First year license 2023/2024

Catch-up Exam

Exercise 1 (/7pts)

Lets consider the following polynomial $P(z) = z^3 - 2iz^2 + (i-2)z + i + 1$, with $Z \in \mathbb{C}$.

- 1. Demonstrate that the equation P(z) = 0 admits an imaginary solution z_1 .
- 2. Determine a polynomial Q(z) such that $P(z) = (z z_1)Q(z)$.
- 3. Solve the equation P(z) = 0 in \mathbb{C} .
- 4. Demonstrate that the points of the complex plane corresponding to the solutions of the equation P(z) = 0 are not aligned.

Exercise 2 (/6pts)Important note: in this exercise each question is independent of the others.

Let's consider a recursive sequence defined on \mathbb{N}^* by its first term u_1 and the expression

$$u_{n+1} = au_n + \frac{\alpha n + \beta}{n}$$
, with $\alpha > 0$ and $\beta > 0$.

- 1. Suppose that u_n converge then gives the limit of u_n against α and β .
- 2. Suppose that the limit of u_n exist and equal to l then give the value of α against l.
- 3. If $u_1 = 1$, $u_2 = 6$ and $u_3 = 31/2$ then find the exact expression of u_n (find α and β).
- 4. If $u_3 = a$ then find the expression of the first term of the sequence u_n .
- 5. Check that u_n converge only if $0 < \alpha < 1$.

Exercise 3 (/7pts)

Consider the function f defined by:

$$f(x) = \left(\frac{2\sqrt{1 - \cos(x)}}{\sin(2x)}\right)^m, \quad m \in \mathbb{N}^*.$$

- 1. Determine the domain of the function f.
- 2. Discuss the parity (even or odd) of f according to the values of the parameter m.
- 3. Verify that f is a 2π -periodic function, then discuss the limit of f at all bounds of its domain, according to the values of the parameter m.
- 4. Check, according to m if f have a removable discontinuity.