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Sets ale gaxad! 1.1

Definitions wid jlad  1.1.1

Al py LLGSDH B g s JLin e s I O 9a ¢ Ole el adlad (0 OF J gl
pogie 98 108 O s 9 LI i B Ole gamall (e Aeodi JaT ¥ Ole gammall (s OLEMall o

e o (ot (WA 5i) Gt
We will try to explore the properties of sets, without focusing on a specific example. We
will quickly discover that the relationships between sets are no less important than the sets

themselves, and this will be the concept of the application (or function) between two sets.

1.1.1 : Definition - «&J jad

vsbas (o I 5ds (g 1aas ayasal) poligd) o poliRll go GBS gate oS 8,1 S gaseall
&4 pde
Sets are a collection of well-defined objects or elements that share common properties

1.1.1 : Example - Jtis

{0,1}; {&;1 blue pasV red}; N=1{0,1,2,3,...}
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Notations ke
et ST e o Y Ae game JS T e b Lt e 0 AT Ao geme e (1

We call an empty set denoted by &, every set does not contain any element.

&wa‘g?w‘oﬂg&&zxeE%’«S&thW‘O&MQZQ?J}EJ (2
r¢ E. GO g F de gameld
We say that x is an element of the set £ and we write x € F, the negation of this case

that the element = does not belong to the set £ and we write x ¢ E.

B juen duols mglay )5 das jolic pexd s 9 (AL gae (9SS 3T § b Ul (3

There are other ways to form a set, which is to group certain elements that have a

distinctive feature.

i 2.1.1 : Example - J 20
{zr eR, |z—2|<3},
{zEC, 22:1},
{(reR, —1<z<2}=[-1,2]
\. J

Distinguishing feature of set ds gameld 3 peaad! dsalidl 2.1.1

2.1.1 : Definition - «aJ yad

P o 15 Wf Guliie g sbg Wpolic o ;15 avg ¥ ¢ Gilise 65 gasal) polis o
The elements of the set are different, that is, there is no repetition in its elements, and it

may be finite or infinite.
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g 3.1.1 : Example - J 20
The set of level points < gunal! Hlas &S gaso (1
The set of natural numbers N N Sk 5\).9—@\ &S gatn (2
The set E defined as follows cb |PC1 60,20\ £ 68 gateal) (3

E={eeN, 0<e<20}.

Subset s Ml 4e gemad!  3.1.1

3.1.1 : Definition - «ad yad

bay) B A oo pois IS O 15) I 0o G j S8 gan (B A o) Yol ¢ g A 0ic gaseel Samilly
2 Az e E s o¥ ) ACE jopb @ jopg B pois

For two sets A and E we say that A is a subset of E if each element of A is also an element

of E. In formal notation A C E if for all v € A we have x € E.

we write ._.;):9

ACEsVre A=z € B

Sl goles! ) §ass Las-

Where the following properties are achieved
pCE (1
ECE. (2
SaS ) o gasal) gros B B polis b1 ESgeke g pkes 65 gesall 0o NI
' P (E) jopb W jo pg 6 goseall

Starting from the set E, we can create a new set whose elements are all the subsets of the
set E and denote it by & (E).
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( 4.1.1 : Example - J 2
Let the set b6 qaseall T
E={1,2,3},

D 65 gassal) 03 o1j5-1 6 gotea 0lo

The set of parts of this set is

Z(E) ={¢, £, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}.

Complementary set 4s gamé dmeale 4.1.1

4.1.1 : Definition - «2J yad

E 6Sqasall (3 A 68 gotol) Suosio gous < &S gonall g a5 j5 S goteo A S gaseal) ol

By Cod ol B\ A jo bl & jop G
Let the set A be a subset of the set E, we call the complement of the set A in the set E wﬂz’ch
we denote by E\ A, A or CxA and write

CeA={zecE|z¢ A}

5.1.1 : Example - Jti

a8 A g E 68 gaseall o8
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Let the sets E and A where

E=1{1,2,3,4,5}, A=1{2,3},

D E 68 gatal) (0 A &S gasal) Sunie Ging

then the complement of the set A in the set E is given

A={1,4,5}.

Difference of sets Qls gamed! 38 5.1.1

5.1.1 : Definition - «aJ yad

B g A gxiSeasall 0 5% F b8 sasall g0 ol js 0l sate B g A 68 goseal) ol

—By A= B g\ A/B jo b ol jogs
Let the sets A and B two subsets of the set E, we know the difference of the two sets A and
B which we denote by A/ B or A — B and write

A/B=A-B={rcA ¢gx ¢ B}

g 6.1.1 : Example - J 2

—a> Ag E QQ—W\ Jﬁ:ﬁ
Let the set E and A where

FE={1,2,3,4,5}, A={1,2,3}, B={3,4,5}
then Guwg

A—B = {LEEAQI%B},
= {172}
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and 9

B-—A = {z€B qx¢ A},
= {4,5}

G ond 1o gaseall o &80 of B35

kI/Ve note that the difference between the sets is not commutative. D

6.1.1 : Definition - «aJd yad

{ﬂ\ Jhoo 6).>-\9 OS gate0 §b6>9>.-9d\ ,Jo\iﬂ.\\ G gate §B B 9 A UNS gadko (N &,.‘o\»d\ \9).9.“
—35g . AAB jo b o jop
The symmetric difference of two sets A and B is the set of objects that are in one and only

one of the sets. The symmetric difference is written AAB.

AAB = (A—B)U (B — A).

2 7.1.1 : Example - J 30 )

odeg &) JUal) oo A g E 6 gasall oI
Let the sets E and A from the previous example, then
AAB = (A-B)U(B-A)
= {L,2}u{4,5}
= {1,2,4,5}
(S8 1o gatol) ox & P ) o B

kWe note that the symmetric difference between the sets is commutative. D

2 1.1.1 : Theorem - ’Q)hp

1oy culus oley & DU 80 o1 < 60 gaseal) 0o 0lisd j oS gose B g A 68 gassal) ol
Let A and B be subsets of the set E, the symmetric difference can also be calculated with the
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following relation:

AAB = (AUB) — (BN A).

Operations on sets @he gamad| e @laleadl 6.1.1

Union and intersection ghalil! g slad¥!

‘ 7.1.1 : Definition - uﬁl,ﬁ\

Let E and F be two sets 0B gatn [ g E &S gadenl) JS:S

g EUF jopb F g E oxicgasead) s83Y jop (1
We denote the union of the two sets E and F' by E U F and write

FUF={z:x€EVzeF}.

(91) 122 g Gahmalt B0l v jo I omsy

The symbol V is called the logical separator and reads (or).

—Bg ENF japb F g E o gesad) g6 jop (2
We denote the intersection of the two sets E and F' as E N F and write

ENF={x:x€ EANz € F}.

(5) Vs g isadl Jogly A jo omy
The symbol A is called a logical join and reads (and).
mm;wggb\m}a,”%agwm,mauéom,mmmm@(g

These two definitions can be genemlzzed i the case of more than two sets, and we

denote the intersection and union of a set of sets F; by U E; and ﬂ E;, respectively.
=1 =1

. J
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Properties yo! gum

ALY (ol g3 Lowd (B de gaaadl (o 4l 3> Ole gase M3 C g B A (S
Let A, B and C' three subsets of the set E, we have the following properties.

Commutative property A cl Aol (1

ANB=BNA o
AUB=BUA o

Associative property Aacod) Auolsnt (2
AN(BNC)=(ANnB)N(ANC) o
AU(BUC)=(AUB)U(AUC) o

Distributive property A 5 o) Aol (3
AN(BUC)=(ANnB)U(ANC) o
UBNC)=(AuB)N(AUC) o

Complement property el Luols (4

C(AnB)=CAUCB o
C(AuB)=(0ANCB o

C(CA) =4 o
CANA=¢ o
CAUA=E o

Cartesian product gﬁ)l.Sg-\.ﬂ s lhand |

8.1.1 : Definition - «ad yad

FXE japl o jopg F g £ onigase elasd o)) o ol pu) ¢ 3, Tl o1ssdy
) S B pais ating F e gatal) J) Jg I 1B pose akiy i) 68 pall g I b gatn &
13D e Sulalsid) G i@ wuu s e EH1 )Ty ouiny ) aws UM ow &S gosnal)

3 g e gaseal oA g poRaa)
The Cartesian product is the mathematical term for the product of two sets E and F,

Unwversity of Mohamed Kheidar, Biskra 17 Brahim Brahimi-Jihane Abdelli
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denoted by EXF', which is the set of ordered pairs whose first element belongs to E and
second element belongs to F. It is named after René Descartes who established the
foundations of analytical geometry, introducing this concept of product of sets.

We can write it as

EXF ={(z,y) |xr€e ENy € F}.
. J

1.1.1 : Remark - 'Z\.E?){D

b We o jop o geall oo o g} oS genn 0o BEY 3T 1) e oley
-5 9 ﬁEz

The Cartesian product can be generalized to more than two sets or to a collection of setis:1

denoted by ﬁEi, which 1s the set of ordered n-tuples whose i-th element belongs to the set

i=1
E;. We can write it as:

HEZ = {(xla‘z‘?) 7xn) | x; € EZ’Z = 17 ’n} ’
i=1

. J

8.1.1 : Example - JL’ZD

We have the following examples S &lie Y Gy
R? = RXR = {(z,y) | z,y € R} the plane & pumad} (1
[0, 1XR = {(z,9) [0 <z <1,y e R} (2

[0, 1]X[0, 1]X[0, 1] = {(z,y,2) | 0 < z,y,2 < 1} (3

Y
Y
9 1 | - 2
0 1 1
0 I
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i\ J

Properties yo! gums

ALY (ol g3 Lowd (B de gasmadl (o 4l 3 Ole game OMS C 9 B 9 A de gamad) (S
Let the set A, B, and C' three subsets of the set F, we have the following properties.

(AU B)XC = (AXC) U (BXC) (1

(AN B)XC = (AXC) N (BXC) (2

Set fragmentation 4 geme &3  7.1.1

8 9.1.1 : Definition - u,uﬂ\

By En o Ui E o0 6055 = \Sgasn B, B, ol g 60ls pé Suid S gasn B ol
S by il b8 13) bbby 13) E G gaseal) &5 jos T
Let E be a non-empty set and let Ey, ..., E, be subsets of E We say that E, ..., E, form

a fragmentation of the set E if and only if the following conditions are met
Vie{l,..,n}: E;#¢ (1
Vi£j:ENE;=¢ (2

UE=E (3

i=1

Finished set degiit 4o g0 8.1.1

10.1.1 : Definition - uq)a:’\

35 ¢ E 60 gateall boh 1 512 oms 1 € N D polic 518 Saiin S gasn 1 3l 1)

If E is a finite set whose number of elements isn € N. We call the number n by the order
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or cardinal number of a set E and write
Card(E) =n
. J
i 9.1.1 : Example - JL’]’.D
Let the set &S gadenl! Jl:!
E={1,2,3,6,9,11},
then, the cardinal number of the set E is o® £ &8 gaseal) \9\’99‘ ole
Card(E) = 6.
\_ J
2 2.1.1 : Remark - ‘Z\Jé?)h\
P &) polidd) o rqa8e pé sae SO Lot =l 1h) GuBiie pd BT &S gate o JoBS
.(659).51»
\We say that a set is infinite if it contains an unlimited number of elements. y

Properties (o) gum
Card(¢) =0. (1

Card(AU B) = Card(A) + Card(B) — Card(AN B) (2

2 2.1.1 : Theorem - :\,u.hp

105151 6 qesn polic 318 olo 7 € N 1D polis 518 Suliie S gato £ &S gaseal) 518 13
1R P (E)

If the set E s a finite set whose number of elements is n € N, then the number of elements

Brahim Brahimi-Jihane Abdelli 20 University of Mohamed Kheidar, Biskra
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of the set of its parts & (E) is:

Card(P (E)) = 2694E) — g,

. J
i 10.1.1 : Example - J 20 )
Let the set ég,W\ ‘;ﬂ

E ={1,2,3},
then: ol

Z (E) ={¢, £, {1}, {2}, {3}, {1,2},{1,3}, {2,3.
we remark that: R TSN T

Card(P (E)) = 20rdE) = 93 — g

AS el BALEN 0l 1,81 91 21931 (o ABMAY (o el D AGLAS B Mat! end
We call the binary relationship: the expression of the relationship between pairs or members of

this ordered pair.

Definition of relationship d3dall «iy yad  9.1.1

11.1.1 : Definition - wad yad

6 gosn WL B 6o gasal) ) A &S gatal) o GuSSN S6NR b 25 c@QWBgAUTﬂ
3 (2,y) G5 OF U8 Y oo «(2) ot WIS W o g B g A S Tu el o S8
Let A and B be sets, we define the binary relation from set A to set B as a subset of the

Cartesian product of A and B and often denoted by (X), for each binary (x,y) we write:

Ly ge G0¥e o 7 ¥ 13 (2 %y) (1)
(xRy), if x is in relation to y.

Ly ge &0 o ol 2 o ) (2 Zy) (2)
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(xRy), if x is not related to y.

Relationship on set 46 geme As &3 dal

12.1.1 : Definition - «ad yad

o Bl B 6Sgesall ) A b8 gasall 0o 888 (Z) ol 13) oxiSqete B g A o)
S6YR s ) LWL B gote ansg SOYR Solal g} YY) B gasar A b6 gase

Bg A S Hu e s oo s js Dy 5682l G311 ¢f Jgogll S8 gatees GOV & 20y
Let A and B be gwo sets. If # is a relagion from the set A to the set B, then we call the set
A the domain or the starting set of the relation, and we call the set of ordered pairs that

satisfy the relation the range or the end set of the relation, which is a subset of the Cartesian
product of A and B.

Inverse relationship dwwSal! 4 5all

13.1.1 : Definition - w24 yad

6532 ¢ () welRe 5,25 1lo B &8 gasallgss A 68 gaseal) oo 6 2\ 68N (2) o)
A 65 gasallgss B 66 gaseall vo 6538 W51 Je 5,29 (Z71) jo b 0 jo pg Syl
Let (Z) be a relation defined from set A to set B. We define the inverse (Z7) of # as a

relation from set B to set A.

g 11.1.1 : Example - J 20 )

Find the inverse of the relationship So N unxﬁ.o }}-99\
X = {(17 y)? (17 Z), (3733)}
D SwgR 663N {7y, 2} = B &S gateall ¢85 {1,2,3} = A &S gadeall 00
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From the set {1,2,3} = A towards the set {x,y,z} = B. The inverse relationship is

# ' . B— A
= {»1),(21),(=,3)}

Relationship properties Gl@jall yol¢& 10.1.1
Reflexive property duwwlSad¥| dualidl

WBMe (Z) BMal (SB g EE gx € E ices (1,y) LALEN (S0 9 Ads e game B (S

WA [l (V=P [ - ORI D PP O E N | e,a 42 ya20
Let E be a qualitative set and let the binary (z,y) where: € E and y € E, and let (Z) be a
relation defined in the set £ . We define the following properties:

8 14.1.1 : Definition - u,t'ﬁ?

b ) 883 151 unliss) 6o¥e W1 (%) 663N oo Jois

We say about the relation (#) that it is a reflexive relation if the condition is met

\Vz e E: x|

Symmetric property & ybLidll| dualill

15.1.1 : Definition - uh.u.ﬁ\

b ) a8 15) G B3 soNe BT (%) Gby oo Jehs

We say about the relation (Z) that it is a symmetric relation if the condition is met

V(z,y) € EXE : 2%y — yZx.
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Antisymmetric property 4 @l o duall!

16.1.1 : Definition - ‘.q,a:»\

B 4l 883 1) by BN o GdYe 15T (2) 66N oo Jois

We say about the relation (Z£) that it is an antisymmetric relation if the condition is met

V(z,y) € EXE : (z%y N yZx) — © = y.

Transitive property & daied! dealid!

17.1.1 : Definition - u,wa’.a

b il §883 1) Go e S0NS W51 () God oS Jgbs

We say about the relation (#) that it is a transitive relation if the condition is met

V(z,y,2) € EXEXE : (e By N yRHz) — xXx.

Equivalence relationship LS ad% 11.1.1

el ) A8Me 9 ALY AB3Me Lod (pliewlwl (CidMe OWI (B

We define now two basic relationships, the equivalence and the order relationship

18.1.1 : Definition - u,ua’.'?

b o 8883 13) 5oL T6 Gbye 131 () coysll oo Jois

We say about the relation (#) that it is an equivalence relation if the following is true

(%) is a reflexive relation. Qm‘\f%! coNe (Z) (1)
(Z) is a symmetric relation. S0 oS sede (2) (2)
(Z) is a transitive relation. B0 xe G0Ne (Z) (3)

. J
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g 12.1.1 : Example - JL’]’.D

15 bbde B 6o gene &1 o (=) GbYe (1)

The (=) relation on any set is an equivalence relation.

15 653 (B = lnybinel) 68 gata o jlgi G5Ye (2)

The relation of parallelism on the set of straight lines is an equivalence relation.

515 6530 ) (D = laybined) 68 gevn J& 10l G5Ye (3)

kThe relation perpendicular to the set of straight lines is not an equivalence relation.

v,

Lo S Agiliiial) poliall caial Ledi 581501 ABSe ¢ 5 5 dolall 5 ,Sall

The general idea behind the equivalence relation is that it classifies elements that are similar

in some way.

( 3.1.1 : Remark - :\.Té#)b\

&55Win &g - 635 S 0g 2as 636 The w65 ) 65 gaseel) 0T G6YS i 2 by I o
SR —5g0r voR D02 o SEETall PO Zres 00 05 W) Subo I b gesal) 2o
oly (315 Ty Glhadiag (68 o p& 151 3% Lan caabo ) 65 gaseall & jos §oTRN Vo JTis
SaboY) & goseall ¢B B!
In mathematics, an equivalence relation divides the set into equivalence classes, where each
equivalence class is a subset of the original set consisting of all elements that are equivalent

to each other under the relation. The equivalence classes form a partition of the original set,

meaning that they are non-empty, pairwise disjoint, and their union is the original set.

. J

Equivalence class $3L8U/ «aie

19.1.1 : Definition - w24 yad

acE gl g E bs gl (o 506 so8e () o)
Let (Z) be an equivalence relation in the set E and let a € E.

b WS dje b o jo s il a possd w5 a0 5,2
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We define the equivalence class of the element a denoted by a as follows

a={z € E:xHa}

[ 13.1.1 : Example - JI.?.D
The following relationship: DG Sy
Vo,y: xRy S 2 —y =z —y
It 1s an equivalence relationship. 39‘\5: &oNe Gb)

.x,@y%}RmymM\w;&pweR&gﬁ

Let x € R. We are looking for the y an elements of R where xZy.
:Jﬁm&ma_,\;;\-,‘fq.;?.(y)\;m?—f:x—y&mm d?i)—).}u\;‘—.&o
We have to find the solutions to the equation a:?. —y?*=x—y in (y). Where it can be written

in the form:
—y)lz+y)—(z-y) =0 (z-ylz+ty—1) =

Its solutions are y = x and y =1 — x. .yzl—:tgg;z.t@\ﬂ!gb—
§b.le—x<z>x=1/2&§@bc@mﬂmg&{x,l—x}.@xM\§b‘\EJ&BM9
{1/2} 65 gatall ¢ §6TR1 oo &I 03D

Hence the class of element valence x is {x,1 — x}. consisting of two elements, unless

= l —z < x=1/2. In this case the class of equivalence is the set {1/2}. p

Ranking relationship e o 433 12.1.1

OLEMal! (o 2alioned! ¢ 1931 Al joby @igy SO Olddls 331 ¢ 9,8 (1o ¢ 5B B ol il & ylad
Geunr 91 (o JBT juaie T 090 e LIS o J9all (Sen duoed 55 A laad A1 AlLAY

>N il
Order theory is a branch of mathematics that focuses on studying the various types of binary
relations that give rise to a structural ordering, which can be used to determine when any given

element is less than or precedes another element.
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20.1.1 : Definition - wad yad

B Lo 8885 13) 68 qatal) (b a5 G0NS () S6N o Jobs
We say that the relation (%) is a ordering relation on the set E if the following is satisfied:

(Z) is a reflexive relation. m@! aoNe (Z) (1)
(Z) is an asymmetric relation. S Hs w0 soNe (2) (2)
(Z) is a transitive relation. BuARe &oNe (Z) (3)

dgitie GOl 13] Tugiie A po A8 gemmall OF J 3258 oo ;5 A35as A gomall g 33 Mla B
sliaed!) obed! Judaidt i pe (e Hasse wla ladasd quw ) JS& 2 Loba Lelded (Sen 3 wic
DS D18 Aagiin pub he gomall GOl 13) Lol Lgrle B pguns Jandl (o (Sas Lo 3ol e
In the case of equipping a set with an ordering relation, we say that the set is a finite partially
ordered set if it is finite and can be represented graphically in the form of a Hasse diagram,
similar to the usual graphical representation on paper, which makes it easy to work with.

However, if the set is infinite, only a part of it can be represented.

r 20 )

14.1.1 : Example - J

Poap 60Ye DR g Q Z N Jbe Lolw gl oo jR015 g 2all G5Y2)

The relation “less than or equal to” in N, Z, Q, and R is an ordering relation.
Reflezive stz,g °
Vo :x <,
Asymmetric S HW o e
Ve,y:x<yq y<zr=1x=4y,
Transitive VAo @

Vo,y,z:x<yq y<z=z <z
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1\ J

o)

[ 15.1.1 : Example - J

6 gate P(E) &8 gasal) (b w3 p 60¥S (D C sl GdNS oo (o gaseal) &9 80 (b
B 09-9:«\};0“ :—\).5.-9\
In set theory, the inclusion relation C is a order relation on the set Z(E), the set of all

subsets of E.

Reflezive Q)..NYE?J! °

VAC P (E): AC A
Asymmetric S Hls o e

VA BC Z(E):ACBand BC A= A= B,

Transitive GO e

VA,B,C C #(E): ACBand BCC=>AcCC.

Total order relation S| e Wi a3 13.1.1

E e gamadl B ol ,5 28de (7) (S
Let (Z) be a relation of order on the set E.

21.1.1 : Definition - wad yad

B b 8883 13) B 68 qatal) (b JE i 5 G0NS () SoN o Jobs
We say that the relation (%) is a total order relation in the set E if the following conditions

are satisfied:

V(x,y) € EXE : (zZy NV yZx).
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g 16.1.1 : Example - J 20

P (E) J& JE —aip 663 wan) E &8 qasal) Gud jsd) \ogasal! o C slgis Y Goye

Jiw o . Jo I o Sl elgis] Vg ¢ G 5 oI sl wia ¥ o o gate LD
| | Jlialf

The inclusion relation C between the subsets of the set E is not a total order relation on

P(FE), as there exist pairs of subsets that are neither contained in each other. For example,
A+[1,3] ¢ B=10,2] and [0,2] £ [1,3].

or008) G0YS o1 3% lan ¢ A oo G i GBS gate B Jey Yo ¢ B e S8 j g0 A Yo ¥
Neither A is a subset of B, nor is B a subset of A, which means that the inclusion relation

d)etween A and B is not a total order relation.

J

2 17.1.1 : Example - J 30 )

Ié.b)ﬂ&“ < &0, R? 9P

We provide R? with the relation < defined as:
(z,y) < (2',y) <= =<2 and y <Yy

0 (0.1) o 085 o) ooy T S o5 401 130 ST B2 o i 6045 5155 < 6632
(1,0)

The relation < defines a partial order on R%. However, this order is not total because we

Gannot compare between (0,1) and (1,0). p

Mappings Qlaglad| 2.1

Definitions e jlad 1.2.1

Definition of mapping Gadall! e yad
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‘ 22.2.1 : Definition - t.ﬁl)ﬁ\

B3 05NS b S 5] B g A oo f lophs 150, 16T Jghi . 0580 pS oS gana B g A o)

=39 B oo y sa>g pai% A oo v paie Jf
Let A and B be two non-empty sets. We say that we have defined a mapping f from A to
B if we have established a relationship that connects each element x from A to a unique

element y from B. We write this as:

f:A — B
r = y=f(x)

or 9\

f(Mapping, &n¥) <= (Vz € A)3ly € B) :y = f(z)

T onbilly 26,90 amyy o
y 18 called the image of © under the mapping f.

S enbilh y ol amy o
x is called the preimage of y under the mapping f.

SIY) 68 gasn ouws A &S gaseall
The set A is called the domain of the mapping.

\39:09” é&—ya}ua \s‘““; B é@—g.akn“ °
The set B is called the codomain or range of the mapping.
. J

4 4.2.1 : Remark - 'A'\.h'?)i.aoN

.B\F'oépgélyooﬁfluex,m}dg < B¢ A e &b f ugh (1)
f is a mapping from A to B if and only if every element x in A has a unique image in
B.

A o bl oo ST B 0o y postll o of ooy 0ol B g5 A g el f o 13} (2)
If f is a mapping from A to B, then an element y in B may have more than one

preimage in A.
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Vs ) aisd By «JIZ oaahid) Jios f loins of(1) € B g : f g f(1) on &) 3 (3)
. B g A pse QD,SZ:J\ = \ankid)
It is important to distinguish between f(x) and f. We have that f(x) € B, while f

represents the mapping as a whole, which belongs to the set of all mappings from A to

D y

2 18.2.1 : Example - JI.’CD

.B=1{7,9,13} g A = {1,2,3} L
We have A = {1,2,3} and B = {7,9,13}.

We have \u SV

.Bs;b&pgélyodAmxlaoﬂd;ngjAm@%hifo
f is a mapping from A to B such that every element x in A has a unique image in B.
f ekl og Slw 1By 13 poid) LB e
In this case, the element 13 in B does not have a preimage in A under the mapping f.
392 bl Q9 poid) \D o
In this case, the element 9 in B has two preimages in A: 2 and 3.
. J

Direct and inverse image dwuSal! g 3 piluad! 3 y guall
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‘ 23.2.1 : Definition - t.ﬁl).ﬁp

ol f A= B ollg (A e S S8 gete F plilg .0ai8 )l p¢ giicqete B g A yld
16 gateal! f i) Slhwle F & gatal) 6 piihall 6,9al) o,
Let A and B be two non-empty sets. Let E be a subset of A, and let f : A — B be a

function.
We define the direct image (or forward image) of the set E under the function f as follows:

f(B)={f(z) |z € E}

( 24.2.1 : Definition - uﬁ,ﬂ\

.Mf:A—)Bub}ig cBMdﬁpwauﬁig .u}ié—l\br@@iQMBnglﬂ
16sgatall [ @bl Gy I 6o gatcal) Suull) 69l o425
Let A and B be non-empty sets. Let F' be a subset of B, and let f: A — B be a function.

We define the inverse image, or preimage, of F' under the function f to be the set:

fT'F)={zeA| f(z) e F}
O 8o F (b poiy 5 N A 5 poli) I S8 gase (B fU(F) ¢ 5 S0

In other words, f~*(F) is the set of all elements in A that map to an element in F under

Cﬁh@ function f. y

Brahim Brahimi-Jihane Abdelli 32 Unwversity of Mohamed Kheidar, Biskra



Sets theories <\S-qaseadl =\ 5 Mappings —\ax3l) 2.1

( 5.2.1 : Remark - 7\1&?)&9

We have the following concepts Sl D 1aall iy A

A 2easal) 9o Sl j 6 gate [TH(F) ¢ B &S gaal) 0o Sl j 6 gate f(E) &S gateall @
The set f(E) is a subset of the set B, and f~'(F) is a subset of the set A.

Gn 151y poiS S9N b3t 68 gavn 6,90 B F({r}) = {/(2)} possll o bl o9l o

63 jhn 6Sgasn 0gb of oley .f & 2xi® [ ({y}) I GunlR) 690l ol « & 5T Gusb

Fon 690 BB o5 15)) 686 60 gatsall (55 g1 polis 615 go Gigle S gase g
(v Lol

The direct image of the element f({x}) = {f(x)} is a singleton set containing a single

element. On the other hand, the inverse image of f~* ({y}) depends on the function f.

It can be a singleton set, a set consisting of several elements, or even the empty set (if

there is no preimage of y under f).
\. J

Surjective function mlall Gedaldl 2.2.1

25.2.1 : Definition - u,t')a:?

(il g A o Y o Slrln o) B e y poss I ol 13) isg 13) o\s ek f o) Jois
We say that f is a surjective function if and only if every element y in B has at least one

pre-image in A. We can write this as:

f(Surjective function, w\& W) < (Vy € B,z € A) : y= f(x).

. J

19.2.1 : Example - Jli»

B={x,y,2} ¢ A=1{1,2,3,4} W
We have A ={1,2,3,4} and B = {x,y, z}.
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f

N\ Y
4 ‘L B

SO =2 f3) =y f(4) = {y, 2} W o
We have f(1) =x; f(3) =y and f(4) = {y, z}.

.BgépgélyodAmw&BgﬁAm@hif °
f is a function from A to B if and only if every element of A has a unique image in B.
Acodpﬁ\\g&om\mwa,ao&MuﬁngAmp\;@uh,f °
f is a surjective function from A to B because every element of B has at least one

pre-image in A.

\. J

Injective function (u beted| Gedald! 3.2.1

26.2.1 : Definition - w24 yad

A\Fb,s;ﬁ\G&ga»\ma,\mBmy,m;yo\;\sgmgug@@f@mou@
— "/i139
We say that the function f is injective if and only if every element y in B has at most one

pre-image in A, and we write:

f(Injective function, w\be &n¥s) <= V(z,y) € A*: (f(z) = f(y) = = = y).

( )

20.2.1 : Example - Jkie

29 a8t Loy 1 Lois- plaliste obosid 1 S lois 1 plodd) ) ¢ oyliel) @pbil) o Jlo ps-
a5 ¢ ou w0l e lais W pledll b vosill By ) o) . _alise S leis ! oled
1978 wjle 6 o0 31 b We gy o2l LB go a2 B « &40 Busb oo oylike
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e wyl osthe &b vaskil) By M Skl 138
A good example of an application that uses unique identification is the Social Security
number. Two different individuals will always have different Social Security numbers.
The application that links a person to their specific Social Security number is a unique
wdentification application. On the other hand, there are many individuals who were born,

for example, on March 31, 1978. For this application that links a person to their date

cf birth, it is not a unique identification application.

A‘ \

Injective function Not injective function.

Properties yal 35

Gudald i g 9l AR de gamadl X Ol 13) dadd g 13| polde f 1 X = Y Gudaid) e
X Gle et Gudad gl go f G g Y = X

The application f : X — Y is injective if and only if X is the empty set, or if there exists
an application g : Y — X such that g o f is equal to the identity application on X.

.m).nLéjozsL’CmQ\éBjJaﬁjbjglemelQ}Sf °

The function f is bijective if and only if it is both injective and surjective.

Oabde [ old Galde go f Gudald) Gl 1) @

If the composite function g o f is injective, then f is injective.

Daliis g0 f cass i plb Oliolde Glicdai g g f Ol 1) @
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If f and g are injective functions, then the composite function g o f is injective.

Olss 13) g, h W — X Slacdaid) J Jai gw Olss 13) dadd g 13) alde [ X = Y

g=hod fog=foh
The function f : X — Y is injective if and only if, for all functions g,h : W — X if
fog= foh, then g=h.

A SBLy fTH(f(A) = A0k X (e adja degeme A 9 (ol [ X 2 Y ol 13
J(A) 2 dcSalt 3y guad) Jloatiwls Laslog! San
If f: X — Y is a surjective function and A is a subset of X, then f~1(f(4)) = A.

Therefore, A can be found using the inverse image of f(A).
JANB) = f(A)Nf(B) ol X (jo &b Gle goms B 9 A 9 (ubis [ X = Y Ol 13)
If f: X — Y is injective and A and B are subsets of X, then f(ANB) = f(A) N f(B).

pold g g plie f Ui e h = fog JS&d e LGS0 OF S b W = Y Gudas J&

Every function h : W — Y can be written in the form h = f o g for a injective function

f and a surjective function g.

Jiles JBY) e joliall (e due Gle oo YV ld Gulis Gudald [ X = Y Ol 13)

If f: X — Y is a surjective function, then Y has at least as many elements as X.

Bijective function Wkid| Gedaddl 4.2.1

27.2.1 : Definition - «2J yad

dirle B oo y pose JU oW 13) & (120 1 jole g laliie ol 1) bibg 1) Jolh5 ks f o) Jois

s\t T{g A Go JYCY

We say that f is a bijective function if and only if it is both injective and surjective, that is,
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if each element y in B has a unique predecessor in A. We write:

f (Bijective, G\:\m ) <~ (Vye B),(JzeA):y=f(z).

. J

( 21.2.1 : Example - J 2

:,’.-f.. 34 59\ I F e oY ccb\m S 13D f(7) =20+ 1 o, R — R :!‘\I}ﬁ
a=(y—1)/2 Py o pRiell y = 20+ 1 &ls\Rel g Sabs I 318) Willey <y
Let the function f:R — R be defined by f(x) = 2x + 1. This function is bijective because

for any real number y, we can find a unique real solution to the equation y = 2x + 1 for the

variable x, which is x = (y — 1) /2.

\. J

Composite applications Qliulalll «uS & 5.2.1
We consider two applications: D Omdeadatd) diad

f+A =B g:G — H
z o= fx) z = g(x)

Db s fog Gedaltl @ yay g(G) C A Gl 1)
If g(G) C A we define the application f o g as follows:

fog:G — B
z = f(g(x))

( 6.2.1 : Remark - %)&D

2% g(G) C A bl olo 138 g(z) € A o5l S f(g(x) o8 WG of bile ¥ osl bs s
S fog sl gelh s bl
We note that we cannot speak about f(g(x)) until g(x) € A, so the condition g(G) C A is

Gssentz’al for the composition f o g to have a meaning. y
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Inverse application gwsal! Gudalll 6.2.1

28.2.1 : Definition - u,ua’.a

B g5 A go bl ks f o)
Let f be a bijective mapping from A to B
f:A — B
z = f(z)
P b W ) TR bl by
We define the inverse application of f as follows:
f71:B — A
y = ()
Tl @ = f(2) D tase A ve 597 a5 ol B g A ge & f ol W € B oy
Let y € B. Since f is a bijection from A to B, there exists a unique x € A such that
y = f(x). Therefore, we have:

. J

7.2.1 : Remark - 7\.!6?)1.40N

oalg A 99 B os bl [ olb B ¢85 A ve B8 f o8 1)
If f is a bijection from A to B, then f~! is a bijection from B to A, and we have:

Ve € A, [ (f(z)
vy € B, f(f'W) =y
Y y

T,

2 22.2.1 : Example - J 20 )

Blas I bt by Bl by o
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As we previously mentioned, we have the following bijection:

f 0,400 — [0, +00]

r >z
and its inverse application is as follows: P JW oD GNTBZ” aonbs g
f= 200, 400[ = [0, 400
T =T
L J

8.2.1 : Remark - %){D

B g5 A ve Dl [ &b oghs i (1) oo o 6y ¥y € B oK

ol 13) \Weiwy Let y € B. We cannot talk about f~'(y) unless f is a bijection from A to B.
0185 i) ofy @ of g i 1K) o @l )y Wiy K C B
(IfK C B, we can always talk about f~'(K) even if the function f is not invertible.

J

Equals two applications judwdad § glud  7.2.1

Let the two applications: Y- T S (IR

f:A —- B g:E — F
= y=flx) r — y=gx)
Olss 131 dadd g 13) f =g OF J gD
We say that f = ¢ if and only if

; ¢>{ A=FE, B=F
=g

Vee A : f(z) =g(x)

23.2.1 : Example - Jti
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Let the two applications

and 9

.f:giog\).}ejém‘.;\.a‘\lﬂ\m

Lme the trigonometric relations we find that: f = g.

J

Retreating evidence a2/ pdbd Gbd yd! 3.1

JS e blade!) domio « P(n) undll O OLA) (Saedl (e Jamo aal 2l Ola p 31 T O
WOlghas &M anl )L Gla p 0 2y 3 405 g m EN
The principle of proof by induction makes it possible to prove that the statement P(n) is true

for every n € N. The proof by induction proceeds in three steps: retreating evidence, base

case, and inductive step.

P(0) el (I 9¥1 5 glaset
First step, we set P(0).

& P(n) auadl O Cudd @3 Ao P(n) = slaaati n > 0 b 588 (A0l 5 glaslt dwwidly
Ao LS (AT A el

For the second step, we assume that the given statement P(n) is true for some n > 0 and then

prove that the statement P(n + 1) is also true.
n €N s Jai o dovsmo P(n) auasdll Of asl0b La a8 0480 a¥ 8

In the end, we have proven by induction that the statement P(n) is true for all n € N.
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g 24.3.1 : Example - JL’]’.D

Let’s prove that: ) QL
VneN:2" >n.

: Gl G\ P(n) g0 n > 0 381 oo
Forn >0 we set P(n) the following case:

YneN: P(n)=2">n.

We will prove backwards that the case P(n) is true for all n > 0.
First step o 9¥1 3 glaidl
Sdises P(0) 0ing 2°=1> 0% n=0Js1 o
for n =0 we have 2° =1 > 0. From which P(0) is realized.
Second step AOLL 3 glaik
Sbdse P(n+ 1) o) waiddy Gase P(n) of o s n > 0 ol
Let n > be0. Let’s say that P(n) is true and let’s prove that P(n + 1) is true.

2"l =274 2" >4+ 2" >n+1 and P(n) = 2" > n.

From which P(n + 1) is realized. Goose P(n + 1) cieg
1 &V > 008 381 oe Ssasoo P(n) wadl) o g5 4b s

We have proven by induction that the statement P(n) is true for all n >0, i.e.

VYneN:P(n)=2">n.
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