Université Mohamed Khider Biskra Faculté des Sciences et de la Technologie Département de Génie Electrique

Enoncés TD n° 2

Année : 3^{ème} Année Licence « Asservissement Linéaire » Semestre 1

Calcul des Fonctions de Transfert

Exercice n°1

Calculez-les transformées de Laplace des fonctions temporelles suivantes :

a)
$$f(t) = c^{-at}$$

b)
$$f(t) = \cos(\omega t)$$

c)
$$f(t) = t^n \quad n \ge 1$$

d)
$$f(t) = t^5 c^{2t}$$

e)
$$f(t) = 3(1-c^{-4t})$$

f)
$$f(t) = \begin{cases} A & 0 \le t \le T \\ 0 & aillcurs \end{cases}$$

g)
$$f(t) = \begin{cases} Ac^{-\alpha t} & 0 \le t \le T \\ 0 & aillcurs \end{cases}$$

h)
$$f(t) = c^{-0.5t}u(t-2)$$

$$f(t) = \frac{t^2}{2}$$

$$f(t) = \sin(2t + \frac{\pi}{4})$$

k)
$$f(t) = c^{-0.5t} \sin(\omega t) + \cos(\omega t + \varphi)$$

$$f(t) = t.c^{-at}.\delta(t-1)$$

m)
$$f(t) = t.u(t-2) + \sin(2\pi t - \frac{\pi}{4}).u(t-3)$$

avec : u(t) : échelon unitaire $\delta(t)$: impulsion de Dirac

Exercice n°2

Résolution d'équations différentielles en utilisant les transformées de Laplace :

a)
$$\ddot{y}(t) + 3y(t) = \sin(t)$$

$$avcc$$
 $y(0) = 1; \dot{y}(0) = 2$

b)
$$\ddot{y}(t) + 4\dot{y}(t) + 20y(t) = 4$$
 $avcc \quad y(0) = -2; \ \dot{y}(0) = 0$

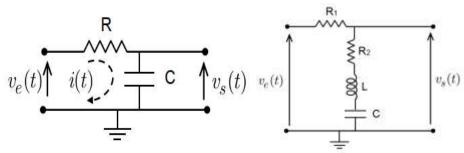
$$avcc \quad y(0) = -2; \ \dot{y}(0) = 0$$

c)
$$\frac{d^3y(t)}{dt^3} + 5\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} = 0$$
 $avcc$ $y(0) = 3; \ \dot{y}(0) = -2; \ \ddot{y}(0) = 7$

$$vcc$$
 $y(0) = 3; \ \dot{y}(0) = -2; \ \ddot{y}(0) = 7$

Exercice n°3

En supposant les conditions initiales nulles (condensateurs déchargés initialement), calculez les fonctions de transfert des circuits électriques suivants : faire l'étude avec et sans charge initiale q0 du condensateur.



Exercice n°4

En utilisant les théorèmes des valeurs initiale et finale, calculez $s(t\rightarrow 0^+)$ et $s(t\rightarrow \infty)$ pour les fonctions suivantes:

a)
$$S(p) = \frac{p^2 + 2p + 4}{p^3 + 3p^2 + 2p}$$

b)
$$S(p) = \frac{p^3 + 2p^2 + 6p + 8}{p^3 + 4p}$$

Exercice n°5

Calculez les transformées inverses de Laplace des fonctions suivantes :

a)
$$F(p) = \frac{2}{p(p+1)(p-2)}$$

d)
$$F(p) = \frac{5p+16}{(p+2)^2(p+5)}$$

b)
$$F(p) = \frac{p(p+2)}{p^2 + 2p + 2}$$

e)
$$F(p) = \frac{2(p+2)}{p^2 - 2p + 2}$$

c)
$$F(p) = \frac{2p^2 + 7p + 8}{p^2 + 3p + 2}$$

f)
$$F(p) = \frac{5(p+2)}{p^2(p+1)(p+3)}$$

Exercice n°6

Commande en boucle ouverte de la vitesse de rotation d'un moteur à courant continu à excitation indépendante.

Soit un moteur à courant continu (appelé également servomoteur) représenté par le schéma électrique ci-dessous.

 $i_a(t)$: Courant d'induit

 $v_a(t)$: Tension d'induit ou d'armature

 $v_h(t)$: Force contre électromotrice

 $i_f(t)$: Courant d'excitation

 $v_f(t)$: Tension d'excitation

 $\theta(t)$: Déplacement angulaire

 $\Omega(t)$: Vitesse de rotation

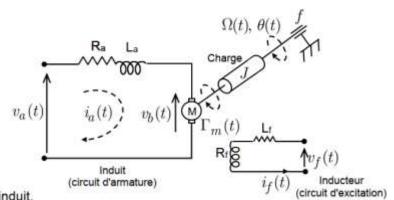
 $\Gamma_m(t)$: Couple moteur

Ra, La: Résistance et inductance du circuit d'induit.

Rf, Lf: Résistance et inductance du circuit d'excitation.

J : Moment d'inertie équivalent de la charge + moteur.

f : Frottement visqueux équivalent de la charge + moteur.



a) Commande par l'induit : $i_f(t)$ = cte \Rightarrow flux d'excitation $\Phi(t)$ = cte

Dans ce cas, le flux inducteur est maintenu constant (ex. moteur à excitation indépendante). La vitesse de rotation est commandée par la tension d'armature $v_a(t)$ aux bornes de l'induit. En considérant les équations électriques et mécaniques du moteur, calculer la fonction de transfert entre cette tension d'induit $v_a(t)$ et le déplacement angulaire $\theta(t)$ du moteur.

b) Commande par l'inducteur : $i_a(t)$ =cte I_0

Dans ce cas, le courant inducteur est variable entrainant un flux variable. Le courant d'induit est maintenu constant. La vitesse de rotation est commandée par la tension d'excitation $v_f(t)$. En considérant les équations électriques et mécaniques du moteur, calculer la fonction de transfert entre cette tension d'excitation $v_f(t)$ et le déplacement angulaire $\theta(t)$ du moteur.