Series No2

(Linear applications and matrices)

Exercise 1: Let f and g be two applications defined by:
$f: \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
$g: \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
$(x, y) \mapsto f(x, y)=\left(\frac{x-y}{2}, \frac{y-x}{2}\right)$
$(x, y) \mapsto g(x, y)=(2 x-y, x-y)$

1- Show that f and g are linear.
2- Determine $\operatorname{Ker} f, \operatorname{Ker} g, \operatorname{Im} f, \operatorname{Im} g, r k f, r k g$
3- $\quad f$ and g are they injective ? surjective ?
4- Is $\mathbb{R}^{2}=\operatorname{Ker} f \oplus \operatorname{Im} f$?
5- Show that: if $u \in \operatorname{Im} f$ then $f(u)=u$.
Exercise 2: Let be the following matrices:

$$
A=\left(\begin{array}{cc}
3 & 0 \\
-2 & 1
\end{array}\right), B=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0 \\
1 & 3
\end{array}\right), C=\left(\begin{array}{ccc}
1 & -3 & 2 \\
2 & 1 & -3 \\
4 & -3 & -1
\end{array}\right), D=\left(\begin{array}{cc}
2 & 1 \\
3 & -1 \\
5 & 4
\end{array}\right), E=\left(\begin{array}{ccc}
1 & 2 & -1 \\
-1 & 2 & 3 \\
4 & 5 & 2
\end{array}\right)
$$

1. Calculate -if possible- $A+C, B+D, 3 A, A \times B, B \times A, A^{3}, C^{2}, B^{t}, A \times B^{t}$.
2. Calculate $\operatorname{det} C, \operatorname{det} E$ and $\mathrm{C}^{-1} \cdot E^{-1}$.

Exercise 3: Let $B=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the canonical basis of \mathbb{R}^{3}, and let f be the linear application:

$$
\begin{aligned}
f: \quad \mathbb{R}^{3} & \rightarrow \mathbb{R}^{3} \\
(x, y, z) & \mapsto(x-y, x+z, y+z)
\end{aligned}
$$

1- Find the matrix of f in the canonical basis of \mathbb{R}^{3}.
2- Let $a=(1,3,-1), b=(1,3,0), c=(1,2,-1)$
a) Show that $B^{\prime}=\{a, b, c\}$ is a basis of \mathbb{R}^{3}.
b) Find the passage matrix P from B to B^{\prime}. Calculate P^{-1}.
c) Find the matrix of f in the basis B^{\prime} using the passage matrix.
d) Find the matrix of f in the basis B^{\prime} using the definition.

Exercise 4: Let $B=\left\{e_{1}, e_{2}, e_{3}\right\}$ the canonical basis of \mathbb{R}^{3}, and let f be the linear application:
$f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
f\left(e_{1}\right)=e_{3}, f\left(e_{2}\right)=-e_{1}+e_{2}+e_{3}, f\left(e_{3}\right)=e_{3}
$$

I.

1. Show that: $\forall(x, y, z) \in \mathbb{R}^{3}: f(x, y, z)=(-y, y, x+y+z)$
2. Find $\operatorname{Ker} f$ and $\operatorname{dim} \operatorname{Ker} f$, is f injective?
3. Let F a vector subspace of \mathbb{R}^{3} defined by $F=\left\{(x, y, z) \in \mathbb{R}^{3} / x=0\right\}$ show that $\mathbb{R}^{3}=F \oplus \operatorname{Ker} f$.
II.
4. Find the matrix of f in the canonical basis of \mathbb{R}^{3}.
5. We set $e^{\prime}{ }_{1}=e_{1}-e_{3}, e^{\prime}{ }_{2}=e_{1}-e_{2}, e^{\prime}{ }_{3}=-e_{1}+e_{2}+e_{3}$
a) Check that $B^{\prime}=\left\{e_{1}^{\prime}, e^{\prime}{ }_{2}, e^{\prime}{ }_{3}\right\}$ is a basis of \mathbb{R}^{3}.
b) Find the passage matrix P from the canonical basis to B^{\prime}. Calculate P^{-1}.
c) Find the matrix of f in the basis B^{\prime} by using two methods .
