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Exercise series N◦1

Exercise 1 : Consider the following assertions:

A1 : ∃x ∈ R, ∀y ∈ R: x + y > 0.

A2 : ∀x ∈ R, ∃y ∈ R: x + y > 0.

A3 : ∀x ∈ R, ∀y ∈ R: x + y > 0.

A4 : ∃x ∈ R, ∀y ∈ R: y2 > x.

1. Are assertions A1, A2, A3 and A4 true or false?

2. Give their negation.

Exercise 2 :

• If a and b are two positive or zero real numbers, show that:

√
a +
√
b ≤ 2

√
a + b.

• Prove by induction the following equalities:

n∑
k=1

k =
n(n + 1)

2
and

n−1∑
k=0

2k = 2n − 1, with n ∈ N∗

• Show that
√

2 is not a rational number.

Exercise 3 Let x and y ∈ R.

1. Show that the following relationships are always true:

(a) If |x| < y then − y < x < y

(b) |x + y| ≤ |x|+ |y|.
(c) ||x| − |y|| ≤ |x− y|.

2. Solve the following inequalities:

(a) |x− 2| > 5.

(b) |x + 2| > |x|.
(c) |2x− 1| < |x− 1|.

Exercise 4 Determine (if they exist): the all upper and lower bounds, supremum, infimum, maximum, and
minimum, of the following sets:

E1 =

{
1,

1

3
,
1

5
, ...,

1

2n + 1
, ...; n ∈ N

}
, E2 =]0, 5], E3 =

{
4− 1

n
;n ∈ N∗

}
,

E4 =

{
1

2
+

n

2n + 1
,

1

2
− n

2n + 1
; n ∈ N∗

}
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Exercise 5 Show that the following relationships are true.

• x− 1 < E(x) ≤ x,

• E(x) + E(y) ≤ E(x + y),

• E(x)− E(y) ≥ E(x− y),

• E
(
E(nx)

n

)
= E(x),

with x, y ∈ R, n ∈ N∗ and E(.) is the integral part function.
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Solution

Solution of the Exercise 1 :

A1 : is false, because we can find an y in R such that for any x in R we have x + y less or equal to zero
(x + y ≤ 0.)
For example, if we take y = 0, then for all x negative (x ≤ 0) we have x + y = x ≤ 0
The negation: ∀x ∈ R, ∃y ∈ R: x + y ≤ 0.

A2 : is true, the fact that for any x we can find an y ∈ R for which the inequality x + y > 0 is verified.
For exemple, if we take y = −x + 1 then x + y = 1 > 0.
The negation: ∃x ∈ R, ∀y ∈ R : x + y ≤ 0.

A3 : is false, because if we choose, for example, y ≤ 0 and x ≤ 0 then x + y < 0.
The negation: ∃x ∈ R, ∃y ∈ R : x + y ≤ 0.

A4 : is true, and it is the fact that for all y ∈ R, it is enough to take an x in the interval ]−∞, y2[ for the
inequality y2 > x to be verified.
The negation: ∀x ∈ R, ∃y ∈ R: y2 ≤ x.

Solution of the Exercise 2 :

• For two positive or zero real numbers a and b, we have:{
a ≤ a + b
b ≤ a + b

=⇒
{ √

a ≤
√
a + b.....(∗)√

b ≤
√
a + b.....(∗∗) ( the fact that the root function is an increasing function)

by adding the two sides of the inequalities (*) and (**), we will have:

√
a +
√
b ≤ 2

√
a + b.

• Recall that the proof by induction is based on the following three steps:

Step 1: Verify that the desired result holds for n = n0

Step 2: Assume that the desired result holds for n.

Step 3: Use the assumption from step 2 to show that the result holds for (n + 1).

n∑
k=1

k =
n(n + 1)

2
, with n ∈ N∗ (1)

n−1∑
k=0

2k = 2n − 1, with n ∈ N∗ (2)

for n = 1: 
n∑

k=1

k =
1∑

k=1

k = 1

n(n+1)
2 = 1(1+1)

2 = 2
2 = 1

(3)
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for n: We assume that the following equality is true for n.

n∑
k=1

k =
n(n + 1)

2
(4)

for n + 1: On the one hand, using the assumption (4), we have:

n+1∑
k=1

k =
n∑

k=1

k + (n + 1) =
n(n + 1)

2
+ (n + 1) =

(n + 1)(n + 2)

2

On the other hand we have:

n+1∑
k=1

k =
(n + 1)((n + 1) + 1)

2
=

(n + 1)(n + 2)

2

Consequently, the equality (1) holds for n + 1. From the above three steps we conclude that (1)
holds for all n ∈ N∗.

for n = 1: 
n−1∑
k=0

2k =
0∑

k=0

2k = 20 = 1

2n − 1 = 21 − 1 = 21 − 1 = 1

(5)

So the equality holds for n = 1.

for n: We assume that the following equality is true for n.

n−1∑
k=0

2k = 2n − 1 (6)

for n + 1: On the one hand, using the assumption (6), we have:

n+1−1∑
k=0

2k =
n∑

k=0

2k =
n−1∑
k=1

2k + 2n = 2n − 1 + 2n = 2× 2n − 1 = 2n+1 − 1

On the other hand we have:
n∑

k=0

2k = 2n+1 − 1

Consequently, the equality (2) holdsF for n+ 1. From the above three steps we conclude that (2)
holds for all n ∈ N∗.

• Proof By Contradiction that
√

2 is irrational
Recall that for n ∈ N, we have:

n is an odd natural number ⇔ n2 is an odd natural number.

n is an even natural number ⇔ n2 is an even natural number.

Note: The demonstration of the two equivalences above is an additional exercise to be
left for the student. Assume that

√
2 is rational.

Then, let
√

2 = p
q , where p ∈ Z and q ∈ Z∗, and p and q are relatively prime i.e gcd(p, q) = 1.

√
2 = p

q ⇒ 2 = p2

q2
⇒ p2 = 2q2 ⇒ p2 is even ⇒ p is even, say p = 2m

⇒ 4m2 = 2q2 ⇒ 2m = q2 ⇒ q is even.

Thus, both p and q are even and have 2 as a common factor. But we assumed that p and q are
relatively prime. This is a contradiction. Thus,

√
2 cannot be written as p

q for p ∈ Z and q ∈ Z∗ Thus√
2 is irrational.
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Solution of the Exercise 3 Let x and y ∈ R.

1. From the definition of the absolute value we have:{
x < y, if x ≥ 0;
−x < y, if x < 0.

=⇒
{

x < y, if x ≥ 0;
x > −y, if x < 0.

=⇒ −y < x < y. (7)

2. We have{
−|x| ≤ x ≤ |x|
−|y| ≤ y ≤ |y| =⇒ −|x| − |y| ≤ x + y ≤ |x|+ |y| =⇒ − (|x|+ |y|) ≤ x + y ≤ (|x|+ |y|) (8)

As |x|+ |y| ≥ 0, then from (7) and (8) we can conclude that :

|x + y| ≤ |x|+ |y|. (9)

3. ||x| − |y|| ≤ |x− y|?
We have{

|x| ≤ |(x− y) + y|
|y| ≤ |(y − x) + x| using the inequality (9)⇒

{
|x| ≤ |(x− y) + y| ≤ |(x− y)|+ |y|
|y| ≤ |(y − x) + x| ≤ |(y − x)|+ |x|

⇒
{
|x| ≤ |(x− y)|+ |y|
|y| ≤ |(y − x)|+ |x| ⇒

{
|x| ≤ |(x− y)|+ |y|
|y| ≤ |(y − x)|+ |x| ⇒

{
|x| − |y| ≤ |x− y|
|y| − |x| ≤ |x− y| ⇒

{
|x| − |y| ≤ |x− y|
|x| − |y| ≥ −|x− y|

Finally,
−|x− y| ≤ |x| − |y| ≤ |x− y|.

Thus, from the result proven at the beginning of the exercise, we conclude that

||x| − |y|| ≤ |x− y|.

Resolution of inequalities:

1. |x − 2| > 5. we have the inequality |x − 2| > 5, then using the absolute value definition, we can be
rewritten the inequality as follows:{

(x− 2) > 5, if x− 2 ≥ 0;
−(x− 2) > 5, if x− 2 < 0.

⇒
{

(x− 2) > 5, if x ≥ 2;
−(x− 2) > 5, if x < 2.

⇒
{

x > 7, if x ≥ 2;
x < −3, if x < 2.

(10)

Thus, the solutions of the inequality |x− 2| > 5 are:

x ∈]−∞,−3[∪]7,+∞[.

2. |x + 2| > |x|.
x − 2 0

|x| −x −x x

|x + 2| −x− 2 x + 2 x + 2

A B C

We notice that three situations are possible:

Case A:
for x ∈]−∞,−2[, − x− 2 > −x⇒ x + 2 < x⇒ 2 < 0

Thus the set of solution in this case is empty i.e. EA = {} = ∅
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Case B:
for x ∈ [−2, 0], x + 2 > −x⇒ x > −1

Thus, the set of solution in this case x ∈ [−2, 0] and x > −1 i.e. EB =]− 1, 0]

Case C:

for x ∈]0,+∞[, x + 2 > x⇒ 2 > 0. This latest inequality is always true, x ∈ R

Thus, the set of solution in this case x ∈]0,+∞[ and x ∈ R i.e. EC =]0,+∞[

From the three cases above, we conclude that the set of solutions to the inequality |x + 2| > |x| is:

E = EA ∪ EB ∪ EC = ∅ ∪]− 1, 0]∪]0,+∞[=]− 1,+∞[.

3. |2x− 1| < |x− 1|. Note that:

x 1/2 1

|2x− 1| −2x + 1 2x− 1 2x− 1

|x− 1| −x + 1 −x + 1 x− 1

A B C

With the same reasoning as in Example 2, we can show the following:

EA =

]
0,

1

2

[
, EB =

[
1

2
,
2

3

[
, and EC = ∅

⇒ E =

]
0,

2

3

[
.

Solution of the Exercise 4

1. max, min, sup, inf, lb, ub of E1 we have

n ∈ N⇔ 0 ≤ n <∞⇔ 1 ≤ n + 1 <∞⇔ 0 <
1

n + 1
≤ 1⇔ E1 =]0, 1]. (11)

From (11), we conclude that

lb: lb =]−∞; 0].

inf: inf = max(]−∞; 0]) = 0.

min: the minimum of E1 does not exist, because E1 is an open interval on the left side.

ub: ub = [1; +∞[

sup: sup = min([1; +∞[) = 1.

min: max=1 (because 1 ∈ E1).

2. max, min, sup, inf, lb, ub of E2

lb: lb =]−∞; 0].

inf: inf = max(]−∞; 0]) = 0.

min: the minimum of E2 does not exist, because E2 is an open interval on the left side.

ub: ub = [5; +∞[

sup: sup = min([5; +∞[) = 5.

min: max=5 (because 5 ∈ E2).
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3. max, min, sup, inf, lb, ub of E3

n ∈ N∗ ⇔ 1 ≤ n <∞⇔ 0 <
1

n
≤ 1⇔ −1 ≤ −1

n
< 0⇔ 3 ≤ 4− 1

n
< 4⇔ E1 = [3, 4]. (12)

From (12), we conclude that

lb: lb =]−∞; 3].

inf: inf = max(]−∞; 3]) = 3.

min: min=3;

ub: ub = [4; +∞[

sup: sup = min([4; +∞[) = 4.

min: the maximum of E3 does not exist, because E3 is an open interval on the right side.

4. max, min, sup, inf, lb, ub of E3 Let’s define the following subsets:

un =
1

2
+

n

2n + 1
, n ∈ N∗

vn =
1

2
− n

2n + 1
; n ∈ N∗

It is easy to show that un is an increasing sequence while vn is a decreasing sequence. Indeed,

un+1 − un =

(
1

2
+

n + 1

2n + 3

)
−
(

1

2
+

n

2n + 1

)
=

(2n2 + n + 2n + 1)− (2n2 + 3n)

(2n + 3)(2n + 1)

=
1

(2n + 3)(2n + 1) ≥ 0
> 0

⇔ un is an increasing sequence.

vn+1 − vn =

(
1

2
− n + 1

2n + 3

)
−
(

1

2
− n

2n + 1

)
=
−(2n2 + n + 2n + 1) + (2n2 + 3n)

(2n + 3)(2n + 1)

=
−1

(2n + 3)(2n + 1)
< 0

⇔ vn is a decreasing sequence.

so, {
u1 ≤ un < lim

n→∞
un,

lim
n→+∞

vn < vn ≤ v1,

{
5
6 ≤ un < 1,
0 < vn ≤ 1

6 ,
(13)

At this level, to answer the main question of the exercise we can proceed in two ways:
First way:

lb: we have lbu =]−∞; 5
6 ] and lbv =]−∞; 0] ⇒ lbE4 = lbu ∩ lbu =]−∞; 0].

inf: we have infu = 5
6 ] and infv = 0 ⇒ infE4 = min(infu, infv) = 0.

min: we have minu = 5
6 ] and minv does not exist ⇒ lbE4 does not exist.;

ub: we have ubu = [1; +∞[ and ubv = [16 ; +∞[ ⇒ lbE4 = ubu ∩ ubu = [1; +∞[.

sup: we have supu = 1 and supv = 1
6 ⇒ supE4 = max(supu, supv) = 1.
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0                                   1/6                                      5/6                                    1

un                                                                                            vn

E4

min: we have maxu does not exist and maxv = 1
6 ⇒ lbE4 does not exist.;

Second way: From (13), we note that

un ∈
[

5

6
; 1

[
and vn ∈

]
0;

1

6

]
⇒ E5 =

]
0;

1

6

]
∪
[

5

6
; 1

[
,

thus,

lb: lb =]−∞; 0].

inf: inf = max(]−∞; 0]) = 0.

min: minimum does not exist;

ub: ub = [1; +∞[

sup: sup = min([1; +∞[) = 1.

min: the maximum does not exist.

Solution of the Exercise 5

• x− 1 < E(x) ≤ x?
According to the definition of the integer part of a real number, we have

E(x) ≤ x < E(x) + 1 ⇔ 0 ≤ x− E(x) < 1

⇔ 0 ≤ x− E(x) < 1

⇔ −x ≤ −E(x) < −x + 1

⇔ x ≥ E(x) > x− 1.

• E(x) + E(y) ≤ E(x + y)?
Let x and y two real numbers. We have{

x = E(x) + Rx, with Rx ∈ [0, 1[;
y = E(y) + Ry, with Ry ∈ [0, 1[;

On the one hand, as Rx + Ry < 2 then

Rx + Ry =

{
0, if Rx + Ry ∈ [0; 1[;
1, if Rx + Ry ∈ [1; 2[;

On the other hand,

E(x + y) = E(E(x) + Rx + E(y) + Ry)

= E ((E(x) + E(y)) + (Ry + Rx))

= E(x) + E(y) + E(Rx + Ry)
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Consequently, {
E(x + y) = E(x) + E(y), if Rx + Ry ∈ [0; 1[;
E(x + y) = E(x) + E(y) + 1, if Rx + Ry ∈ [1; 2[;

⇒
{

E(x + y) = E(x) + E(y), if Rx + Ry ∈ [0; 1[;
E(x + y) > E(x) + E(y), if Rx + Ry ∈ [1; 2[;

⇒ E(x + y) ≥ E(x) + E(y).

• E(x)− E(y) ≥ E(x− y)?
Let x, y ∈ R.

E(x) = E((x− y) + y) ≥ E(x− y) + E(y)⇒ E(x)− E(y) ≥ E(x− y).

• E
(
E(nx)

n

)
= E(x)?

According to the definition of the integer part of a real number, we have

E(x) ≤ x < E(x) + 1 ⇔ nE(x) ≤ nx < nE(x) + n

⇔ E (nE(x)) ≤ E(nx) < E (nE(x) + n) , (E(.) is an increasing function)

⇔ nE(x) ≤ E(nx) < nE(x) + n (integer part of an integer number)

⇔ E(x) ≤ E(nx)

n
< E(x) + 1 (definition of E(.))

⇔ E

(
E(nx)

n

)
= E(x).
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