Exercise series N°1

Exercise 1 : Consider the following assertions:

 $A_1: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y > 0.$

 $A_2: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}: x + y > 0.$

 $A_3: \forall x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y > 0.$

 $A_4: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}: y^2 > x.$

- 1. Are assertions A_1 , A_2 , A_3 and A_4 true or false?
- 2. Give their negation.

Exercise 2:

• If a and b are two positive or zero real numbers, show that:

$$\sqrt{a} + \sqrt{b} < 2\sqrt{a+b}$$
.

• Prove by induction the following equalities:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad and \quad \sum_{k=0}^{n-1} 2^{k} = 2^{n} - 1, \quad with \ n \in \mathbb{N}^{*}$$

• Show that $\sqrt{2}$ is not a rational number.

Exercise 3 Let x and $y \in \mathbb{R}$.

- 1. Show that the following relationships are always true:
 - (a) If |x| < y then -y < x < y
 - (b) |x+y| < |x| + |y|.
 - (c) $||x| |y|| \le |x y|$.
- 2. Solve the following inequalities:
 - (a) |x-2| > 5.
 - (b) |x+2| > |x|.
 - (c) |2x-1| < |x-1|.

Exercise 4 Determine (if they exist): the all upper and lower bounds, supremum, infimum, maximum, and minimum, of the following sets:

$$E_1 = \left\{1, \frac{1}{3}, \frac{1}{5}, \dots, \frac{1}{2n+1}, \dots; \quad n \in \mathbb{N}\right\}, \qquad E_2 =]0, 5], \qquad E_3 = \left\{4 - \frac{1}{n}; n \in \mathbb{N}^*\right\},$$

$$E_4 = \left\{\frac{1}{2} + \frac{n}{2n+1}, \frac{1}{2} - \frac{n}{2n+1}; \quad n \in \mathbb{N}^*\right\}$$

Exercise 5 Show that the following relationships are true.

$$\bullet \ x - 1 < E(x) \le x,$$

•
$$E(x) + E(y) \le E(x+y)$$
,

•
$$E(x) - E(y) \ge E(x - y)$$
,

•
$$E\left(\frac{E(nx)}{n}\right) = E(x),$$

with $x,\ y\in\mathbb{R},\, n\in\mathbb{N}^*$ and E(.) is the integral part function.

Solution

Solution of the Exercise 1:

 A_1 : is false, because we can find an y in \mathbb{R} such that for any x in \mathbb{R} we have x+y less or equal to zero $(x+y\leq 0.)$

For example, if we take y=0, then for all x negative $(x \le 0)$ we have $x+y=x \le 0$

The negation: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}: x + y \leq 0.$

 A_2 : is true, the fact that for any x we can find an $y \in \mathbb{R}$ for which the inequality x + y > 0 is verified.

For exemple, if we take y = -x + 1 then x + y = 1 > 0.

The negation: $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}: \ x+y \leq 0.$

 A_3 : is false, because if we choose, for example, $y \leq 0$ and $x \leq 0$ then x + y < 0.

The negation: $\exists x \in \mathbb{R}, \exists y \in \mathbb{R} : x + y \leq 0.$

 A_4 : is true, and it is the fact that for all $y \in \mathbb{R}$, it is enough to take an x in the interval $]-\infty,y^2[$ for the inequality $y^2 > x$ to be verified.

The negation: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}: y^2 \leq x$.

Solution of the Exercise 2:

• For two positive or zero real numbers a and b, we have:

 $\begin{cases} a \leq a+b \\ b \leq a+b \end{cases} \implies \begin{cases} \sqrt{a} \leq \sqrt{a+b}.....(*) \\ \sqrt{b} \leq \sqrt{a+b}.....(**) \end{cases}$ (the fact that the root function is an increasing function)

by adding the two sides of the inequalities (*) and (**), we will have:

$$\sqrt{a} + \sqrt{b} \le 2\sqrt{a+b}$$
.

• Recall that the proof by induction is based on the following three steps:

Step 1: Verify that the desired result holds for $n = n_0$

Step 2: Assume that the desired result holds for n.

Step 3: Use the assumption from step 2 to show that the result holds for (n+1).

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \quad with \quad n \in \mathbb{N}^*$$
 (1)

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1, \quad with \ n \in \mathbb{N}^*$$
 (2)

for n=1:

$$\begin{cases}
\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 \\
\frac{n(n+1)}{2} = \frac{1(1+1)}{2} = \frac{2}{2} = 1
\end{cases}$$
(3)

for n: We assume that the following equality is true for n.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \tag{4}$$

for n+1: On the one hand, using the assumption (4), we have:

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$$

On the other hand we have:

$$\sum_{k=1}^{n+1} k = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Consequently, the equality (1) holds for n + 1. From the above three steps we conclude that (1) holds for all $n \in \mathbb{N}^*$.

for n=1:

$$\begin{cases} \sum_{k=0}^{n-1} 2^k &= \sum_{k=0}^{0} 2^k &= 2^0 = 1\\ 2^n - 1 &= 2^1 - 1 &= 2^1 - 1 = 1 \end{cases}$$
 (5)

So the equality holds for n = 1.

for n: We assume that the following equality is true for n.

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1 \tag{6}$$

for n+1: On the one hand, using the assumption (6), we have:

$$\sum_{k=0}^{n+1-1} 2^k = \sum_{k=0}^{n} 2^k = \sum_{k=1}^{n-1} 2^k + 2^n = 2^n - 1 + 2^n = 2 \times 2^n - 1 = 2^{n+1} - 1$$

On the other hand we have:

$$\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$$

Consequently, the equality (2) holds F for n+1. From the above three steps we conclude that (2) holds for all $n \in \mathbb{N}^*$.

• Proof By Contradiction that $\sqrt{2}$ is irrational Recall that for $n \in \mathbb{N}$, we have:

n is an odd natural number $\Leftrightarrow n^2$ is an odd natural number.

n is an even natural number $\Leftrightarrow n^2$ is an even natural number.

Note: The demonstration of the two equivalences above is an additional exercise to be left for the student. Assume that $\sqrt{2}$ is rational.

Then, let $\sqrt{2} = \frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z}^*$, and p and q are relatively prime i.e gcd(p,q) = 1.

$$\sqrt{2} = \frac{p}{q} \Rightarrow 2 = \frac{p^2}{q^2} \Rightarrow p^2 = 2q^2 \Rightarrow p^2$$
 is even $\Rightarrow p$ is even, say $p = 2m$ $\Rightarrow 4m^2 = 2q^2 \Rightarrow 2m = q^2 \Rightarrow q$ is even.

Thus, both p and q are even and have 2 as a common factor. But we assumed that p and q are relatively prime. This is a contradiction. Thus, $\sqrt{2}$ cannot be written as $\frac{p}{q}$ for $p \in \mathbb{Z}$ and $q \in \mathbb{Z}^*$ Thus $\sqrt{2}$ is irrational.

Solution of the Exercise 3 Let x and $y \in \mathbb{R}$.

1. From the definition of the absolute value we have:

$$\begin{cases}
 x < y, & \text{if } x \ge 0; \\
 -x < y, & \text{if } x < 0.
\end{cases} \Longrightarrow \begin{cases}
 x < y, & \text{if } x \ge 0; \\
 x > -y, & \text{if } x < 0.
\end{cases} \Longrightarrow -y < x < y.$$
(7)

2. We have

$$\begin{cases} -|x| \le x \le |x| \\ -|y| \le y \le |y| \end{cases} \Longrightarrow -|x| - |y| \le x + y \le |x| + |y| \Longrightarrow -(|x| + |y|) \le x + y \le (|x| + |y|) \tag{8}$$

As $|x| + |y| \ge 0$, then from (7) and (8) we can conclude that :

$$|x+y| \le |x| + |y|. \tag{9}$$

3. $||x| - |y|| \le |x - y|$? We have

$$\begin{cases} |x| \le |(x-y) + y| \\ |y| \le |(y-x) + x| \end{cases}$$
 using the inequality $(9) \Rightarrow \begin{cases} |x| \le |(x-y) + y| \le |(x-y)| + |y| \\ |y| \le |(y-x) + x| \le |(y-x)| + |x| \end{cases}$

$$\Rightarrow \left\{ \begin{array}{l} |x| \leq |(x-y)| + |y| \\ |y| \leq |(y-x)| + |x| \end{array} \right. \Rightarrow \left\{ \begin{array}{l} |x| \leq |(x-y)| + |y| \\ |y| \leq |(y-x)| + |x| \end{array} \right. \Rightarrow \left\{ \begin{array}{l} |x| - |y| \leq |x-y| \\ |y| - |x| \leq |x-y| \end{array} \right. \Rightarrow \left\{ \begin{array}{l} |x| - |y| \leq |x-y| \\ |x| - |y| \geq -|x-y| \end{array} \right.$$

Finally,

$$-|x - y| \le |x| - |y| \le |x - y|.$$

Thus, from the result proven at the beginning of the exercise, we conclude that

$$||x| - |y|| \le |x - y|.$$

Resolution of inequalities:

1. |x-2| > 5. we have the inequality |x-2| > 5, then using the absolute value definition, we can be rewritten the inequality as follows:

$$\begin{cases} (x-2) > 5, & \text{if } x-2 \ge 0; \\ -(x-2) > 5, & \text{if } x-2 < 0. \end{cases} \Rightarrow \begin{cases} (x-2) > 5, & \text{if } x \ge 2; \\ -(x-2) > 5, & \text{if } x < 2. \end{cases} \Rightarrow \begin{cases} x > 7, & \text{if } x \ge 2; \\ x < -3, & \text{if } x < 2. \end{cases}$$
(10)

Thus, the solutions of the inequality |x-2| > 5 are:

$$x \in]-\infty, -3[\cup]7, +\infty[.$$

2. |x+2| > |x|.

x	-2	0	
x	-x	-x	x
x+2	-x-2	x+2	x+2
	\overline{A}	B	C

We notice that three situations are possible:

Case A:

for
$$x \in]-\infty, -2[, -x-2 > -x \Rightarrow x+2 < x \Rightarrow 2 < 0]$$

Thus the set of solution in this case is empty i.e. $E_A = \{\} = \emptyset$

Case B:

for
$$x \in [-2, 0], x + 2 > -x \Rightarrow x > -1$$

Thus, the set of solution in this case $x \in [-2,0]$ and x > -1 i.e. $E_B =]-1,0]$

Case C:

for $x \in]0, +\infty[, x+2 > x \Rightarrow 2 > 0$. This latest inequality is always true, $x \in \mathbb{R}$

Thus, the set of solution in this case $x \in]0, +\infty[$ and $x \in \mathbb{R}$ i.e. $E_C =]0, +\infty[$

From the three cases above, we conclude that the set of solutions to the inequality |x+2| > |x| is:

$$E = E_A \cup E_B \cup E_C = \varnothing \cup] - 1, 0] \cup]0, +\infty[=] - 1, +\infty[.$$

3. |2x-1| < |x-1|. Note that:

x	1/2	1	
2x-1	-2x + 1	2x-1	2x-1
x-1	-x+1	-x+1	x-1
	A	B	\overline{C}

With the same reasoning as in Example 2, we can show the following:

$$E_A = \left]0, \frac{1}{2}\right[, \quad E_B = \left[\frac{1}{2}, \frac{2}{3}\right[, \quad and \quad E_C = \varnothing\right]$$

$$\Rightarrow E = \left[0, \frac{2}{3}\right].$$

Solution of the Exercise 4

1. max, min, sup, inf, lb, ub of E_1 we have

$$n \in \mathbb{N} \Leftrightarrow 0 \le n < \infty \Leftrightarrow 1 \le n+1 < \infty \Leftrightarrow 0 < \frac{1}{n+1} \le 1 \Leftrightarrow E_1 =]0,1].$$
 (11)

From (11), we conclude that

lb: $lb =]-\infty; 0].$

inf: $inf = max(] - \infty; 0]) = 0.$

min: the minimum of E_1 does not exist, because E_1 is an open interval on the left side.

ub: $ub = [1; +\infty[$

sup: $sup = min([1; +\infty[) = 1.$

min: max=1 (because $1 \in E_1$).

2. max, min, sup, inf, lb, ub of E_2

lb: $lb =]-\infty; 0].$

inf: $inf = max(] - \infty; 0]) = 0.$

min: the minimum of E_2 does not exist, because E_2 is an open interval on the left side.

ub: $ub = [5; +\infty[$

sup: $sup = min([5; +\infty[) = 5.$

min: max=5 (because $5 \in E_2$).

3. max, min, sup, inf, lb, ub of E_3

$$n \in \mathbb{N}^* \Leftrightarrow 1 \le n < \infty \Leftrightarrow 0 < \frac{1}{n} \le 1 \Leftrightarrow -1 \le \frac{-1}{n} < 0 \Leftrightarrow 3 \le 4 - \frac{1}{n} < 4 \Leftrightarrow E_1 = [3, 4]. \tag{12}$$

From (12), we conclude that

lb: $lb =]-\infty; 3].$

inf: $inf = max(] - \infty; 3]) = 3.$

min: min=3;

ub: $ub = [4; +\infty[$

sup: $sup = min([4; +\infty[) = 4.$

min: the maximum of E_3 does not exist, because E_3 is an open interval on the right side.

4. max, min, sup, inf, lb, ub of E_3 Let's define the following subsets:

$$u_n = \frac{1}{2} + \frac{n}{2n+1}, \quad n \in \mathbb{N}^*$$

$$v_n = \frac{1}{2} - \frac{n}{2n+1}; \quad n \in \mathbb{N}^*$$

It is easy to show that u_n is an increasing sequence while v_n is a decreasing sequence. Indeed,

$$u_{n+1} - u_n = \left(\frac{1}{2} + \frac{n+1}{2n+3}\right) - \left(\frac{1}{2} + \frac{n}{2n+1}\right)$$

$$= \frac{(2n^2 + n + 2n + 1) - (2n^2 + 3n)}{(2n+3)(2n+1)}$$

$$= \frac{1}{(2n+3)(2n+1) \ge 0} > 0$$

$$\Leftrightarrow u_n \text{ is an increasing sequence.}$$

$$v_{n+1} - v_n = \left(\frac{1}{2} - \frac{n+1}{2n+3}\right) - \left(\frac{1}{2} - \frac{n}{2n+1}\right)$$

$$= \frac{-(2n^2 + n + 2n + 1) + (2n^2 + 3n)}{(2n+3)(2n+1)}$$

$$= \frac{-1}{(2n+3)(2n+1)} < 0$$

$$\Leftrightarrow v_n \text{ is a decreasing sequence.}$$

so,

$$\begin{cases}
 u_1 \le u_n < \lim_{n \to \infty} u_n, \\
 \lim_{n \to +\infty} v_n < v_n \le v_1,
\end{cases}
\begin{cases}
 \frac{5}{6} \le u_n < 1, \\
 0 < v_n \le \frac{1}{6},
\end{cases}$$
(13)

At this level, to answer the main question of the exercise we can proceed in two ways: **First way:**

lb: we have $lb_u =]-\infty; \frac{5}{6}]$ and $lb_v =]-\infty; 0] \Rightarrow lb_{E_4} = lb_u \cap lb_u =]-\infty; 0].$

inf: we have $inf_u = \frac{5}{6}$ and $inf_v = 0 \implies inf_{E_4} = min(inf_u, inf_v) = 0$.

min: we have $min_u = \frac{5}{6}$] and min_v does not exist $\Rightarrow lb_{E_4}$ does not exist.;

ub: we have $ub_u = [1; +\infty[$ and $ub_v = [\frac{1}{6}; +\infty[$ $\Rightarrow lb_{E_4} = ub_u \cap ub_u = [1; +\infty[$.

sup: we have $sup_u = 1$ and $sup_v = \frac{1}{6} \implies sup_{E_4} = max(sup_u, sup_v) = 1$.

min: we have max_u does not exist and $max_v = \frac{1}{6} \Rightarrow lb_{E_4}$ does not exist.;

Second way: From (13), we note that

$$u_n \in \left[\frac{5}{6}; 1\right[\text{ and } v_n \in \left]0; \frac{1}{6}\right] \Rightarrow E_5 = \left]0; \frac{1}{6}\right] \cup \left[\frac{5}{6}; 1\right[,$$

thus,

lb: $lb =]-\infty; 0].$

inf: $inf = max(] - \infty; 0]) = 0.$

min: minimum does not exist;

ub: $ub = [1; +\infty[$

sup: $sup = min([1; +\infty[) = 1.$

min: the maximum does not exist.

Solution of the Exercise 5

• $x - 1 < E(x) \le x$?

According to the definition of the integer part of a real number, we have

$$\begin{split} E(x) & \leq x < E(x) + 1 & \Leftrightarrow & 0 \leq x - E(x) < 1 \\ & \Leftrightarrow & 0 \leq x - E(x) < 1 \\ & \Leftrightarrow & -x \leq -E(x) < -x + 1 \\ & \Leftrightarrow & x \geq E(x) > x - 1. \end{split}$$

• $E(x) + E(y) \le E(x+y)$?

Let x and y two real numbers. We have

$$\begin{cases} x = E(x) + R_x, & \text{with } R_x \in [0, 1[;\\ y = E(y) + R_y, & \text{with } R_y \in [0, 1[;] \end{cases}$$

On the one hand, as $R_x + R_y < 2$ then

$$R_x + R_y = \begin{cases} 0, & \text{if } R_x + R_y \in [0; 1[; \\ 1, & \text{if } R_x + R_y \in [1; 2[; \\ \end{cases})$$

On the other hand,

$$E(x + y) = E(E(x) + R_x + E(y) + R_y)$$

= $E((E(x) + E(y)) + (R_y + R_x))$
= $E(x) + E(y) + E(R_x + R_y)$

Consequently,

$$\begin{cases} E(x+y) = E(x) + E(y), & \text{if } R_x + R_y \in [0;1[;\\ E(x+y) = E(x) + E(y) + 1, & \text{if } R_x + R_y \in [1;2[;\\ \end{cases} \\ \Rightarrow \begin{cases} E(x+y) = E(x) + E(y), & \text{if } R_x + R_y \in [0;1[;\\ E(x+y) > E(x) + E(y), & \text{if } R_x + R_y \in [1;2[;\\ \end{cases} \\ \Rightarrow E(x+y) \ge E(x) + E(y). \end{cases}$$

• $E(x) - E(y) \ge E(x - y)$? Let $x, y \in \mathbb{R}$.

$$E(x) = E((x - y) + y) \ge E(x - y) + E(y) \Rightarrow E(x) - E(y) \ge E(x - y).$$

• $E\left(\frac{E(nx)}{n}\right) = E(x)$? According to the definition of the integer part of a real number, we have

$$\begin{split} E(x) & \leq x < E(x) + 1 & \Leftrightarrow \quad nE(x) \leq nx < nE(x) + n \\ & \Leftrightarrow \quad E\left(nE(x)\right) \leq E(nx) < E\left(nE(x) + n\right), \ (E(.) \text{ is an increasing function}) \\ & \Leftrightarrow \quad nE(x) \leq E(nx) < nE(x) + n \ (\text{integer part of an integer number}) \\ & \Leftrightarrow \quad E(x) \leq \frac{E(nx)}{n} < E(x) + 1 \ (\text{definition of E}(.)) \\ & \Leftrightarrow \quad E\left(\frac{E(nx)}{n}\right) = E(x). \end{split}$$