If we solve this equation to figure out the value of y we get

$$
y=\frac{x^{3}}{3}+C
$$

 where C is an arbitrary constant. In the above-obtained solution, we see that y is a function of x. On substituting this value of y in the given differential equation, both the sides of the differential equation becomes equal.
3.5

$$
\xlongequal{\text { Exercise No}-1-1 ~ ت م ر ~ ي ن ~ ر ق ه م ~}
$$

Determine the solution to the differential equation

$$
3 y^{\prime}+4 y=0
$$

$$
\text { الذي بِفِ الشرط الإبنرائب } 2 \text { = (0) } 2 .
$$

which satisfies the initial condition $y(0)=2$.

هذه المـعادلة تكتب على الشكل التالي
This equation is written in the following form

$$
y^{\prime}=-\frac{4}{3} y
$$

إذن الـحل الذي يـحقق الشر ط الإبتـدائي هو
So the solution that satisfies the initial condition is

$$
y(x)=y(0) e^{-\frac{4}{3} x}
$$

then

$$
y(x)=2 e^{-\frac{4}{3} x} .
$$

$\underline{\underline{\text { Exercise } N^{\circ}-2-2-ت م ر ~ ي ن ~ ر ق م ~}}$

لنّلن المعادلة النفاضلبةُ النالبةُ:
Let the differential equation be:

$$
\begin{equation*}
y^{\prime}+2 x y=x \tag{E}
\end{equation*}
$$

1) أوجه حلول المعاولة النّفاضلبةُ المنجانسة.

Find the solutions to the homogeneous differential equation.

$$
\text { 2) أوجد حلول المعادلة (E) النب نحفق } 1 \text { = (0)y. }
$$

Find the solutions to the equation (E) which satisfies $y(0)=1$.

الدو ال الأصليـة للدالة $a(x)=2 x$ هي الدوال $A(x)=x^{2} / 2+k$ حيث $k \in \mathbb{R}$ هو ثابت كيفي. و منـه

The primitive functions of $a(x)=2 x$ are the functions $A(x)=x^{2} / 2+k$ where $k \in \mathbb{R}$ is a arbitrary constant. Hence, the solutions to the homogeneous equation E are all functions defined on \mathbb{R} of the form:

$$
y(x)=c e^{-x^{2}}
$$

where $c \in \mathbb{R}$ is an arbitrary constant.
نبـحث الآن عن الححل الخاص لــ E مـن الشكل:

Now we look for the particular solution of E of the form:

$$
y_{p}(x)=c(x) e^{-x^{2}}
$$

بإستعمـال طر يقة تغييـر الثو ابت. لدينـا :
using the variable constants method. We've got :

$$
\begin{aligned}
& y_{p}^{\prime}(x)+2 x y_{p}(x)=c^{\prime}(x) e^{-x^{2}} . \\
& \text { و منـه }
\end{aligned}
$$

Of which y_{p} is a solution to E if and only if: $c^{\prime}(x)=x e^{x^{2}}$ for each $x \in \mathbb{R}$.

لتكن الدالة $c(x)$ مـن بـين الدو ال الأصليـة للدالة $x e^{x^{2}}$ على سبـيل المـثال :
Let the function $c(x)$ be among the primitive functions of the function $x e^{x^{2}}$, for example:

$$
c(x)=1 / 2 e^{x^{2}}
$$

then the function y_{p} where

$$
y_{p}(x)=1 / 2 e^{x^{2}} e^{-x^{2}}=1 / 2
$$

هي حل لـ E. و عليـه، حلو ل المعادلة E هي كل الدو ال مـن الشكل :
is a solution to E. Therefore, the solutions to the equation E are all functions of the form:

$$
\begin{aligned}
& y(x)=c e^{-x^{2}}+\frac{1}{2} c \in \mathbb{R} . \\
& \text { حيث } y \text { حل للمعادلة } E_{1} \text { هنا الشرط } y(0)=1 \text { يكافئ : } c=1 / 2 .
\end{aligned}
$$

where y is a solution to equation E_{1}, here the condition $y(0)=1$ is equivalent to: $c=1 / 2$.

Exercise Nº تمر ين رقم - 3 تم

We propose to integrate over the largest possible interval in $] 0, \infty[$ of the differential equation:

$$
y^{\prime}(x)-\frac{y(x)}{x}-y(x)^{2}=-9 x^{2}
$$

Find $a \in] 0, \infty\left[\right.$ where $y(x)=a x$ is a particular solution y_{0} of equation (E).

$$
\text { أثبَ- أن نُغببر الد الذ : } y(x)=y_{0}(x)-\frac{1}{z(x)} \text { بِول المعادلذ (E) إلى المعادلة النفاضلبة: }
$$

Prove that changing the function: $y(x)=y_{0}(x)-\frac{1}{z(x)}$. Converts the equation (E) to the differential equation:

$$
\begin{array}{ll}
z^{\prime}(x)+\left(6 x+\frac{1}{x}\right) z(x)=1 . & \left(E_{1}\right) \\
. \quad .00, \infty[\text { 3) أوجه حلول })
\end{array}
$$

Solve $\left(E_{1}\right)$ by $] 0, \infty[$.
4) أوجد كل حلول المعاولة (E) المعر فة على]م, 0,

Find all solutions to the equation (E) defined on $] 0, \infty[$.

Let's solve the following differential equation

$$
y^{\prime}(x)-\frac{y(x)}{x}-y(x)^{2}=-9 x^{2}
$$

1) نبـحث على [$y_{0}(x)=a x$ يكون حل خاص للمـعادلة، و لأن $a \in[0$,

We are looking for $a \in\left[0, \infty\left[\right.\right.$ where $y_{0}(x)=a x$ is a special solution to the equation, and

$$
\begin{aligned}
& y_{0}^{\prime}(x)-\frac{y_{0}(x)}{x}-y_{0}(x)^{2}=-a^{2} x^{2}, \\
& \text { y هو حل إذا و فقط إذا كان } a= \pm 3 \text {. } a=3 \text { و ليكن } a=3 .
\end{aligned}
$$

y_{0} is a solution if and only if $a= \pm 3$, we take $a=3$.
2) إذا كانت z دالة مـن الصنف

If z is a function of class \mathcal{C}^{1} and does not null, we set

$$
y(x)=3 x-1 / z(x) .
$$

و منـه y حل إذا و فقط إذا كان :
of which y is a solution if and only if:

$$
\frac{z^{\prime}(x)}{z(x)^{2}}+\frac{1}{x z(x)}-\frac{1}{z(x)^{2}}+\frac{6 x}{z(x)}=0
$$

بالضـر ب في $z(x)^{2}$ نحصل على y حل للمعـادلة السـابقة إذا و فقط إذا كان z يـحقق
Multiplying by $z(x)^{2}$ we get y is a solution to the previous equation if and only if z satisfies

$$
z^{\prime}(x)+\left(6 x+\frac{1}{x}\right) z(x)=1
$$

 $x \mapsto 3 x^{2}+\ln (x)$
و منـه حلو ل المعـادلة المتتجانسـة هي الدالة:

Let's solve the equation $\left(E_{1}\right)$ over the interval $] 0, \infty[$. We take a primitive function of $x \mapsto 6 x+1 / x$ the function $x \mapsto 3 x^{2}+\ln (x)$. Then, the solutions of the homogeneous equation are the function:

$$
x \mapsto A e^{-3 x^{2}-\ln (x)}
$$

لنبـحث عن حل خاص للمـعادلة (E1) مـن الشكل
Let's find a special solution to the equation $\left(E_{1}\right)$ of the form

$$
z_{p}(x)=\alpha(x) e^{-3 x^{2}-\ln (x)}
$$

و منـه
Hence, z_{p} is a solution if

$$
\begin{aligned}
& \alpha^{\prime}(x) e^{-3 x^{2}-\ln (x)}=1 \\
& \text { أي إذا كان } \alpha^{\prime}(x)=x e^{3 x^{2}} \text { على سبيل المـثال إذا كان } 6(x)=e^{3 x^{2}} \text {. } \\
& \text { حلو ل المـعادلة (E) هي : }
\end{aligned}
$$

i.e. for example if $\alpha^{\prime}(x)=x e^{3 x^{2}}$ and $\alpha(x)=e^{3 x^{2}} / 6$. The solutions to the equation $\left(E_{1}\right)$ are:

$$
\begin{aligned}
& z(x)=\frac{1+A e^{-3 x^{2}}}{6 x}, \quad \text { where } \quad A \in \mathbb{R} . \\
& \text { 4) سنستنتتج الآن حلو ل (E) المعـر فة على الهـجال [0 [0, } 0 \text { [. }
\end{aligned}
$$

We will now derive the solutions of (E) defined on the interval $] 0, \infty[$.

$$
\begin{aligned}
& \text { المـجـال المفتتوح [} 1
\end{aligned}
$$

Let y be a solution of class \mathcal{C}^{1} defined on the interval $] 0, \infty[$. Let's assume that $y(x)>3 x$ is on the open interval $I \subset[0, \infty[]$, as large as possible. Then

$$
y(x)=3 x-1 / z_{I}(x)
$$

For some functions $z_{I}<0$ of class \mathcal{C}^{1} on I. According to the previous question, we necessarily have that:

$$
z_{I}(x)=\frac{1+A_{I} e^{-3 x^{2}}}{6 x}
$$

 كان x كبيـر بـما يكفي. ووبالتالي، يو جـد مـجال مفتوح J بـحيث يكون $3 x$ > $3 x$ على J ع for the constant $A_{I} \in \mathbb{R}$, and because $z_{I}<0$ then $A_{I}<0$ but $\left.I \neq\right] 0,+\infty\left[\right.$ because $1>A_{I} e^{-3 x^{2}}$ if x is big enough. Thus, there is an open interval J such that $y(x)<3 x$ over J.
 $z_{J}>0$

We assume again that J is as large as possible and that in $J, y(x)=3 x-1 / z_{J}(x)$ for some functions $z_{J}>0$ of class \mathcal{C}^{1}. Again from the previous question,

$$
z_{J}(x)=\frac{1+A_{J} e^{-3 x^{2}}}{6 x}
$$

where A_{J} is a constant.
 يفتر ض أن يتـم تعر يفه على المـجال [كان
 $x \rightarrow a$

Because the open interval $J=] a, b$ [was supposed to be the maximum, and since y is assumed to be defined on the interval $] 0,+\infty[$ if $a>0$ then $y(a)=3 a$ and the same if $b<\infty$, $y(b)=3 b$, because if it weren't for the continuity of the function y we would have $y(x)<3 x$ over $] a-\epsilon, b+\epsilon$ [for small $\epsilon>0$. This is only possible respectively if $z_{J}(x) \rightarrow+\infty$ when $x \rightarrow a$ or $z_{J}(x) \rightarrow+\infty$ when $x \rightarrow b$. But we have said that:

$$
\begin{aligned}
& z_{J}=\frac{1+A_{J} e^{-3 x^{2}}}{6 x}, \\
& \text { لذلك هذا غير مـمكن على الإطالاق (باستثناء إذا كان على التو الي } a=0 \text { و } a=0 \text {). }
\end{aligned}
$$

So this is not possible at all (except if respectively $a=0$ and $b=0$).

So, let $y(x)=3 x$ over the interval $] 0,+\infty[$ and let $y(x)<3 x$ over $] 0,+\infty[$ in this last case, $z(x)=1 /(3 x-y(x))$ defined on the interval $] 0,+\infty[$ and write

$$
\begin{aligned}
& z(x)=\left[1+A e^{-3 x^{2}}\right] / 6 x . \\
& \text { لأن } 2>0 \text { ، بالضرور } 2 \text { A } A \text {. و منـه إذا كان } y \text { حل فإن: }
\end{aligned}
$$

Because $z>0$, is necessarily that $A \geq-1$. Hence, if y is a solution, then:

$$
y(x)=3 x \quad \text { أو } \quad y(x)=3 x-\frac{6 x}{1+A e^{-3 x^{2}}} \quad \text { حيث } A \geq-1 \text {. }
$$

 و يـكـنـنا التـحقق مـن أنه حل.
Conversely, if y is defined, then y is defined and of class \mathcal{C}^{1} on the interval $] 0, \infty[$, and we can verify that it is a solution.

Exercise Nº تمر ين رقّم لنّلن المعاولذ النفاضلبِة النالبة

Let the following differential equation

$$
y^{\prime \prime}+2 y=0
$$

Solve this equation.

1) حل هذه المعادلة.

$$
\cdot f^{\prime}(0)=-2
$$

Find the function f that solves the previous differential equation and that satisfies the
following conditions: $f(0)=1$ and $f^{\prime}(0)=-2$.

1) تكتب المـعادلة مـن الشكل :

Write the equation in the form:

$$
y^{\prime \prime}+(\sqrt{2})^{2} y=0
$$

و منـه حلو لهـا هي الدو ال المعـر فة على R التي تأخذ الشكل:
and its solutions are the functions defined on \mathbb{R} that take the form:

$$
\alpha \cos \sqrt{2} x+\beta \sin \sqrt{2} x, \alpha, \beta \in \mathbb{R}
$$

The function f that achieves a solution to the previous differential equation and that fulfills the following conditions: $f(0)=1$ and $f^{\prime}(0)=-2$, i.e. there is alpha, $\beta \in \mathbb{R}$ where:

$$
\begin{gathered}
f(x)=\alpha \cos \sqrt{2} x+\beta \sin \sqrt{2} x \Longrightarrow f(0)=\alpha=1 \\
f^{\prime}(x)=\sqrt{2} \beta \cos \sqrt{2} x-\sqrt{2} \alpha \sin \sqrt{2} x \Longrightarrow \sqrt{2} \beta=-2 \Longrightarrow \beta=-\sqrt{2}
\end{gathered}
$$

أي الدالة التي تحقق الشـر طين هي:

Which function satisfies both conditions is:

$$
f(x)=\cos \sqrt{2} x-\sqrt{2} \sin \sqrt{2} x
$$

$\underline{\underline{\text { Exercise } N^{\circ}-5-5}}$
أوجد حلول المعادلا ـ النفاضلبةُ النالبة:

$$
\begin{aligned}
& \text { 2) الدالة f التي تـحقق حلا للمعـادلة التفاضليـة السـابقة والتي تحقق الشرو ط التاليـة: } 1 \text { (0) } 1 \text { (0 و } \\
& \text { (} f^{\prime}(0)=-2
\end{aligned}
$$

Find the solutions to the following differential equations:

1) $y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}$.
2) $y^{\prime \prime}-y=-6 \cos x+2 x \sin x$.
3) $4 y^{\prime \prime}+4 y^{\prime}+5 y=\sin x e^{-x / 2}$.

لتكن الممعادلة:
Let the equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{x} .
$$

كثير الحـدود الممـيز:
the characteristic polynomial is

$$
f(r)=(r-1)(r-2)
$$

و بـالتالي فإن حلو ل المـعادلة المتـجـانسـة هي جـميـع الدو ال:
So the solutions to the homogeneous equation are all functions:

$$
y(x)=c_{1} e^{x}+c_{2} e^{2 x} \quad c_{1}, c_{2} \in \mathbb{R}
$$

نبحث عن حل خاص مـن الشكل $y_{p}(x)=P(x) e^{x}$ نحن في الحـالة ($)$ الشرط (*) على P هو :居 $P(x)=-x$ وحقق $P^{\prime \prime}-P^{\prime}=1$

We are looking for a special solution of the form $y_{p}(x)=P(x) e^{x}$. We are in the condition (u) (*) over P is : $P^{\prime \prime}-P^{\prime}=1$ and $P(x)=-x$ verifies:

> لذلك فإن حلو ل المعـادلة هي الدو ال مـن الشكل:

Therefore, the solutions to the equation are functions of the form:

$$
\begin{aligned}
& y(x)=\left(c_{1}-x\right) e^{x}+c_{2} e^{2 x} \text { where } c_{1}, c_{2} \in \mathbb{R} . \\
& \text { هنـا } \text { ه }^{\prime \prime}-y=-6 \cos x+2 x \sin x \\
& 0=(r-1)(r+1)
\end{aligned}
$$

Here $0=(r-1)(r+1)$ the homogeneous equation has solutions of the form:

$$
y(x)=c_{1} e^{x}+c_{2} e^{-x} \text { where } c_{1}, c_{2} \in \mathbb{R}
$$

 $y_{p}(x)=3 \cos x+y_{1}(x)$ سـيكو $y^{\prime \prime}-y=2 x \sin x$. $y^{\prime \prime}-y=2 x e^{i x}: 2 x \sin x=\operatorname{Im}\left(2 x e^{i x}\right)$

We note that the function $3 \cos x$ satisfies the equation: $y^{\prime \prime}-y=-6 \cos x$, so we need to solve y_{1} for the equation $y^{\prime \prime}-y=2 x \sin x$ because $y_{p}(x)=3 \cos x+y_{1}(x)$ will be a solution to the studied equation. For this, we note that $2 x \sin x=\operatorname{Im}\left(2 x e^{i x}\right)$ and we use the above method to solve z_{1} for the equation: $y^{\prime \prime}-y=2 x e^{i x}$. We are looking for z_{1} of the form $P(x) e^{i x}$ where P. It is a polynomial of degree 1 because $f(i)=-2 \neq 0$. we've got $f^{\prime}(i)=2 i$ condition $(*)$ on P, from which: $2 i P^{\prime}(x)-2 P(x)=2 x$ which gives the definition dimension $P(x)=-x-i$. Then

$$
y_{1}(x)=\operatorname{Im}\left((-x+i) e^{i x}\right)=-x \sin x-\cos x
$$

و وـالتالي فإن الححلول هي الدو ال:

So the solutions are functions:

$$
y(x)=c_{1} e^{x}+c_{2} e^{-x}+2 \cos x-x \sin x \text { where } c_{1}, c_{2} \in \mathbb{R}
$$

 المععادلة المـدر و سـة على ${ }_{1}$. . . نتحصل على الشر ط :

$$
\left(A^{\prime \prime}-A-2 B^{\prime}\right) \sin x+\left(B^{\prime \prime}-B-2 A^{\prime}\right)=2 x \sin x
$$

الذي يتحقق إذا كان :
Another way to solve for $y^{\prime \prime}-y=2 x \sin x$: We look for the solution from the form $y_{1}(x)=$ $A(x) \sin x+B(x) \cos x$ where A, B are polynomials of degree 1 because i is not the root of the characteristic equation. We calculate $y_{1}^{\prime}, y_{1}^{\prime \prime}$ and apply the studied equation to $y_{1} \ldots$ we get the condition:

$$
\left(A^{\prime \prime}-A-2 B^{\prime}\right) \sin x+\left(B^{\prime \prime}-B-2 A^{\prime}\right)=2 x \sin x
$$

which is achieved if:

$$
\left\{\begin{array}{c}
A^{\prime \prime}-A-2 B^{\prime}=2 x \\
B^{\prime \prime}-B-2 A^{\prime}=0
\end{array}\right.
$$

And we write: $A(x)=a x+b$ et $B(x)=c x+d$, after defining we get: $a=d=-1, b=c=0$ which defines y_{1}.

$$
.4 y^{\prime \prime}+4 y^{\prime}+5 y=\sin x e^{-\frac{x}{2}}
$$

The characteristic equation has two complex roots $r_{1}=-\frac{1}{2}+i$ and $r_{2}=\overline{r_{1}}$. The solutions to the homogeneous equation are:

$$
\begin{gathered}
y(x)=e^{-x / 2}\left(c_{1} \cos x+c_{2} \sin x\right) \text { where } c_{1}, c_{2} \in \mathbb{R} \\
\sin x e^{-\frac{x}{2}}=\operatorname{Im}\left(e^{\left(-\frac{1}{2}+i\right) x}\right),
\end{gathered}
$$

 المـمـيزة ، نبـحث عن:
we've got

$$
\sin x e^{-\frac{x}{2}}=\operatorname{Im}\left(e^{\left(-\frac{1}{2}+i\right) x}\right)
$$

We start by finding the solution to the z_{p} of the equation with the new second side $e^{(-1 / 2+i) x}$. Because $-\frac{1}{2}+i$ is the root of the characteristic equation, we look for:

$$
\begin{aligned}
z_{p}(x)= & P(x) e^{\left(-\frac{1}{2}+i\right) x} \\
& : P \text { حيث } P \text { من الدر جـة 1. و بالتالي الشرط (*) على }
\end{aligned}
$$

Where P is of degree 1. Hence the condition ($*$) on P :

$$
4 P^{\prime \prime}+f^{\prime}(-1 / 2+i) P^{\prime}+f(-1 / 2+i) P=1
$$

Writes
يكتب :

$$
8 i P^{\prime}=1\left(P^{\prime \prime}=0 \quad f\left(-\frac{1}{2}+i\right)=0 \quad, \quad f^{\prime}\left(-\frac{1}{2}+i\right)=8 i\right)
$$

لذلك يمكننـا أن نأخذ $z_{p}(x)=-\frac{i}{8} x e^{\left(-\frac{1}{2}+i\right) x} \quad$ و مـن هنا الجزء التخيلي:

So we can take $P(x)=-i / 8 x$ and $z_{p}(x)=-\frac{i}{8} x e^{\left(-\frac{1}{2}+i\right) x}$ Hence the imaginary part is:

$$
\begin{aligned}
& y_{p}(x)=\operatorname{Im}\left(-\frac{i}{8} x e^{\left(-\frac{1}{2}+i\right) x}\right)=\frac{1}{8} x \sin x e^{-\frac{x}{2}} \\
& \text { هو حل معادلتنـا. لذلك فإن الحلو ل هي جـميع الدو ال مـن الشكل : }
\end{aligned}
$$

is the solution to our equation. So the solutions are all functions of the form:

$$
y(x)=e^{-\frac{x}{2}}\left(c_{1} \cos x+\left(c_{2}+\frac{1}{8} x\right) \sin x\right) \text { where } c_{1}, c_{2} \in \mathbb{R} .
$$

