Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

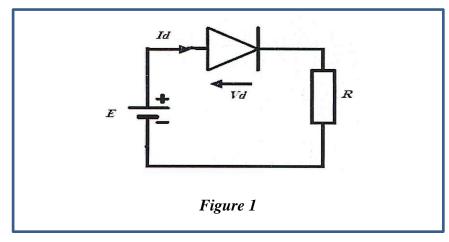
Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Série d'Exercices N° 3

Exercice n°1


Un relevé expérimental sur une diode au silicium à donner le tableau suivant :

$V_d(V)$	0.58	0.6	0.7	0.75
$I_d(A)$	0.6	1	3	4

1. Tracer la caractéristique de cette diode.

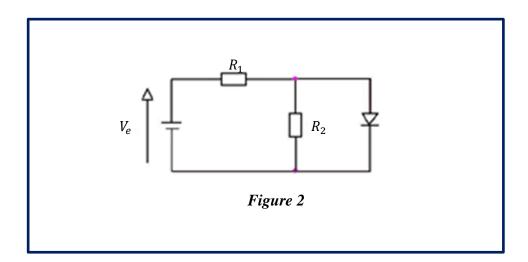
P

- **2.** Quelle est la valeur de la résistance dynamique R_d pour $0.6 < I_{(A)} < 3$?
- 3. Déterminer la tension de seuil V_S .
- **4.** Donner le schéma électrique de cette diode dans le sens passant.
- 5. Sachant que la puissance maximale dissipé est $R_{max} = 3W$, calculer I_{max} et V_{max}
- 6. Supposons maintenant que cette diode soit insérée dans le circuit représenté sur la figure suivante $R=0.32\Omega$, déterminer la valeur de E pour que la droite de charge passe par le point ($V_D=0V$ et $I_D=4A$). En déduire le point de fonctionnement P après avoir tracé la droite de charge.

Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

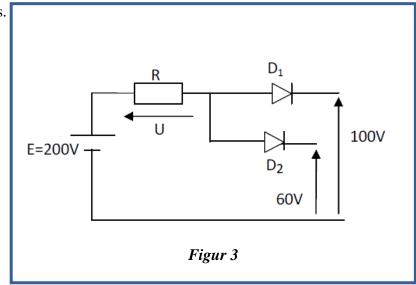

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Exercice n°2

Soit le circuit de figure 2


On suppose que la tension seuil de la **diode** est $V_d=0.6V$ et sa résistance dynamique interne est nulle. La résistance $R_1=200\Omega$, $R_2=500\Omega$ et $V_e=12V$ (la tension de générateur)

Calculer I_D qui circule dans la diode, et les tensions V_{R_1} et V_{R_2} aux bornes des résistances R_1 et R_2

Exercice n°3

Soit le circuit suivant où les diodes sont idéales.

- a) La diode D_1 est passante ou bloquée.
- b) La diode D_2 est passante ou bloquée.
- c) Quelle est la valeur de la tension U.

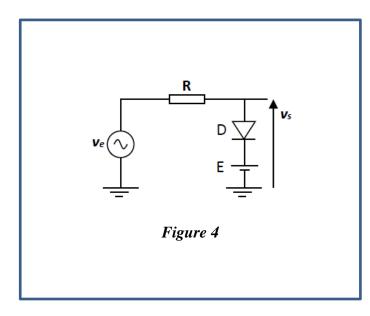
Université Mohamed Khider Biskra

Faculté des sciences et de la technologie

Département : Génie Electrique

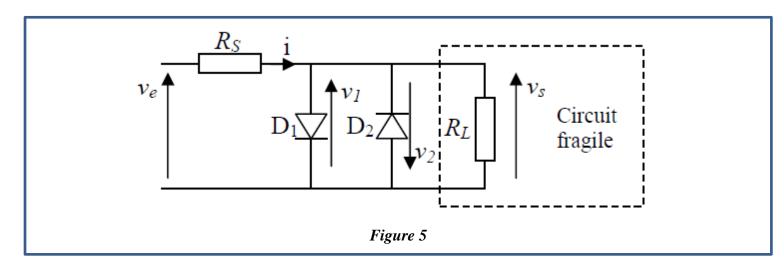
2^{éme} Année ST

Matière : Electronique Fondamentale 1


Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Exercice n°4


Soit le montage de la figure 4

Tracer le graphe de v_{s} ,lorsque $v_{e}(t) = v_{e_{max}} \sin(wt)$

Exercice n°5

Tracer pour le montage de la figure 5, le graphe de v_s ,lorsque $v_e(t) = v_{e_{max}} \sin(wt)$.

