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1. What is a linear regression?

• Linear Regression is a form of statistical approach;
• Linear Regression is useful to examine and establish a relationship

between two separate variables – independent and dependent 
variables.

• Linear Regression devided into two categories –
• # Simple Linear Regression: The model includes one independent

variable
• # Multiple Linear Regression: This model includes more than one 

independent variables



1. What is a linear regression?

• Dependent Variable: This is the outcome or the effect that you are 
trying to measure or explain. It "depends" on other factors, which are 
the independent variables. A dependent variable Also known as the 
predicted variable, explained variable. 

• Independent variable: This is the factor that you think might
influence or cause changes in the dependent variable. It's what you
observe to see if it has an effect. also called the explanatory variable, 
exogenous variable, predicting variable.

• For example, if you're studying how studying time affects exam 
scores, the exam score is the dependent variable.



2. The concept of simple linear regression

• Simple linear regression is a regression model that estimates the 
relationship between one independent variable and one dependent
variable using a straight line. 

• You can use simple linear regression when you want to know:

1.How strong the relationship is between two variables
2.The value of the dependent variable at a certain value of 

the independent variable -This helps in the forecasting or anticipating
process.

https://www.scribbr.com/methodology/independent-and-dependent-variables/
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3. How to perform a simple linear regression

• Simple linear regression formula: the formula for a simple linear regression is:

𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿 + 𝜺

y is the predicted value of the dependent variable (y) for any given value of the independent 

variable (x).

𝜷𝟎 is the intercept, the predicted value of y when the x is 0.

𝜷𝟏 is the regression coefficient – how much we expect y to change as x increases or decrease.

x is the independent variable ( the variable we expect is influencing y).

𝜺 is the error of the estimate, or how much variation there is in our estimate of the regression 

coefficient.



3. How to perform a simple linear regression

• To find the linear equation by hand, you need to get the value of “𝛽!” 
and “𝛽"”. 

• Then substitute the resulting value in the slope formula and that gives
you your linear regression equation. 

• We will take the following example to understand how it is done. 



3. How to perform a simple linear regression

• Lets take the following dataset as an example: 

"𝑋=
∑!
" $!
%

 =16500/5= 3300, "𝑌=
∑!
" &!
%

=12000/5=2400

Month Income 
(Xi)

Money 
spent (Yi)

(𝑿𝒊 − $𝑿) (𝒀𝒊 − $𝒀) (𝑿𝒊 − $𝑿)(𝒀𝒊 − $𝒀) (𝑿𝒊 − $𝑿)𝟐

1 2000 2000 -1300 -400 520000 1690000

2 3000 2200 -300 -200 60000 90000

3 4000 3000 700 600 420000 490000

4 2500 1200 -800 -1200 960000 640000

5 5000 3600 1700 1200 2040000 2890000

Sum 16500 12000 4000000 5800000



3. How to perform a simple linear regression

The least square estimator for the slope 𝛃𝟏 and intercept  𝛃𝟎 and 
error term 𝜺 in the linear regressin model are: 
• !𝛽' =

∑!"#
$ ()!* +))(,!*+,)
∑!"#
$ ()!* +))%

…..……………………(1)

• !𝛽- = $𝑌. − !𝛽' $𝑋. ………………………………..(2)
• (𝑌. = !𝛽- + !𝛽'𝑋.  ……………….……………….(3)
• *𝜀. = 𝑌. − (𝑌.……………………...................(4)
• So, if we continue with the example in above table, the value of 𝛃𝟏 and 𝜷𝟎 can 

be as follow:
• !𝛽' = 1------

23----- = 0.689   , !𝛽- = 2400 − 0.689 ∗ 3300 =126.3
• Our regression model is: 
• 7𝑌 = 126.3 + 0.689𝑋 + 𝜀



3. How to perform a simple linear regression

• If we want to make a prediction about the value of Y for a given value 
of X let’s say 8000

• '𝑌)=126.3+0.689*8000=5638.3
• To	find the	value	of	error we calculate	'Y* then substract it from the 

actual or the true value of Y
• '𝑌) = 126.3+0.689*5000=3571.3
• The value of error is 
• :𝜀) = 𝑌) − '𝑌) , :𝜀)=3600-3571.3=28.7



4. Estimating the deviation

• The value 𝑌) − '𝑌), is a positive when the point lies above the 
regression line and a negative number when it lies below the 
line. 

• The error (or residual) can be thought of as a measure of 
deviation and we can summarize the notation in the following
way:  :𝜀) = 𝑌) − '𝑌)

• The following example show the error;





4. Estimating the deviation

• The Sum of Squares Error denoted by SSE, is defined as the variation 

of the dependent variable unexplained by the independent variable. 

SSE is given by the sum of the squared differences of the actual y-

value 𝑌) and the predicted y-values >𝑌)

• SSE= ∑)+"% (𝑌) − >𝑌)), = ∑)+"% 𝑌) − ( B𝛽! + B𝛽"𝑋))
,



Month 𝑿𝒊 𝒀𝒊 4𝐘𝒊 𝒀𝒊 - 4𝐘𝒊 (𝒀𝒊 − 4𝐘𝒊)𝟐

1 2000 2000 1504.3 495.7 420292.89 4𝑌# = 8𝛽$ −8𝛽%𝑋#
2 3000 2200 2193.3 6.7 44.89 ;𝜀# = 𝑌# − 4𝑌#
3 4000 3000 2882.3 117.7 13853.29

𝑠𝑠𝑒 =)
!"#

$

(𝑌! − -𝑌!)%

4 2500 1200 1848.3 -648.3 420292.89 8𝜎& = ''(
)*&

=
∑!"#
$ (-* .-!)%

)*&

5 5000 3600 3571.3 28.7 823.69 So, 8𝜎&=680733.25/3

SSE 680733.25 8𝜎&=226911.08

Roughly speaking, 226911.08 is the magnitude of a typical deviation from the 
estimated regression line—some points are closer to the line than this and others
are further away. 



5. Model Validity



5. Model validity
• The error sum of squares SSE can be interpreted as a measure of how much

variation in y is left unexplained by the model—

• In the first plot (a) SSE = 0, There is no unexplained variation, or all 
variation is explained. all the points are fall exactly on a straight line. In this
case, all (100%) of the variation in y can be attributed to the variation in x.

• In the second plot (b) unexplained variation is small, means most variation 
is explained. 

• In the third plot (c), the simple linear regression model fails to explain
variation in y by relating y to x.



6. Model validity

• Model Validity: defined as “the process of checking that the model is 
a good representation of the target”. 

• To examine the validity of the model, we follow the following steps:

• Measuring the explanatory power and correlational strength of the 
model: For this purpose, we calculate the The coefficient correlation
and the coefficient of determination 𝑹𝟐.



6. Model validity

First- Correlation coefficient is the value that determine the strength
of associations between data variables.

• The most common, called a Pearson correlation coefficient, measures
the strength and the direction of a linear relationship between two
variables.

• Values always range from -1 for a perfectly inverse, or negative, 
relationship to 1 for a perfectly positive correlation. Values at, or close 
to, zero indicate no linear relationship or a very weak correlation.



6. Model validity

• The further the coefficient is far from zero, whether it is positive or 
negative, the better the fit and the greater the correlation. 

• The values of -1 (for a negative correlation) and 1 (for a positive 
correlation) describe perfect fits in which all data points align in a 
straight line, indicating that the variables are perfectly correlated.

• The closer the correlation coefficient is to zero the weaker the 
correlation, until at zero no linear relationship exists at all.





6. Model validity 

• To calculate the Pearson correlation, start by determining each
variable's standard deviation as well as the covariance between them. 
The correlation coefficient is covariance divided by the product of the 
two variables' standard deviations.

• 𝜌$,& =
/01 ($,&)
4#4$

• 𝜌$,&:pearson correlation coefficient
• 𝑐𝑜𝑣(𝑥, 𝑦): covariance of variables x and y
• 𝜎$:standard deviation of x
• 𝜎&: standard deviation of y

https://www.investopedia.com/terms/s/standarddeviation.asp
https://www.investopedia.com/terms/c/covariance.asp


6. Model validity

• Standard deviation is a measure of the dispersion of data from its 
average. 

• Covariance shows whether the two variables change together, 
• The correlation coefficient measures the strength of that relationship

on a normalized scale, from -1 to 1.

https://www.investopedia.com/terms/d/dispersion.asp


6. Validity of model
• Second- The coefficient of determination: The coefficient of determination
𝑅 > measures the proportion of the total variability of the dependent variable that

is explained by the independent variable. It is calculated using the formula below:

• 𝑅> = ?@ABC.DEF GCH.CI.JD
KJICB GCH.CI.JD = LMN JO LPMCHEQ RESHEQQ.JD (LLR)

LMN JO LPMCHEQ KJICB (LLK) ………………….(I)

• Before we continue driving or formulating the formula of 𝑅>, let’s first define SSR 
and SST.

1. The sum of squares regression is the variation of the dependent variable 
explained by the independent variable. It is given by the sum of the squared 
differences of the predicted y-value 7𝑌. and mean of y-observations :𝑌.

• 𝑆𝑆𝑅 = ∑.T'U 7𝑌. − :𝑌
>



6. Model validity

2. Sum of Squares Total (SST): is a measure of the total variation of the 
dependent variable. It is the sum of the squared differences of the actual y-
value and mean of y-observations.

• 𝑆𝑆𝑇 = ∑ 𝑦! − '𝑦 " = ∑𝑦!" − ∑𝑦! " ∕ 𝑛
• The Sum of Squares Total contains two parts:
• Sum of Square Regression (SSR).
• Sum of Squares Error (SSE). We talked about it in previous section
• 𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅
• Therefore, the sum of squares total is given by:
• Sum of Squares Total=Explained Variation + Unexplained Variation=SSR+ SSE





6. Model Validity

• Let’s continue with formula (I)
• 𝑅> = KJICB GCH.CI.JD*MDE@ABC.DEF GCH.CI.JD

IJICB GCH.CI.JD = LLK*LL?
LLK = 1 − LL?

LLK ………(II)

• 𝑅> = 1 − ⁄𝑆𝑆𝐸 𝑆𝑆𝑇 = 1 − ∑ V!*WV! %

∑ V!*+V % ………………...(III)

•  (a number between 0 and 1) is the proportion of observed y variation explained 
by the model. 

• Note that if 𝑆𝑆𝐸 = 0. as in case (a), then 𝑅>=1 . 
• It is interpreted as the proportion of observed y variation that can be explained

by the simple linear regression model. The higher the value of 𝑅>, the more 
successful is the simple linear regression model in explaining y variation. 



6. Validity of model
• Month
• 𝑿𝒊
• 𝒀𝒊
• 4𝐘𝒊
• 𝒀𝒊 - 4𝐘𝒊

Month 𝒀𝒊 $𝒚 𝒚𝒊 − $𝒚 𝒚𝒊 − $𝒚 𝟐

1 2000 2400 -400 160000 SST=3440000

2 2200 2400 -200 40000 SSE=680733.25

3 3000 2400 600 360000 𝑟& = 1 −
𝑆𝑆𝐸
𝑆𝑆𝑇 = 1 −

680733.25
3440000

4 1200 2400 -1200 1440000 𝑅& = 1 − 0.1979 = 0.802 = 80.2%

5 3600 2400 1200 1440000

Sum 3440000

That is, 80.2% of the observed variation in Money spent can be explained
by the simple linear regression relationship between money spent and 
Income value. 



6. Model validity
• Features of Coefficient of Determination 𝑅#

i. 𝑅# lies between 0 and 1. 

ii. A high 𝑅# explains variability better than a low 𝑅#.

iii. If 𝑅# =0.01, only 1% of the total variability in Y can be explained. On the other hand, 
if 𝑅# =0.90, over 90% of the total variability in Y can be explained. 

iv. The higher the 𝑅#, the higher the explanatory power of the model.

v. For models with one independent variable, 𝑅# is calculated by squaring the 
correlation coefficient between the dependent and the independent variables:

• 𝑅
#$ 012 3,5

6563

7

……………………….(IV)



7. Test of overall significance in regression

• Once the estimation of a regression model is complete, we
would like to:

Øcheck the statistical significance of a regression model, this requires us 
to calculate the F-statistic.

ØThe F-statistic confirms whether the slope (denoted by 𝛽)) in a 
regression model is equal to zero.

ØIn a typical simple linear regression hypothesis, the null hypothesis is 
formulated as: 𝐻!: 𝛽"= 0 against the alternative hypothesis, 𝐻!: 𝛽" ≠
0. 



7. Test of overall significance in regression

• The Sum of Squares Regression (SSR) and Sum of Squares Error (SSE) 
are employed to calculate the F-statistic. In the calculation, both the 
Sum of Squares Regression (SSR) and Sum of Squares Error (SSE) are 
adjusted for the degrees of freedom.

• The Sum of Squares Regression is divided by the number of 
independent variables, k, to get the Mean Square Regression
(MSR).That is: 

• 𝑀𝑆𝑅 = 556
7
= ∑!%&

" ( 8&!9 :&)'

7
= ∑)+"% ( S𝑦) − "𝑦),

• Therefore, in Simple Linear Regression Model, MSR = SSR.



7. Test of overall significance in regression
• Also, the Sum of Squares Error (SSE) is divided by degrees of freedom

given by n−k−1 (this translates to n−2 for simple linear regression) to 
arrive at Mean Square Error (MSE). That is,

• 𝑀𝑆𝐸 = 55;
<979"

= ∑!%&
" (&!9 8&!)'

<979"
= ∑!%&

" (&!9 8&!)'

<9,
since K=1

• Finally, to calculate the F-statistic for the linear regression, we find the 
ratio of MSR to MSE. That is,

• 𝐹 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = =56
=5;

=
(()
*
((+

,-*-&
since k=1       𝐹 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 556

((+
,-'

• 𝐹 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 556
((+
,-'

= ∑!%&
" ( 8&!9 :&)'

∑!%&
" ($!-0$!)'

,-'



7. Test of overall significance in regression

• A large F-statistic value proves that the regression model is effective 
in its explanation of the variation in the dependent variable and vice 
versa. 

• An F-statistic of 0 indicates that the independent variable does not 
explain the variation in the dependent variable.



Month 𝒚𝒊 ;𝒚𝒊 𝒚𝒊 − ;𝒚𝒊 ;𝒚𝒊 − $𝒚 (𝒚𝒊 − ;𝒚𝒊)𝟐 (;𝒚𝒊 − $𝒚 )𝟐

1 2000 1504.3 495.7 -895.7 420292.89 802227.49

2 2200 2193.3 6.7 -206.7 44.89 42724.89

3 3000 2882.3 117.7 482.3 13853.29 232613.29

4 1200 1848.3 -648.3 -551.7 420292.89 304372.89

5 3600 3571.3 28.7 1171.3 823.69 1371943.69

Sum 12000 680733.25 2753882.25

:𝑦 = 2400

𝐹 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = LLR
//0
12%

= ∑!"#
$ ( WV!*+V)%

∑!"#
$ (4!254!)%

12%

 = >i2j33>.>26789::.%<
:

= 12.14



7. Test of overall significance in regression
• When you fit a regression model to a dataset, you will receive a 

regression table as output, which will tell you the F-statistic along with 
the corresponding p-value for that F-statistic.
• If the p-value is less than the significance level (common level are .01, 

.05, and .10), then you have sufficient evidence to conclude that your
regression model fits the data better than the intercept-only model.
• For example if we find in our regression the value: 
• F-statistic: 12.14
• P-value: 0.0332
• Since the p-value is less than the significance level, we can conclude

that our regression model fits the data better than the intercept-only
model.

https://www.statology.org/how-to-read-and-interpret-a-regression-table/
https://www.statology.org/how-to-read-and-interpret-a-regression-table/


Example of how to perform a linear
regression in Microsoft Excel 

Hour studied (X) Exam Score (Y)
2 60
3 62
4 66
5 71
6 78
8 80
10 86
12 93



8. How to read the value in Excel table 

Coefficients Standard 
error

T-stat P-value Lower 95% Upper 95%

Constant 53,7390 1,5463 34,754069 3,78E-08 49,956138 57,52339408

Hour studied (X) 3,3216 0,2192 15,15160 5,21E-06 2,7852088 3,858065982



ANALYSE DE VARIANCE = ANOVA-test
Degree of 
freedom

Somme des 
carrés

Moyenne des 
carrés F

Valeur critique 
de F

Regression SSR 1 943,345 943,345 229,5712 5,2135E-06

Residual SSE 6 24,655 4,109

Total  SST 7 968

Regression Statistics

Multiple R 0,987182855

Coefficient of determination 𝑅! 0,974529989

Adjusted 𝑅! 0,970284987

Standard error 2,027106754

Observations 8



8. How to read the table

• From the table we see: B𝛽" = 3.3216 and B𝛽!=53.7390
• Standard error related to B𝛽"is  0.2192, this value provides an estimate

of how much the estimated value of parameter B𝛽 or other statistic is 
likely to vary from the true population parameter.

• SSE=24.655
• SSR=943.345
• SST= 968
• F-statistic=229.5712.
• 𝑅, = 0.9745    



8. Testing the hypothesis
In our example we are interested in determining the relationship between 
exam scores and the number of hours studied;

• Here, the hypothesis: 
𝐻#: 𝛽$ = 0
𝐻%: 𝛽$ ≠ 0

• After testing the data we get the the value of 2𝛽$ = 3.3216  and t-
stat=15.1516, p-value=5,21E-06, lower 95% =2.7852 & Upper95%=3.858



Testing the hypothesis- using confidence 
interval

• A confidence interval is a statistical range within which the true population 
parameter is likely to fall. It provides a range of values rather than a single 
point estimate and is associated with a certain level of confidence (eg: 95%).



Testing the hypothesis- using confidence 
interval
• Example: In the table we see that the value of Coefficient B𝛽" is 3.3216 

which is beteween the lower limit (2.758) and Upper limit (3.858) for 
confidence level of 95% . The value of B𝛽!is 53.7390 which is 
beteween the lower (49.956) and Upper limit (57.523) for confidence 
level of 95% 

• From the tables, the estimated value of the B𝛽" is statistically 
significant, as its value belongs to the interval determined by the 
confidence level.



8. Testing the hypothesis using t-statistic

• T-statistic: the calculated t-statistic is 15.1516, we compare this value to 
the critical value  from t-distribution in the table below, to do so we need 
to Know the degree of freedom and confidence level

i. The degree of freedom (df) of a statistic is calculated from the sample
size (n).

• df = n – 2 ; in our example df = 6
ii. The significance level: the significance level 95%, or 𝛼 = 0.05….(1-0.95)
• So, from the table of critical values of t, we can see that the critical value  

from t-distribution is 1.943 which is less than the calculated t-statistic, so
we reject the null hypothesis and accept the alternative hypothesis

https://www.scribbr.com/statistics/parameter-vs-statistic/
https://www.scribbr.com/statistics/statistical-significance/




8. Testing the hypothesis using P-value

• P-value:is the probability of rejecting the null hypothesis when it is 
true. It is often set before conducting the test and represents the 
maximum allowable probability of making error.

• Commonly used significance levels are 0.05, 0.01, and 0.10.

• A significance level of 0.05, for example, means that you are willing to 
accept a 5% (𝛼 = 0.05 )chance of rejecting the null hypothesis when
it is actually true.



8. Testing the hypothesis using P-value

• So, if the p-vale is less than or equal to the significance level, you reject the 
null hypothesis.

• If the p-value is greater than the significance level, you fail to reject the null
hypothesis.

• In our example t-statistic p- value related to the coefficient 2𝛽$ is very small
(5.2135E-06=0.000005213= 0.000521%) is less than 1% , so, we conclude that
there is a significant positive relationship between the hour studied and exam 
score, for each 1% increase in hour studied the exam score move up by 
3.321%.



• We can also see that the p-value related to F-statistic is very small
(0.000036),so the relationship is highly statistically significant.

• From the R-squared, we can see that the the hour studied alone can 
explain more than 97% of the observed variations in the  exam score.


