Mathematical recall and vector operations

Problem 1:

The forces $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3}, all of which act on point A of the bracket, are specified in three different ways (Fig.1).

- Determine the x and y scalar components of each of the three forces.

Problem 2:

Combine the two forces \mathbf{P} and \mathbf{T}, which act on the fixed structure at B, into a single equivalent force \mathbf{R} (Fig.2).

Problem 3:

Forces \mathbf{F}_{1} and \mathbf{F}_{2} act on the bracket as shown in (Fig.3). Determine:
1- The magnitude of the resultant force \mathbf{R}.

2- The projection F_{b} of their resultant \mathbf{R} onto the b-axis.

Problem 4:

If the force \mathbf{F} has a magnitude of 1200 N and angle θ_{x} is 60° and θ_{y} is 45° (Fig.4).
1- Express the force in Cartesian form.

2- Determine its unit vector.

Problem 5:

If the coordinate direction angles $\theta_{x}=112^{\circ}, \theta_{y}=75^{\circ}$ and $\mathrm{F}_{z}=5 \mathrm{~cm}$ (Fig.4).

- Determine the magnitude of vector \mathbf{F}.

Problem 6:

A force \mathbf{F} with a magnitude of 100 N is applied at the origin O of the axes $x-y-z$ as shown in (Fig.5). The line of action of \mathbf{F} passes through a point A whose coordinates are $3 \mathrm{~m}, 4 \mathrm{~m}$, and 5 m . Determine:

1- The x, y, and z scalar components of \mathbf{F},
2- The projection $\mathrm{F}_{x y}$ of \mathbf{F} on the $x-y$ plane,
3- The projection $\mathrm{F}_{O B}$ of \mathbf{F} along the line $O B$ using dot product.

