
Chapter 1

Real function

A real-valued function of a real variable relates a real value to any number within its domain. This

type of numerical function makes it possible, in particular, to formulate a relationship between two

physical quantities. It is characterized by its graphical representation in the coordinate plane, and

can also be defined by a specific formula, differential equation, or analytical form.

1.1 Numerical function

Definition 1.1

Let E and F be two sets and f be a relation from the set E to the set F . We say that f is a

function, if every element of E is associated with at most one element of F , and we write:

f : E −→ F

x 7−→ f(x) = y

is an application

Definition 1.2

We say that f is a numerical function if and only if:

f : E ⊂ R −→ F ⊂ R
x 7−→ f(x) = y

is an application

1
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In other words, f is a numerical function if and only if for every element x in E, its image in F

is at most one real number.

Example 1.1

The function: inverse of x

f : ]−∞, 0[∪ ]0,+∞[ −→ R

x 7−→ 1

x
.

1.1.1 Domain of definition

To determine the domain of a numerical function, we need to find the set of numbers for which the

function is defined. So we can define the domain of a numerical function as follows:

Definition 1.3

Let f be a numerical function. The domain of f , denoted by Dom(f), is the set of all real

numbers x such that f(x) is a well-defined real number and we write:

Dom(f) = {x ∈ R | f(x) ∈ R}

In other words, the domain of a numerical function is the set of all values for which the

function is defined and has a real number output.

f : Dom(f) ⊂ R −→ R
x 7−→ f(x).

Example 1.2

Let the function f be defined as follows

f : R −→ R

x 7−→ f(x) =
1

(x2 − 1)
.

The variable x is in the denominator of the function. We know that a real number cannot

have a denominator equal to zero. Therefore, we cannot compute the image of the numbers 1

and −1 under the function f . Hence, f is defined for all real numbers except −1 and 1, and
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we write:

(f : Defined ) ⇐⇒ x2 − 1 ̸= 0

x2 − 1 = 0 ⇐⇒ (x− 1) (x+ 1) = 0

⇐⇒ x = 1 ∧ x = −1

⇐⇒ Df = R−{1,−1}

⇐⇒ Df = ]−∞,−1[ ∪ ]−1, 1[ ∪ ]1,+∞[

x

y

1
x2−1

1−1

1.1.2 Function curve

Definition 1.4

The graph of the function f : U → R is the subset Γf of R2 defined as follows:

Γf =
{
(x, f(x)) | x ∈ U

}
.

Example 1.3

To the right the graph of the function 1/x and to the left of the graph of the function

1

2
+

x2

2
+ sin

(
3(x− 1)

2

)
.
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x

f(x)
(x, f(x))

Γf

x

y

1
x

1.2 Parity and periodicity

In this section, we will learn how to determine whether a function is even, odd, or neither, using its

graph or its definition. The symmetry of the function’s curve indicates whether it is odd or even.

1.2.1 Even function

Definition 1.5

We say that f is an even function if:

∀x ∈ Df : f (x) = f (−x) .

Example 1.4

Functions defined on the set R as x 7→ axn where n is even, are even functions.
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x

y

x2

x4
6x6

If the function f is even, this means that f(−x) = f(x) for all x in the domain of the func-

tion. Therefore, if we replace x with −x in the point M(x0, f(x0)), the point M ′(−x0, f(−x0)) =

(−x0, f(x0)) is obtained.

Regarding the axis of symmetry, it represents the x-axis, so only the x-coordinates are exchanged.

Therefore, we can see that the point M ′(−x0, f(x0)) is the reflection of the point M(x0, f(x0)) with

respect to the axis of symmetry. Thus, the points M and M ′ are symmetric with respect to the

axis of symmetry.

1.2.2 Odd function

Definition 1.6

We say that f is an odd function if:

∀x ∈ Df : f (x) = −f (−x) .

Example 1.5

Functions defined on the set R as follows x 7→ xn where (n ∈ N) is an odd functions
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x

y

x3
x5

x7

If the function f is odd, this means that f(−x) = −f(x) for all x in the domain of the func-

tion. Therefore, if we replace x with −x in the point M(x0, f(x0)), the point M ′(−x0, f(−x0)) =

(−x0,−f(x0)) is obtained.

Regarding the origin, it is the point (0, 0) on the coordinate plane. Therefore, we can see that

the point M ′(−x0, f(−x0)) is the reflection of the point M(x0, f(x0)) with respect to the origin.

Thus, the points M and M ′ are symmetric with respect to the origin.

1.2.3 Periodic function

Graphically, periodic functions refer to a pattern that is repeated regularly in the Cartesian plane.

To fully understand the concept of periodicity, it is important to master the concepts of cycle and

period.

Definition 1.7

The part of the graph that corresponds to the smallest repeating pattern of a periodic function

is called one cycle. The gap between two consecutive points that mark the end of the same

cycle is called the period.
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Definition 1.8

We say that f is a periodic function if there exists k > 0 where :

∀x ∈ Df : f (x+ k) = f (x) .

x x+ Ti⃗

ff(x) = f(x+ T )

Example 1.6

The sine and cosine functions are periodic functions with a period of 2π, while the tangent

function is a periodic function with a period of π.

x

y

cosx

sinx

E

F

0 π−π

+1

−1

1.2.4 Positive and negative functions

Let f be a numerical function defined on a set Df , and let ∆ be a subset of Df .

Definition 1.9

The function f is said to be positive (or strictly positive) on ∆ if:

∀x ∈ ∆ : f (x) ≥ 0 (f (x) > 0) .

The function f is said to be negative (or strictly negative) on ∆ if:

∀x ∈ ∆ : f (x) ≤ 0 (f (x) < 0) .
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Remark 1.2.1. • If the function f is positive, its graph lies above the x-axis, and conversely,

if the function f is negative, its graph lies below the x-axis.

• If the function f is strictly positive or strictly negative, its graph never intersects the x-axis.

1.2.5 Operations on functions

Let f : U → R and g : U → R be two defined functions on the same part U of the set R. From

this, we can define the following functions:

1) The sum of the functions f and g is the function f + g : U → R defined as follows:

∀x ∈ U, (f + g)(x) = f(x) + g(x).

2) The product of the functions f and g is the function f · g : U → R defined as follows:

∀x ∈ U, (f · g)(x) = f(x) · g(x).

3) The product by scalar λ ∈ R and the function f is the function λ · f : U → R defined as

follows:

∀x ∈ U, (λ · f)(x) = λ · f(x).

x

y

x

f(x)

g(x)

(f + g)(x)

g

f

f + g
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1.2.6 Comparison of two functions

Let f and g be two defined functions on the same domain ∆ ⊂ Df ∩Dg. We say that f is less than

or equal to g, denoted as:

f ≤ g : if ∀x ∈ ∆, f(x) ≤ g(x).

We say that f is greater than or equal to g, denoted as:

f ≥ g : if ∀x ∈ ∆, f(x) ≥ g(x).

Remark 1.2.2. If the function f is greater than or equal to g, then the graph of the function f lies

above the graph of the function g.

x

y

f(x) = exp(x)

g(x) = ln(x)

1.2.7 Function monotony

Let f be a function defined on its domain Df , and let I be a subset of Df .

Definition 1.10

We say that f is increasing on I if and only if:

∀(x, y) ∈ I2 : x > y =⇒ f(x) ≥ f(y).

Example 1.7

The function logarithm x 7→ ln (x) is an increasing function on the domain ]0,+∞[.
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x

y
f(x) = ln(x)

Definition 1.11

We say that f is strictly increasing on I if and only if:

∀(x, y) ∈ I2 : x > y =⇒ f(x) > f(y).

Definition 1.12

We say that f is strictly decreasing on I if and only if:

∀(x, y) ∈ I2 : x > y =⇒ f(x) ≤ f(y).

Definition 1.13

We say that f is strictly decreasing on I if and only if:

∀(x, y) ∈ I2 : x > y =⇒ f(x) < f(y).

Example 1.8

The inverse function x 7→ 1
x
is a strictly decreasing function on the domain ]0,+∞[.
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x

y

f(x) = 1/x

1.2.8 Finite function

Before investigating whether a function is bounded or not, it must be defined on a non-empty set,

and then we can start searching for the bounds of the function.

Definition 1.14

Let f be a numerical function defined on the set Df

1) We say that f is bounded above if and only if there exists a real number M such that:

∀x ∈ Df : f(x) ≤ M.

2) We say that f is bounded below if and only if there exists a real number m such that:

∀x ∈ Df : m ≤ f(x).

3) We say that f is bounded if and only if there exist two real numbers m and M such

that:

∀x ∈ Df : m ≤ f(x) ≤ M.
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x

y

M

m

Example 1.9

The sine and cosine functions are bounded functions.

x

y

cosx

sinx
0 π−π

+1

−1

1.2.9 Max and min values of a function

Definition 1.15

Let f be a numerical function defined on the set Df , and let x0 ∈ Df and I be a subset of

Df .

1) We say that the number f(x0) is the absolute maximum value of the function f at the

point x0 if:

∀x ∈ Df : f(x) ≤ f(x0).

2) We say that the number f(x0) is a relative maximum value of the function f at the
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point x0 in the domain I if x0 ∈ I and:

∀x ∈ I f(x) ≤ f(x0).

3) We say that the number f(x0) is the absolute minimum value of the function f at the

point x0 if:

∀x ∈ Df f(x) ≥ f(x0).

4) We say that the number f(x0) is a relative minimum value of the function f at the

point x0 in the domain I if x0 ∈ I and:

∀x ∈ I f(x) ≥ f(x0).

Example 1.10

The function f has an upper limit and a lower limit at the two specified points in the graph

on the domain [2, 2].

y

f(x) = 3x3 − x2 − 10x

x2−2

1.3 Limits

Limits are one of the fundamental concepts in mathematics and an important concept in analysis,

upon which the concepts of continuity, differentiation, and integration rely. Undoubtedly, the reader
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has already studied the topic of limits, but in this chapter, we study limits in more detail.

1.3.1 Definitions

End at point

Definition 1.16

We say that a subset V of R is a neighborhood of the point x0 if it contains an open set that

includes the point x0.

Let f : I → R be a function defined on the domain I of R. Let x0 ∈ R be a point in the domain

I.

Definition 1.17

We say that the function f , defined in a neighborhood of the point x0 (possibly undefined at

the point x0), has a limit ℓ ∈ R at the point x0 if:

∀ϵ > 0 ∃δ > 0 ∀x ∈ I |x− x0| < δ =⇒ |f(x)− ℓ| < ϵ.

and we say that the function f(x) approaches ℓ as x approaches x0, and we write:

lim
x→x0

f(x) = ℓ or lim
x0

f = ℓ.

x

y

x0

ℓ
ϵ

ϵ

δ



1.3. LIMITS 15

Example 1.11

Let f(x) = 3x− 2, the task is to find the limit at the point x0 = 1. We have:

lim
x→1

f (x) = lim
x→1

(3x− 2) = 1

Using the definition, we find

∀ϵ > 0, ∃δ > 0, ∀x ∈ R, |x− x0| < δ =⇒ |f(x)− ℓ| < ϵ

|x− 1| < δ =⇒ |3x− 2− 1| < ϵ

=⇒ |3x− 3| < ϵ

=⇒ |3 (x− 1)| < ϵ

=⇒ 3 |(x− 1)| < ϵ

=⇒ |(x− 1)| < ϵ

3

It means that taking the value δ = ϵ
3
is sufficient to show that for any x satisfying |x−1| < δ,

we have |f(x)− 1| < ϵ.

lim
x→1

f (x) = 1.

Let f be a function defined on the set of points of the form ]a, x0[∪]x0, b[.

Definition 1.18

.

1) We say that the function f tends to +∞ at the point x0 if

∀A > 0, ∃δ > 0, ∀x ∈ I : |x− x0| < δ =⇒ f(x) > A.

we write:

lim
x→x0

f(x) = +∞.

2) We say that the function f has a limit of −∞ at the point x0 if:

∀A > 0, ∃δ > 0, ∀x ∈ I : |x− x0| < δ =⇒ f(x) < −A.

we write:

lim
x→x0

f(x) = −∞.



16 CHAPTER 1. REAL FUNCTION

Let the function f : I → R be defined on a set of the form I =]a,+∞[.

Definition 1.19

1) We say that the function f converges to the limit ℓ ∈ R as x approaches infinity, denoted

by +∞, if:

∀ϵ > 0, ∃B > 0, ∀x ∈ I : x > B =⇒ |f(x)− ℓ| < ϵ.

we write:

lim
x→+∞

f(x) = ℓ Or lim
+∞

f = ℓ.

2) We say that the function f converges to infinity, denoted by +∞, as x approaches to

+∞, if:

∀A > 0, ∃B > 0, ∀x ∈ I : x > B =⇒ f(x) > A.

we write:

lim
x→+∞

f(x) = +∞.

Similarly, we define the limit at negative infinity for a function f defined on a set of the

form ]−∞, a[. We say that the function f converges to the limit ℓ ∈ R as x approaches

negative infinity, denoted by −∞, if

∀ϵ > 0, ∃B > 0, ∀x ∈ I : x < B =⇒ |f(x)− ℓ| < ϵ.

we write:

lim
x→−∞

f(x) = ℓ Or lim
−∞

f = ℓ.

1.3.2 Operations on limits

Let f and g be two functions. Let x0 be a point where x0 = ±∞.

Proposition 1.3.1. If we have

lim
x0

f = ℓ ∈ Rand lim
x0

g = ℓ′ ∈ R

then:

• For every λ ∈ R, lim
x0

(λ · f) = λ · ℓ.
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• lim
x0

(f + g) = ℓ+ ℓ′

• lim
x0

(f · g) = ℓ · ℓ′

• If ℓ ̸= is0, then lim
x0

1

f
=

1

ℓ

• If also lim
x0

f = +∞ (or −∞), then lim
x0

1

f
= 0.

1.4 Continuity

1.4.1 Continuity at a point

Definition 1.20

Let f : I → R be a function defined on the domain I of the real numbers. Let x0 ∈ R be

a point in the domain I. We say that the function f is continuous at the point x0 if the

following holds:

∀ϵ > 0, ∃δ > 0, ∀x ∈ I, |x− x0| < δ =⇒ |f(x)− f(x0)| < ϵ,

we write:

lim
x→x0

f (x) = f (x0) .

x

y

x0

f(x0)
ϵ

ϵ

δ
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Example 1.12

The function f(x) = ex is continuous at the point x0 = 0 because

lim
x→x0

f (x) = lim
x→0

ex = e0 = 1 = f(x0).

1.4.2 Continuity on domain

Definition 1.21

Let f : I → R be a function defined on the domain I of R.
We say that the function f is continuous on the domain I if it is continuous on all points of

the domain I. We denote the set of continuous functions on the domain of I as C (I) .

Mean Value Theorem

Theorem 1.4.1. Let f : [a, b] → R be a function that is continuous on the closed interval [a, b].

For any real number y that lies between f(a) and f(b), there exists a real number c ∈ [a, b] such that

f(c) = y.

(In the left figure), the real number c is not necessarily unique. On the other hand, if the function

is not continuous, then the theorem does not hold (as shown in the figure on the right).

x

y

a

f(a)

b

f(b)

y

c1 c2 c3
x

y

a
f(a)

b

f(b)

y

1.4.3 Continuous extension

A continuous extension of a function allows us to extend its domain or range smoothly while

preserving its continuity, enabling us to analyze its behavior in a broader context and overcome
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limitations imposed by its original definition.

Definition 1.22

Let the domain I, x0 be the point from I and f : I{x0} → R be a function.

1) We say that the function f is continually extendable at the point x0 if f accepts a finite

limit at x0, and we write:

ℓ = lim
x0

f.

2) We then define the function that we denote f̃ : I → R for each x ∈ I

f̃(x) =

f(x) if x ̸= x0

ℓ if x = x0.

Then the function f̃ is continuous at point x0, and the extension of the function f is

called continuing at point x0.

x

y

x0

ℓ

Example 1.13

Let the function defined on the set R∗ be as follows

f(x) = x sin

(
1

x

)
.

Does f accept extension by continuing at 0?

We have for each x ∈ R∗ that |f(x)| ≤ |x|, we get that f goes to 0 at 0. That is, it is

extendable continuously at 0 and its extension is the function f̃ defined on R as follows:

f̃(x) =

x sin
(
1
x

)
, if x ̸= 0

0, if x = 0.
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−2 −1.5 −1 −0.5 0.5 1 1.5 2

−0.5

0.5

1

x

x sin(1/x)

1.4.4 Operations on continuous functions

The primary operations on continuity are immediate consequences of analogous issues at the end-

points.

Proposition 1.4.1. Let the two functions f, g : I → R be given. Let x0 ∈ I be a point, hence:

• λ · f is continuous at x0 (∀λ ∈ R).

• f + g is continuous at x0.

• f · g is continuous at x0.

• If f(x0) ̸= 0, then 1
f
is continuous at x0.

Proposition 1.4.2. Let f : I → R and g : J → R be two functions, where f(I) ⊂ J . If f is

continuous at the point x0 ∈ I and g is continuous at the point f(x0), then the composite function

g ◦ f is continuous at the point x0.

1.5 Derivative and derivation laws

Differentiation and the rules of differentiation are fundamental concepts in calculus in mathematics.

Differentiation is concerned with the instantaneous rate of change of a given function, while the
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rules of differentiation form a set of rules and principles that facilitate the calculation of derivatives

in specific ways and provide us with information about the properties of derivative functions.

1.5.1 Derivative at a point

Let I be an open interval in R and f : I → R be a function. Let x0 ∈ I.

Definition 1.23

We say that the function f is differentiable at the point x0 if the rate of increase

f(x)− f(x0)

x− x0

accepts a fixed limit as x approaches the value x0. This fixed limit is called the derivative or

the derivative value of the function f at the value x0, denoted by f ′(x0). We can write it as:

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

.

.

Definition 1.24

We say that the function f is differentiable on the interval I if it is differentiable at every

point x0 ∈ I. The function x 7→ f ′(x) is called the derivative function, denoted by f ′ or df
dx
.

Example 1.14

The function defined by f(x) = x2 is differentiable at every point x0 ∈ R. We have:

f(x)− f(x0)

x− x0

=
x2 − x2

0

x− x0

=
(x− x0)(x+ x0)

x− x0

= x+ x0 −−−→
x→x0

2x0.

Indeed, we have shown that the derivative of the function f at x0 is 2x0. Alternatively, we

can express it as: f ′(x) = 2x.

1.5.2 Geometric interpretation of the derivative

The straight line passing through the distinct points (x0, f(x0)) and (x, f(x)) has a direction coeffi-

cient of f(x)−f(x0)
x−x0

. Ultimately, we find that the directional derivative coefficient is the value f ′(x0).
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The equation of the tangent at the point (x0, f(x0)) is:

y = (x− x0)f
′(x0) + f(x0).

M0

x0 x

M

Proposition 1.5.1. Let f be a function. Then,

• f is differentiable at x0 if and only if the limit

lim
h→0

f(x0 + h)− f(x0)

h

exists and finite.

f is differentiable at x0 if and only if there exists ℓ ∈ R (equal to f ′(x0)) and a function

ϵ : I → R such that ϵ(x) −−−→
x→x0

0 with the property that:

f(x) = f(x0) + (x− x0)ℓ+ (x− x0)ϵ(x).

Proposition 1.5.2. Let I be an open interval and x0 ∈ I. Let f : I → R be a function.

• If f is differentiable at x0, then f is continuous at x0.

• If f is differentiable on I, then f is continuous on I.

Example 1.15

Let c be a fixed real number. Consider the constant function f that takes the value c. We

calculate the derivative of the constant function.

∀x ∈ R,∀h ∈ R∗,
f(x+ h)− f(x)

h
=

c− c

h
= 0,

then:

∀x ∈ R, f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= 0.

Therefore, the derivative of the constant function is zero.
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Remark 1.5.1. The converse is incorrect: for example, the absolute value function f(x) = |x| is
continuous at 0 but not differentiable at 0.

x

y

1

0 1

y = |x|

Indeed, the rate of increase at x0 = 0 achieves:

f(x)− f(0)

x− 0
=

|x|
x

=

+1 if x > 0,

−1 if x < 0.

1.5.3 Derivative calculation

Proposition 1.5.3. Let f, g : I → R be two differentiable functions on the interval I. Hence, for

every x ∈ I, we have:

• (f + g)′(x) = f ′(x) + g′(x)

• (λf)′(x) = λf ′(x)

where λ is a constant real number.

• (f · g)′(x) = f ′(x)g(x) + f(x)g′(x)

•
(

1
f

)′
(x) = − f ′(x)

f(x)2

(if f(x) ̸= 0)

•
(
f

g

)′

(x) =
f ′(x)g(x)− f(x)g′(x)

g(x)2

(if g(x) ̸= 0)

Remark 1.5.2. It is easier to remember the following equation:

(f + g)′ = f ′ + g′ (λf)′ = λf ′ (f · g)′ = f ′g + fg′(
1

f

)′

= − f ′

f 2
,

(
f

g

)′

=
f ′g − fg′

g2(
f−1
)′
=

1

f ′ ◦ f−1
.
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Proposition 1.5.4. If f is a function that is differentiable at x and g is a function that is differen-

tiable at f(x), then the composition g ◦ f is a function that is differentiable at x, and its derivative

is given by: (
g ◦ f

)′
(x) = g′

(
f(x)

)
· f ′(x).

Example 1.16

Let’s calculate the derivative of the function

ln(1 + x2).

We have g(x) = ln(x) with g′(x) = 1
x
and f(x) = 1+x2 with f ′(x) = 2x. Then, the derivative

of the composition

ln(1 + x2) = g ◦ f(x)

is (
g ◦ f

)′
(x) = g′

(
f(x)

)
· f ′(x) = g′

(
1 + x2

)
· 2x =

2x

1 + x2
.

Differentiation of some common functions

• Constant function: If f(x) = c, where c is a constant, then f ′(x) = 0.

• Power function: If f(x) = xn, where n is a constant, then f ′n−1.

• Exponential function: If f(x) = ex, then f ′x.

• Logarithmic function: If f(x) = logb(x), where b is the base of the logarithm, then

f ′(x) = 1
x ln(b)

.

• Trigonometric functions:

Sine function: If f(x) = sin(x), then f ′(x) = cos(x).

Cosine function: If f(x) = cos(x), then f ′(x) = − sin(x).

Tangent function: If f(x) = tan(x), then f ′2(x).

where

sec(x) =
1

cos(x)

Hyperbolic functions:
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Hyperbolic sine function: If f(x) = sinh(x), then f ′(x) = cosh(x).

Hyperbolic cosine function: If f(x) = cosh(x), then f ′(x) = sinh(x).

Hyperbolic tangent function: If f(x) = tanh(x), then f ′(x) = sech2(x).

where:

sech(x) =
1

cosh(x)

1.5.4 Successive derivatives

Let f : I → R be a differentiable function, and let f ′ be its derivative. If the derivative function

f ′ : I → R is also differentiable, then f ′′ = (f ′)′ is the second derivative of the function f . In

general:

f (0) = f, f (1) = f ′(2) = f ′′ and.... f (n+1) =
(
f (n)

)′
If the nth derivative, f (n), exists, we say that f is differentiable n times.

Theorem 1.5.1 (Leibniz’s rule).

(f✕g)(n) = f (n)✕g + C1
nf

(n−1)✕g(1) + · · ·+ Ck
n f (n−k)✕g(k) + · · ·+ f✕g(n)

In other words: (
f✕g

)(n)
=

n∑
k=0

Ck
n f (n−k)✕g(k).

To prove the correctness of the Leibniz formula by induction: For n = 0, we have:

(f✕g)(0)(x) = (f · g)(x) =
0∑

k=0

Ck
0 f

(k)(x)g(0−k)(x) = f (x) g (x)

So, the property is true for n = 0. We assume that:

(f✕g)(n)(x) =
n∑

k=0

Ck
nf

(k)(x)g(n−k)(x)

and let’s demonstrate that:

(f✕g)(n+1)(x) =
n+1∑
k=0

Ck
n+1f

(k)(x)g(n+1−k)(x)

we have

(f✕g)(n+1)(x) = ((f✕g)(n))
′
(x).
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Therefore

(f✕g)(n+1)(x) =

(
n∑

k=0

Ck
nf

(k)(x)g(n−k)(x)

)′

so

(f✕g)(n+1)(x) =
n∑

k=0

Ck
n

(
f (k+1)(x)g(n−k)(x) + f (k)(x)g(n+1−k)(x)

)
Therefore

(f✕g)(n+1)(x) =
n∑

k=0

Ck
nf

(k+1)(x)g(n−k)(x) +
n∑

k=0

Ck
nf

(k)(x)g(n+1−k)(x).

We substitute the variable in the first sum: p = k + 1

n∑
k=0

Ck
nf

(k+1)(x)g(n−k)(x) =
n+1∑
p=1

Cp−1
n f (p)(x)g(n+1−p)(x)

so

(f✕g)(n+1)(x) =
n+1∑
k=1

Ck−1
n f (k)(x)g(n+1−k)(x) +

n∑
k=0

Ck
nf

(k)(x)g(n+1−k)(x)

Therefore

(f✕g)(n+1)(x) =

(
n∑

k=1

(Ck−1
n + Ck

n)✕
(
f (k)(x) g(n+1−k)(x)

))
+Cn

nf
(n+1)(x)g(0)(x) + C0

nf
(0)(x)g(n+1)(x)

Note that:

Ck−1
n + Ck

n = Ck
n+1 and Cn

n = C0
n = 1

Therefore:

(f✕g)(n+1)(x) =

(
n∑

k=1

Ck
n+1f

(k)(x)g(n+1−k)(x)

)
+ f (n+1)(x)g(0)(x) + f (0)(x)g(n+1)(x)

Note that we can include the last two terms in the sum:

C0
n+1f

(0)(x)g(n+1−0)(x) = f (0)(x) g(n+1)(x)

and

Cn+1
n+1f

(n+1)g(n+1−(n+1))(x) = f (n+1)(x)g(0)(x).

Therefore:

(f✕g)(n+1)(x) =
n+1∑
k=0

Ck
n+1f

(k)(x)g(n+1−k)(x)

Therefore, according to the proof by induction, we have:

(∀n ∈ N, n ≤ p)(∀x ∈ I) : (f✕g)(n)(x) =
n∑

k=0

Ck
nf

(k)(x)g(n−k)(x).
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1.6 Limited Expansion

We take the example of the exponential function. You can give an idea of the behavior of the

function f(x) = ex around the point x = 0 using its shadow, which has the equation y = 1+ x. We

have approximated the graph with a straight line.

If we want to find a better approximation, we can take, for example, the equation y = c0+ c1x+

c2x
2. The graph of the function f near the point x = 0 is like the equation y = 1 + x+ 1

2
x2.

This equation has a special property: g(x) = exp x −
(
1 + x + 1

2
x2
)
, and then g(0) = 0,

g′(0) = 0, and g′′(0) = 0. We can find the equation of the equivalent parabola, meaning we find a

second-degree approximation for the function f .

Of course, if we wanted to be more precise, we would continue to approximate using the third

and fourth degrees...

x

y

1

0 1

y = ex

y = 1 + x

y = 1 + x+ x2

2

y = 1 + x+ x2

2
+ x3

6

In this part of the chapter, we will look for the nth-degree polynomial approximation for any

function that provides a better fit. The results are valid only in the vicinity of a fixed point xx

(often near 0). This polynomial approximation will be computed from the successive derivatives at

the point under consideration.
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1.6.1 Taylor formula

The Taylor formula, named after the mathematician Brook Taylor who developed it in 1712, allows

for approximating a differentiable function multiple times around a point using power series, whose

coefficients depend solely on the derivatives of the function at that point.

Theorem 1.6.1. Let f : I → R be a function of the class Cn+1(R) (n ∈ N) and let x0, x ∈ I, then

we have

f(x) = f(x0) +
(x− x0)

1!
f ′(x0) +

(x− x0)
2

2!
f ′′(x0) + . . .

+
(x− x0)

n

n!
f (n)(x0) + (x− x0)

nε(x− x0),

where

lim
x→x0

ε(x− x0) = 0.

Example 1.17

Let the function f be defined as follows:

f :]− 1,+∞[ → R
x 7→ ln(1 + x)

Differentiable infinitely many times, we will compute the Taylor series at the point 0 up to

the first three orders.

We have f(0) = 0. Then, when we calculate:

f ′(x) =
1

1 + x
=⇒ f ′(0) = 1

Afterwards, we calculate:

f ′′(x) = − 1

(1 + x)2
=⇒ f ′′(0) = −1.

Finally, we calculate:

f (3)(x) =
2

(1 + x)3
=⇒ f (3)(0) = 2.

We can demonstrate by induction that:

f (n)(x) =
(−1)n−1(n− 1)!

(1 + x)n

Where the value can be calculated:

f (n)(0) = (−1)n−1(n− 1)!.
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Thus for n > 0 we have:

f (n)(0)

n!
xn =

(−1)n−1(n− 1)!

n!
xn =

(−1)n−1

n
xn.

In general, the Taylor polynomial of the function f at the point 0 is

Pn(x) =
n∑

k=1

(−1)k−1xk

k
= x− x2

2
+

x3

3
− · · ·+ (−1)n−1xn

n
.

Here are the first three Taylor series expansions:

P1(x) = x,

P2(x) = x− x2

2
,

P3(x) = x− x2

2
+

x3

3
.

In the graph below, the plots of the Taylor series P1, P2, and P3 approach the graph of f

more and more closely, but only in the vicinity of 0.

x

y

0

1

y = ln(1 + x)

y = x

y = x− x2

2

y = x− x2

2
+ x3

3

1.6.2 Mac-Laurent formula

Theorem 1.6.2. Let f : I → R be a function of the class Cn+1(R) (n ∈ N) and let x ∈ I Then

have, by applying Taylor’s formula at the point x0 = 0, we find the Mack-Laurent formula:

f(x) = f(0) +
x

1!
f ′(0) +

x2

2!
f ′′(0) + . . .+

xn

n!
f (n)(0) +

xn

n!
ε(x).
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Example 1.18

1) cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .+ (−1)n

x2n

(2n)!
+ x2n+1ε(x)

2) sinx = x− x3

3!
+

x5

5!
+ . . .+ (−1)n

x2n+1

(2n+ 1)!
+ x2n+2ε(x)

3)(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 + . . .+

α(α− 1) . . . (α− n+ 1)

n!
xn + xnε(x)

3.1) α = −1 =⇒ 1

1 + x
= 1− x+ x2 + . . .+ (−1)nxn + xnε(n)

3.2) α = −1

2
=⇒ 1√

1 + x
= 1− 1

2
x+

3

8
x2 + . . .+ (−1)n

1 ∗ 3 ∗ 5 . . . (2n− 1)

2 ∗ 4 ∗ 6 . . . 2n
xn + xnε(x)

4)ex = 1 +
x

1!
+

x2

2!
+ . . .+

xn

n!
+ xnε(x)

5) ln(1 + x) = x− x2

2
+

x3

3
+ . . .+ (−1)n−1x

n

n
+ xnε(x)

1.6.3 Limited expansion of some common functions

•

⋆ ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ o(x4)

⋆
1

1− x
= 1 + x+ x2 + ...+ xn + o(xn)

⋆ ch(x) = 1 +
x2

2!
+

x4

4!
+ ...+

x2n

2n!
+ o(x2n+1)

⋆ sh(x) = 1 +
x3

3!
+

x5

5!
+ ...+

x2n+1

(2n+ 1)!
+ o(x2n+1)

1.6.4 Operations on limited expansions

We saw previously from Taylor’s and the Mac-Loran formula that we can change the limited ex-

pansion of a function at the point a ∈ R to a limited expansion at the point 0. Therefore, we will

explain the operations on the limited expansion only at the point 0.

Let n ∈ N and let f and g be functions defined at 0 that accept in the neighborhood of 0 the

limited expansion of degree n where:
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f(x) = p0 + p1x+ · · ·+ pnx
n + xnϵ1(x)

= Pn (x) + xnϵ1(x)

and

g(x) = q0 + q1x+ · · ·+ qnx
n + xnϵ2(x)

= Qn (x) + xnϵ2(x)

Proposition 1.6.1. .

• f + g accepts a limited expansion of degree n at 0 and represents the sum of the two limited

expansions of the functions f and g:

(f + g)(x) = f(x) + g(x) = Pn (x) +Qn (x) + xnϵ(x).

• fg accepts a limited expansion of degree n at 0 and represents the product of the limited

expansion of the functions f and g, leaving only the terms with degree less than or equal to n:

(f · g)(x) = f(x) · g(x) = Tn(x) + xnϵ(x)

Where Tn(x) is the polynomial (Pn (x) ·Qn (x)) stopping at degree n.

• If g(0) = 0 (i.e. q0 = 0) then the function f ◦ g accepts a limited expansion at 0 of degree n

where the part of the polynomial stopping at degree n is defined by the structure P (Q(x)).

• If q0 ̸= 0 then we have:

1

g(x)
=

1

q0

1

1 + q1
q0
x+ · · ·+ qn

q0
xn + xnϵ2(x)

q0

.

• If F is a primitive function of the function f , then F accepts a limited expansion at a of degree

n+ 1 and is written:

F (x) = Pn+1(x− a) + (x− a)n+1η(x)

where: lim
x→a

η(x) = 0.
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Example 1.19

Calculate the limited expansion of the function arctan(x).

We know that:

arctan′(x) =
1

1 + x2
.

We set:

f(x) =
1

1 + x2

and F (x) = arctan(x) and we write:

arctan′ x =
1

1 + x2
=

n∑
k=0

(−1)kx2k + x2nϵ(x).

because arctan(0) = 0, then:

arctanx =
n∑

k=0

(−1)k

2k + 1
x2k+1 + x2n+1ϵ(x) = x− x3

3
+

x5

5
− x7

7
+ · · ·

Example 1.20

• The limited expansion of the function tanx at 0 is of order 5.

Firstly:

sinx = x− x3

6
+

x5

120
+ x5ϵ(x).

On the other hand

cosx = 1− x2

2
+

x4

24
+ x5ϵ(x) = 1 + u

we set

u = −x2

2
+

x4

24
+ x5ϵ(x).

In the calculation we need u2 and u3:

u2 =

(
−x2

2
+

x4

24
+ x5ϵ(x)

)2

=
x4

4
+ x5ϵ(x)

then

u3 = x5ϵ(x).
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so:

1

cosx
=

1

1 + u
= 1− u+ u2 − u3 + u3ϵ(u)

= 1 +
x2

2
− x4

24
+

x4

4
+ x5ϵ(x)

= 1 +
x2

2
+

5

24
x4 + x5ϵ(x).

Finely

tanx = sin x · 1

cosx

=
(
x− x3

6
+

x5

120
+ x5ϵ(x)

)
·
(
1 +

x2

2
+

5

24
x4 + x5ϵ(x)

)
= x+

x3

3
+

2

15
x5 + x5ϵ(x).

The limited expansion of the function 1+x
2+x

at 0 of order 4.

1 + x

2 + x
= (1 + x)

1

2

1

1 + x
2

=
1

2
(1 + x)

(
1− x

2
+
(x
2

)2
−
(x
2

)3
+
(x
2

)4
+ o(x4)

)
=

1

2
+

x

4
− x2

8
+

x3

16
− x4

32
+ o(x4),

Example 1.21

Calculate the limited expansion of the function h(x) = sin
(
ln(1 + x)

)
at 0 of order 3.

• We set f(u) = sinu and g(x) = ln(1 + x), from which:

f ◦ g(x) = sin
(
ln(1 + x)

)
and g(0) = 0.

We write the limited expansion of order 3 for the function

f(u) = sinu = u− u3

3!
+ u3ϵ1(u)

for u in the vicinity of 0.
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• We set

u = g(x) = ln(1 + x) = x− x2

2
+

x3

3
+ x3ϵ2(x)

for x in the vicinity of 0.

• We calculate u2:

u2 =
(
x− x2

2
+

x3

3
+ x3ϵ2(x)

)2
= x2 − x3 + x3ϵ3(x)

and u3 :

u3 = x3 + x3ϵ4(x).

then:

h(x) = f ◦ g(x) = f(u)

= u− u3

3!
+ u3ϵ1(u)

=

(
x− 1

2
x2 +

1

3
x3

)
− 1

6
x3 + x3ϵ(x)

= x− 1

2
x2 +

1

6
x3 + x3ϵ(x).


