Exercise series N°3

Exercise 1

$$U_n = \frac{1}{1+n} + \frac{1}{2+n}, \quad U_n = n^2 \left(1 - \frac{1}{1+n}\right), \quad U_n = n \left(n - (-1)^n\right), \quad U_n = \sqrt[n]{a}, \quad \text{with } a > 1.$$

- 1. Study the monotony of previous sequences
- 2. Show that if U_n is an increasing (respectively, a decreasing) sequence then $V_n = \frac{1}{n} \sum_{i=1}^n U_i$ is also an increasing (respectively, a decreasing) sequence.

Exercise 2 Show that:

- I) Let $(Un)_{n\in\mathbb{N}}$ be a sequence of \mathbb{R} . What do you think of the following propositions:
 - 1. If U_n converges to a real l then U_{2n} and U_{2n+1} converge to l.
 - 2. If U_{2n} and U_{2n+1} are convergent, the same is true of U_n .
 - 3. If U_{4n} and U_{4n+2} are convergent, towards the same limit, it is the same for U_n .
 - 4. If U_{2n} and U_{2n+1} are convergent, towards the same limit, it is the same for U_n .

II) Prove that:

- 1. if the sequence $\{U_n\}_{n\in\mathbb{N}}$ converges to l_1 and $\{V_n\}_{n\in\mathbb{N}}$ converges to l_2 , then the sequence $\{U_n+V_n\}_{n\in\mathbb{N}}$ converges to l_1+l_2 .
- 2. convergent sequences are Cauchy sequences.

Exercise 3 Let consider the following real sequences:

$$U_n = \frac{1}{n+1}$$
, $V_n = \sqrt[n]{a}$ with $a > 1$ $W_n = \frac{(-1)^n + bn}{n+1}$ with $b \in \mathbb{R}$, $T_n = c^n$ with $c \in]-1,1[$.

1. Prove, using the definition of the limit of a real sequence, that:

$$\lim_{n \to \infty} U_n = 0, \qquad \lim_{n \to \infty} V_n = 1, \qquad \lim_{n \to \infty} W_n = b, \qquad \lim_{n \to \infty} T_n = 0.$$

- 2. For each sequence determine the smallest value of N (see the below note), when $\epsilon=0.001$, and a=b=2 and c=1/2.
- 3. Prove, using the definition of the limit of a real sequence, that the sequences K_n and S_n are divergent, with

$$K_n = \frac{-n^2 + n + 1}{n + 1}$$
 and $S_n = ln(ln(ln(n))).$

Note:
$$\lim_{n\to\infty} U_n = l \Leftrightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} : |U_n - l| < \epsilon, \text{ for } n \geq N.$$

Exercise 4 In each of the following cases, determine the limit, if it exists.

$$U_{n} = \frac{n + (-1)^{n}}{n - (-1)^{n}}$$

$$U_{n} = \frac{a^{n} - b^{n}}{a^{n} + b^{n}}, \text{ with } a, b \ge 0 \text{ and } a \ne b.$$

$$U_{n} = \frac{a^{n} - b^{n}}{a^{n} + b^{n}}, \text{ with } a, b > 0$$

$$U_{n} = \frac{1 - \frac{1}{a} + \frac{1}{a^{2}} - \frac{1}{a^{3}} + \dots + \frac{(-1)^{n}}{a^{n}}, \text{ with } a > 0.$$

$$U_{n} = (1 + \frac{a}{n})^{n} \text{ with } a \in \mathbb{R}^{*}$$

$$U_{n} = \sum_{k=1}^{n} \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}$$

$$U_{n} = \frac{2}{n^{2}} \sum_{k=1}^{n} E(kx) \text{ with } x \ge 0$$

Exercise 5 Let a > 0. We define the sequence $\{U_n\}_{n \ge 0}$ by U_0 strictly positive real numbers and by the relation:

$$U_{n+1} = \frac{1}{2} \left(U_n + \frac{a}{U_n} \right).$$

- 1. Show that for all $n \geq 1$ we have $U_n \geq \sqrt{a}$ and then, that $\{U_n\}_{n\geq 1}$ is a decreasing sequence.
- 2. Deduce that the sequence U_n converges to \sqrt{a} .

Exercise 6

1. Let $0 < a \le b$. Prove the following inequalities:

$$\sqrt{ab} \le \frac{a+b}{2}, \quad a \le \frac{a+b}{2} \le b, \quad a \le \sqrt{ab} \le b.$$

2. Let U_0 and V_0 be strictly positive real numbers with $U_0 < V_0$. We define two sequences U_n and V_n as follow:

$$U_{n+1} = \sqrt{U_n V_n}$$
 and $V_{n+1} = \frac{U_n + V_n}{2}$.

- (a) Show that $U_n < V_n$ for all $n \in \mathbb{N}$.
- (b) Show that V_n is a decreasing sequence.
- (c) Show that U_n is increasing then deduce that the sequences U_n and V_n are convergent and have the same limit.

Exercise 7 We consider the two sequences:

$$U_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$
 and $V_n = U_n + \frac{1}{n!}$

Show that U_n and V_n converge towards the same limit.

Exercise 8 (Leave the exercise to the students.)

- I) If the approximate values of a real number x with precision 10^{-2} , 10^{-3} ,, 10^{-n} ... are given by: If the approximate values of a real number x to 2, 3,, n... decimal point are given by: 1.16; 1.166;; 1. $\underbrace{1666...6}_{n}$; ... then give the exact value of x.
- II) Consider the following sequences, defined for $n \in \mathbb{N}^*$:

$$U_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$
 and $V_n = ln(n+1) - ln(n)$.

- 1. Calculate the limit of $S_n = \sum_{i=1}^n V_i$.
- 2. Show that, for all $n \in \mathbb{N}^*$ we have $V_n \leq \frac{1}{n}$.
- 3. What can we conclude about the nature of U_n ?

Definition 1 Let $(U_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two sequences such that

- U_n is decreasing,
- V_n is increasing,
- $\bullet \lim_{n \to \infty} (U_n V_n) = 0.$

Sequences satisfying the above properties are called Adjacent.

If $(U_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are adjacent then, they are convergent and have the same limit.