Geometric properties

Dr. Yiheng Wang

Centre of Gravity

Objectives:

- You will be able how to find the center of gravity of a rigid body

Dr. Yiheng Wang

Dr. Yiheng Wang

1- We can simplify the analysis by replacing the rigid body by a particle of the same total weight located at this point

2- For a rigid body, in near-earth gravity, its center of gravity superimposes with its center of mass, and is a unique point fixed in relation to the body.

3- When the body has uniform density, center of gravity and center of mass is also centroid of the volume

Dr. Yiheng Wang

$$(+dM_x = y \cdot dW)$$

Dr. Yiheng Wang

Engineering Mechanics: Statics

Center of Gravity:

Dr. Yiheng Wang

$$W = mg$$

g gravitational acceleration constant , 9.81 m/s^2

$$\overline{x} = \frac{\int x \cdot dW}{\int dW} = \frac{\int x \cdot dm \cdot g}{\int dm \cdot g} = \frac{\int x \cdot dm}{\int dm}$$
$$\overline{y} = \frac{\int y \cdot dm}{\int dm}$$
$$\overline{z} = \frac{\int z \cdot dm}{\int dm}$$

$$\overline{y} = \frac{\int y \cdot dW}{\int dW}$$

$$\bar{z} = \frac{\int z \cdot dW}{\int dW}$$

Centroid of Mass

$$m = \rho \cdot V$$

p constant density

Centroid of Volume

Dr. Djedoui . Dr. Khechai

Dr. Yiheng Wang

$$V = t \cdot A$$

t constant thickness

$$\overline{x} = \frac{\int x \cdot dV}{\int dV} = \frac{\int x \cdot t \cdot dA}{\int t \cdot dA} = \frac{\int x \cdot dA}{\int dA}$$
$$\overline{x} = \frac{\int x \cdot dV}{\int dV}$$
$$\overline{x} = \frac{\int x \cdot dA}{\int dA}$$
$$\overline{y} = \frac{\int y \cdot dA}{\int dA}$$

Centroid of Area

Dr. Yiheng Wang

Example: find the centroid of this rectangle:

Dr. Yiheng Wang

$$\int_{A}^{x} dA = \int_{0}^{b} \int_{0}^{\frac{h}{b}x} x dy dx = \int_{0}^{b} \frac{h}{b} x^{2} dx = \frac{h}{b} \cdot \frac{1}{3} x^{3} \Big|_{0}^{b} = \frac{1}{3} h b^{2} \qquad dA = dx \cdot dy$$

$$\int_{A}^{b} dA = \int_{0}^{b} \int_{0}^{\frac{h}{b}x} dy dx = \int_{0}^{b} \frac{h}{b} x dx = \frac{h}{b} \cdot \frac{1}{2} x^{2} \Big|_{0}^{b} = \frac{1}{2} h b$$

$$\bar{x} = \frac{\int x \cdot dA}{\int dA} = \frac{2}{3} b$$
Area of triangle

Dr. Yiheng Wang

$$\int_{A} y dA = \int_{0}^{b} \int_{0}^{\frac{h}{b}x} y dy dx = \int_{0}^{b} \frac{h^{2}}{2b^{2}} x^{2} dx$$
$$= \frac{h^{2}}{b^{2}} \cdot \frac{1}{6} x^{3} \Big|_{0}^{b} = \frac{1}{6} h^{2} b$$
$$\int_{A} dA = \frac{1}{2} hb \qquad \bar{y} = \frac{\int y \cdot dA}{\int dA} = \frac{1}{3} h$$

Dr. Djedoui . Dr. Khechai

Dr. Yiheng Wang

The centroid of this rectangle:

List of centroids - Wikipedia®

The following is a **list of centroids** of various two-dimensional and three-dimensional ... List of centroids. Article Talk · Language · Watch · Edit. The following is a list of centroids of various two-dimensional an... 2-D Centroids · 3-D Centroids

Dr. Yiheng Wang

Centroid of composite areas:

Dr. Yiheng Wang

Centroid of composite areas:

Example: find the centroid of the area of the composite shape:

Dr. Yiheng Wang

 $V_{\mathcal{V}}$ Is the Volume created by the shape around the X axis

Dr. Yiheng Wang

Centroid of an Area:

Guldin theorem:

$$X_G = \frac{V_y}{2\pi S}$$

 V_y = the volume of the half of the sphere S = the surface of the quarter-circle

 $V_{\mathcal{Y}}$ Is the Volume created by the shape around the X axis S Is the Initial surface of the shape

Dr. Yiheng Wang

$$X_G = \frac{V_y}{2\pi S}$$

 $V_{\mathcal{Y}}$ = the volume of the half of the sphere

S = the surface of the quart-circle

Dr. Djedoui . Dr. Khechai

Dr. Yiheng Wang

Moment of inertia

Objectives:

- You will be able how to find the Moment of inertia of any shape

Dr. Yiheng Wang

Moment of inertia

Resistance to bending (rotation) = Area moment of inertia (second moment of Area)

More material located fare from the bending axis, it better resists the bending. Even thought, we have the same section of material

Moment of inertia

$$I_{aa} = \int_m r^2 dm$$

The moment of inertia is relative, different when calculated about different axis

Radius of gyration

$$k_{aa} = \sqrt{\frac{I_{aa}}{m}}$$

Dr. Yiheng Wang

Parallel axis theorem:

 $I_{aa} = I_{G,aa'} + d^2m$

Dr. Djedoui . Dr. Khechai

Dr. Yiheng Wang

Example:

For a uniform thin disk of mass m, determine its mass moment of inertia abut the z axis, which passes through its center of gravity G and is perpendicular to the disk

Dr. Yiheng Wang

Solutio

Solution:

$$dm = \rho dV = \rho.t. dA$$

$$dm = \rho.t. 2\pi r dr$$

$$I_{Z} = \int_{m} r^{2} dm$$

$$I_{Z} = \rho.t. 2\pi \int_{m} r^{3} dm$$

$$I_{Z} = \rho.t. 2\pi t \frac{1}{4} R^{4} = \frac{1}{2} \pi \rho t R^{4}$$

$$V = \pi R^{2} t$$

$$m = \rho V = \rho \pi R^{2} t$$

$$I_{Z} = \frac{1}{2} m R^{2}$$

Dr. Yiheng Wang

 $I_Z =$

Example 2:

For a uniform thin disk of mass m, determine its mass moment of inertia abut the z' axis, which passes through point P and is perpendicular to the disk

We have $I_{Z} = \frac{1}{2}mR^{2}$ Parallel axis theorem: $I_{Z'} = \frac{1}{2}mR^{2} + mR^{2}$ $I_{Z'} = \frac{3}{2}mR^{2}$

Dr. Djedoui . Dr. Khechai

Dr. Yiheng W