Engineering Mechanics: Statics

Geometric properties

Engineering Mechanics: Statics

Centre of Gravity

Objectives:

- You will be able how to find the center of gravity of a rigid body

Engineering Mechanics: Statics

Engineering Mechanics: Statics

1- We can simplify the analysis by replacing the rigid body by a particle of the same total weight located at this point

Engineering Mechanics: Statics

2- For a rigid body, in near-earth gravity, its center of gravity superimposes with its center of mass, and is a unique point fixed in relation to the body.

3- When the body has uniform density, center of gravity and center of mass is also centroid of the volume

Engineering Mechanics: Statics

Engineering Mechanics: Statics

Engineering Mechanics: Statics

Center of Gravity:

$$
\begin{aligned}
& \bar{x}=\frac{\int x \cdot d W}{\int d W} \\
& \bar{y}=\frac{\int y \cdot d W}{\int d W} \\
& \bar{z}=\frac{\int z \cdot d W}{\int d W}
\end{aligned}
$$

Engineering Mechanics: Statics

Engineering Mechanics: Statics

$$
m=\rho \cdot V
$$

\boldsymbol{p} constant density

$$
\bar{z}=\frac{\int z \cdot d m}{\int d m}
$$

$$
\begin{aligned}
& \bar{x}=\frac{\int x \cdot d m}{\int d m}=\frac{\int x \cdot \rho \cdot d V}{\int \rho \cdot d V}=\frac{\int x \cdot d V}{\int d V} \\
& \bar{x}=\frac{\int x \cdot d V}{\int d V} \quad \bar{y}=\frac{\int y \cdot d V}{\int d V}
\end{aligned}
$$

$$
\bar{z}=\frac{\int z \cdot d V}{\int d V}
$$

Centroid of Volume

Engineering Mechanics: Statics

$$
V=t \cdot A
$$

t constant thickness

$$
\bar{x}=\frac{\int x \cdot d V}{\int d V}
$$

$$
\begin{gathered}
\bar{x}=\frac{\int x \cdot d V}{\int d V}=\frac{\int x \cdot t \cdot d A}{\int t \cdot d A}=\frac{\int x \cdot d A}{\int d A} \\
\bar{x}=\frac{\int x \cdot d A}{\int d A}
\end{gathered}
$$

Centroid of Area

Engineering Mechanics: Statics

Centroid is always located in axis of symmetry

Engineering Mechanics: Statics

Example: find the centroid of this rectangle:

Engineering Mechanics: Statics

$$
\begin{aligned}
& \int_{A} x d A=\int_{0}^{b} \int_{0}^{\frac{h}{b} x} x d y d x=\int_{0}^{b} \frac{h}{b} x^{2} d x=\left.\frac{h}{b} \cdot \frac{1}{3} x^{3}\right|_{0} ^{b}=\frac{1}{3} h b^{2} \quad d A=d x \cdot d y \\
& \int_{A} d A=\int_{0}^{b} \frac{h}{b} \int_{0}^{\frac{h}{x} x} d y d x=\int_{0}^{b} \frac{h}{b} x d x=\left.\frac{h}{b} \cdot \frac{1}{2} x^{2}\right|_{0} ^{b}=\frac{1}{2} h b \\
& \bar{x}=\frac{\int_{\text {Area of triangle }} x d A}{\int d x}=\frac{2}{3} b
\end{aligned}
$$

Dr. Djedoui . Dr. Khechai

Engineering Mechanics: Statics

$$
\begin{aligned}
& \int_{A} y d A=\int_{0}^{b} \int_{0}^{\frac{h}{b} x} y d y d x=\int_{0}^{b} \frac{h^{2}}{2 b^{2}} x^{2} d x \\
& =\left.\frac{h^{2}}{b^{2}} \cdot \frac{1}{6} x^{3}\right|_{0} ^{b}=\frac{1}{6} h^{2} b \\
& \quad \int_{A} d A=\frac{1}{2} h b \quad \bar{y}=\frac{\int y \cdot d A}{\int d A}=\frac{1}{3} h
\end{aligned}
$$

Engineering Mechanics: Statics

The centroid of this rectangle:

List of centroids - Wikipedia

The following is a list of centroids of various two-dimensional and three-dimensional ... List of centroids.
Article Talk • Language • Watch • Edit. The following is a list of centroids of various two-dimensional an...
2-D Centroids • 3-D Centroids

Centroid of composite areas:

$$
\begin{aligned}
& \bar{x}=\frac{\int \tilde{x} \cdot d A}{\int d A} \quad \bar{x}=\frac{\sum \tilde{x} \cdot A}{\sum A} \\
& \bar{y}=\frac{\int \tilde{y} \cdot d A}{\int d A} \quad \bar{y}=\frac{\sum \tilde{y} \cdot A}{\sum A}
\end{aligned}
$$

Engineering Mechanics: Statics

Centroid of composite areas:

Example: find the centroid of the area of the composite shape:

Engineering Mechanics: Statics

Centroid of an Area:
Guldin theorem:

V_{y} Is the Volume created by the shape around the X axis

Engineering Mechanics: Statics

Centroid of an Area:

Guldin theorem:

$$
X_{G}=\frac{V_{y}}{2 \pi S}
$$

$V_{y}=$ the volume of the half of the sphere $S=$ the surface of the quarter-circle
V_{y} Is the Volume created by the shape around the X axis S Is the Initial surface of the shape

Engineering Mechanics: Statics

$$
X_{G}=\frac{V_{y}}{2 \pi S}
$$

$V_{y}=$ the volume of the half of the sphere
$S=$ the surface of the quart-circle

$$
\begin{aligned}
& S=\frac{\pi R^{2}}{4} \\
& V_{y}=\frac{2 \pi R^{3}}{3} \\
& X_{G}=\frac{\frac{2 \pi R^{3}}{3}}{2 \pi \frac{\pi R^{2}}{4}} \\
& X_{G}, Y_{G}=\frac{4 R}{3 \pi}
\end{aligned}
$$

Engineering Mechanics: Statics

Moment of inertia

Objectives:

- You will be able how to find the Moment of inertia of any shape

Engineering Mechanics: Statics

Moment of inertia

Resistance to bending (rotation) $=$ Area moment of inertia (second moment of Area)

More material located fare from the bending axis, it better resists the bending.
Even thought , we have the same section of material

Engineering Mechanics: Statics

Moment of inertia

$$
I_{a a}=\int_{m} r^{2} d m
$$

The moment of inertia is relative, different when calculated about different axis

Radius of gyration

$$
k_{a a}=\sqrt{\frac{I_{a a}}{m}}
$$

Engineering Mechanics: Statics

Parallel axis theorem:

$$
a^{\prime} I_{G, a^{\prime} a^{\prime}}
$$

$$
I_{a a}=I_{G, a a^{\prime}}+d^{2} m
$$

Engineering Mechanics: Statics

Example:

For a uniform thin disk of mass m, determine its mass moment of inertia abut the \mathbf{z} axis, which passes through its center of gravity G and is perpendicular to the disk

Profile view

Solution:

$$
d m=\rho d V=\rho \cdot t . d A
$$

$d m=\rho . t .2 \pi r d r$
$I_{z}=\int_{m} r^{2} d m$
$I_{z}=\rho . t .2 \pi \int_{m} r^{3} d m$
$I_{z}=\rho . t .2 \pi \int_{m} r^{3} d m$
$I_{Z}=\rho . t .2 \pi t \frac{1}{4} R^{4}=\frac{1}{2} \pi \rho t R^{4}$

$$
\begin{aligned}
V & =\pi R^{2} t \\
m & =\rho V=\rho \pi R^{2} t \\
I_{Z} & =\frac{1}{2} m R^{2}
\end{aligned}
$$

Engineering Mechanics: Statics

Example 2:

For a uniform thin disk of mass m, determine its mass moment of inertia abut the z^{\prime} axis, which passes through point P and is perpendicular to the disk

We have $\quad I_{Z}=\frac{1}{2} m R^{2}$
Parallel axis theorem:

$$
\begin{aligned}
& I_{z^{\prime}}=\frac{1}{2} m R^{2}+m R^{2} \\
& I_{z^{\prime}}=\frac{3}{2} m R^{2}
\end{aligned}
$$

