numbers. From this assumption, it is clear that the following holds.

$$\begin{cases} w^2 &= \Delta \\ |w|^2 &= |\Delta| \end{cases} \implies \begin{cases} x^2 + y^2 &= 10 \\ x^2 - y^2 &= -8 \\ 2xy &= -6 \end{cases}$$

Using the first and the second above equations we obtain $x = \pm 1$ and $y = \pm 3$. From the third equation, we note that x and y have different sign, so

$$\sqrt{\Delta} = \pm \left(1 - 3i\right)$$

Then the solutions of the given second order equation are:

$$\begin{cases} z_1 = \frac{(1+5i)-(1-3i)}{4} = 2i \\ z_2 = \frac{(1+5i)+(1-3i)}{4} = \frac{1}{2} + \frac{1}{2}i \end{cases}$$

Solution of the Exercise 5

1. The equation P(z) admit a real solution $\implies \exists x \in R$ such as P(x) = 0

$$P(x) = 0 \implies x^{3} + 9ix^{2} + 2(6i - 11)x - 3(4i + 12) = 0$$

$$\implies (x^{3} - 22x - 36) + i(9x^{2} + 12x - 12) = 0$$

$$\implies \begin{cases} x^{3} - 22x - 36 = 0\\ 9x^{2} + 12x - 12 = 0. \end{cases}$$

Solving the second equation of this system above, we get x = -2 or $x = \frac{2}{3}$ ($\Delta = \frac{64}{9}$). After replacing x with these two values ??in the first equation, we see that only x = -2 satisfies both equations of the system. Therefore, we conclude that the real root of the polynomial P(z) is z = -2.

2. As z = -2 is a root of P(z) then the latter can be rewritten as follows:

$$P(z) = (z+2)Q(z),$$

with Q(z) is a second order polynomial, i.e. $Q(z) = az^{z} + bz + c$. The complex coefficients a, b, and c are to be determined.

To determine these coefficients, we can proceed in two ways, namely: by identifying P(z) with $(z + 2)(az^{z} + bz + c)$ or simply using the Euclidean division of P(z) on (z+2). Using the Euclidean division we get:

$$P(z) = (z+2)(z^{2} + (9i-2)z - 6(3+i)).$$

3. Solve the equation P(z) = 0

$$P(z) = 0 \Longrightarrow (z+2)(z^2 + (9i-2)z - 6(3+i)) = 0 \Longrightarrow \begin{cases} z+2 = 0 \\ z^2 + (9i-2)z - 6(3+i) = 0 \end{cases}$$

Let's solve the equation $z^2 + (9i - 2)z - 6(3 + i) = 0$. We have

$$\Delta = (9i - 2)^2 + 4 * 6(3 + i) = -5 - 12i$$

Let's w = x + iy, with x and y are a real numbers, the root of Δ so

$$\begin{cases} w^2 &= \Delta \\ |w|^2 &= |\Delta| \end{cases} \implies \begin{cases} x^2 + y^2 &= 13 \\ x^2 - y^2 &= -5 \\ 2xy &= -12 \end{cases} \implies \begin{cases} x &= 2 \\ y &= -3 \end{cases} \implies \sqrt{\Delta} = \pm (2 - 3i).$$

Finally, the solutions of the equation P(z) are given as follows:

$$\begin{cases} z_1 = -2\\ z_2 = \frac{-(9i-2)-(2-3i)}{2} = -3i\\ z_3 = \frac{-(9i-2)+(2-3i)}{2} = 2-6i \end{cases}$$

4. The affixes of the solution are aligned?

Let's A, B and C denotes the affixes of z_1 , z_2 and z_3 respectively.

To show that the three points are aligned, it is enough to determine the equation of the line passing through two points, for example, A and B, and to verify that the remaining point C belongs to this line.

By a simple calculation, we can show that the line passing through the two points A and B is written as follows:

$$y = \frac{-3}{2}x - 3.$$

We see that the coordinates (2,-6) associated with point C verify the equation of the constructed line. Consequently, the three points are therefore aligned.

Solution of the Exercise 6

1. Calculate z based on n.

We see that for all $n \in \mathbb{N}^*$, $\frac{Z_{n+1}}{Z_n} = \frac{1+i\sqrt{3}}{4} = constant$, So (Z_n) is a complex geometric sequence that can be defined by its first term $Z_0 = 8$ and the common ratio $q = \frac{1+i\sqrt{3}}{4}$. Hence the expression of (Z_n) can be rewritten as follows:

$$Z_n = 8\left(\frac{1+i\sqrt{3}}{4}\right)^n, \quad n \in \mathbb{N}$$

2. For any natural number n, calculate the ratio

$$\frac{Z_n - Z_{n-1}}{Z_n} = \frac{8\left(\frac{1+i\sqrt{3}}{4}\right)^n - 8\left(\frac{1+i\sqrt{3}}{4}\right)^{n-1}}{8\left(\frac{1+i\sqrt{3}}{4}\right)^n}$$
$$= \frac{\left(\frac{1+i\sqrt{3}}{4}\right) - 1}{\left(\frac{1+i\sqrt{3}}{4}\right)} = \frac{-3+i\sqrt{3}}{1+i\sqrt{3}}$$
$$= \frac{3+i\sqrt{3}}{1+i\sqrt{3}} \times \frac{1-i\sqrt{3}}{1-i\sqrt{3}}$$
$$= i\sqrt{3}.$$

3. We note $|Z_n| = r_n$, gives the limit of r_n when n tends towards infinity. What geometric interpretation can we give?

Let's first find the expression of r_n .

$$r_n = |Z_n| = \left| 8\left(\frac{1+i\sqrt{3}}{4}\right)^n \right| = 8\left|\frac{1+i\sqrt{3}}{4}\right|^n = 8\left(\sqrt{\left(\frac{1}{4}\right)^2 + \left(\frac{\sqrt{3}}{4}\right)}\right)^n = \left(\frac{1}{2}\right)^{n-3}.$$

Hence,

$$\lim_{n \to \infty} r_n = \lim_{n \to \infty} \left(\frac{1}{2}\right)^{n-3} = 0$$

This means that the point M_n of affix Z_n , as n tend to infinity tend to the origin (0,0) of the complex plane P.

Solution of the Exercise 7

1. Show that : $\forall u, v \in \mathbb{C}$: $|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2)$.

$$\begin{aligned} |u+v|^2 + |u-v|^2 &= (u+v) * (\overline{u+v}) + (u-v) * (\overline{u-v}) \\ &= (u+v) * (\overline{u}+\overline{v}) + (u-v) * (\overline{u}-\overline{v}) \\ &= u\overline{u} + u\overline{v} + v\overline{u} + v\overline{v} + u\overline{u} - u\overline{v} - v\overline{u} + v\overline{v} \\ &= 2u\overline{u} + 2v\overline{v} \\ &= 2\left(|u|^2 + |v|^2\right). \end{aligned}$$

2. Show that the following equivalence is false

for $u \in \mathbb{C}$ and $v \in \mathbb{C} : u = v \Leftrightarrow |u| = |w|$.

(a) " \Longrightarrow "Let's consider $u, v \in \mathbb{C}$ with $u = x_1 + iy_1$ and $v = x_2 + iy_2$

$$u = v \Longrightarrow x_1 = x_2$$
 and $y_1 = y_2 \Longrightarrow |u| = \sqrt{x_1^2 + y_1^2} = \sqrt{x_2^2 + y_2^2} = |v|$

(b) " \Leftarrow " This implication is not always true. Indeed, this can be shown by a simple counter-example: if we take u = -v0 (with $u \neq 0$) then |u| = |v| although $u \neq v$.

As final result, the equivalence is false.

Solution of the Exercise 8

We consider the following polynomial $P(z) = z^3 + 2(\sqrt{2} - 1)z^2 - 4(\sqrt{2} - 1)z - 8$, with $z \in \mathbb{C}$.

- Compute P(2). Determine a factorization of P(z) by (z 2).
 By substitution z = 2 in the expression of the polynomial we get P(2) = 0 i.e. z = 2 is a root of P. So, P can be rewritten as follows: P(z) = (z 2)Q(z) with Q(z) is a second order polynomial.
- 2. Using the Euclidean division of P(z) on (z-2) we obtain $Q(z) = z^2 + 2\sqrt{2}z + 4$. Hence

$$P(z) = (z-2)\left(z^2 + 2\sqrt{2}z + 4\right).$$

3. Solve the equation P(z) = 0 in \mathbb{C} .

$$P(z) = 0 \Longrightarrow (z-2) \left(z^2 + 2\sqrt{2}z + 4 \right) \Longrightarrow \begin{cases} z-2 &= 0\\ z^2 + 2\sqrt{2}z + 4 &= 0 \end{cases}$$

We have the determinant of equation $z^2 + 2\sqrt{2}z + 4 = 0$ is:

$$\Delta = (2\sqrt{2})^2 - 4 * 4 = -8 \Longrightarrow \sqrt{\Delta} = \pm i \ 2\sqrt{2}.$$

So, the solutions of the equation P(z) are given as follows:

$$\begin{cases} z_1 = 2\\ z_2 = \frac{2\sqrt{2}-i\ 2\sqrt{2}}{2} = \sqrt{2}-i\ \sqrt{2}\\ z_3 = \frac{2\sqrt{2}+i\ 2\sqrt{2}}{2} = \sqrt{2}+i\ \sqrt{2} \end{cases}$$