قوانين معايير تقييم واختيار الاستثمارات

أولا. فترة الاسترداد العادية:

 $DR = \frac{I_0}{CF}$ الوحدة: سنة، تحول إلى سنوات وشهور وأيام الوحدة:

DR $\sum \mathbf{CF} = \mathbf{I_0}$

حالة تدفقات نقدية غير منتظمة: طريقة التكرار المتجمع الصاعد مراحل الحساب:

1) إعداد جدول التدفقات التراكمية.

4) تطبيق الطريقة الثلاثية التقريبية:

2) تحديد سنة الاسترداد: عندها يكون التدفق التراكمي > تكلفة الاستثمار، وقبلها مباشرة: التدفق التراكمي < تكلفة الاستثمار.

3) حساب باقى الاسترداد= تكلفة الاستثمار- التدفق التراكمي لسنة قبل الاسترداد.

x حسب باقى الاسترداد

12 mois لـــــ تدفق سنة الاسترداد

DR ثانيا. فترة الاسترداد المخصومة (تدفقات نقدية منتظمة أو غير منتظمة): $\sum CF(1+i)^{-t} = I_0$ بنفس طريقة التدفقات التراكمية، لكن مع استخدام التدفقات النقدية المخصومة بدل التدفقات النقدية العادية: ثالثا القيمة الحالبة الصافية:

يمكن أن يأخذ قانون حساب القيمة الحالية الصافية عدة صيغ، لكن لها نفس المعنى:

$$VAN = \sum_{t=1}^{n} CF_{t}(1+i)^{-t} - I_{0}$$

$$\sum_{t=1}^{DR} \frac{CF_{t}}{(1+i)^{t}} = I_{0}$$

$$VAN = \sum_{t=1}^{n} \frac{CF_t}{(1+i)^t} - I_0$$

القيمة المتقية VR مدمجة في التدفق النقدي CF_n للسنة الأخيرة n:

$$VAN=\sum_{t=0}^{n}rac{CF_{t}}{(1+i)^{t}}$$
 $t=0:CF_{0}=$ - I_{0} :- I_{0} التدفق النقدي CF_{0} التدفق النقدي النقدي CF_{0} - I_{0}

$$ext{VAN} = \sum_{t=1}^{n} rac{ ext{CF}_t}{(1+i)^t} + rac{ ext{VR}_n}{(1+i)^n} - ext{I}_0$$
 نصل القيمة المتقية $ext{VR}_n$ عن التدفق النقدي $ext{CF}_n$ للسنة الأخيرة $ext{CF}_n$ نصل القيمة المتقية $ext{VR}_n$ عن التدفق النقدي $ext{CF}_n$ نصل القيمة المتقية $ext{CF}_n$ المتقية $ext{CF}_n$ عن التدفق النقدي $ext{CF}_n$ المتقية $ext{CF}_n$ عن التدفق النقدي $ext{CF}_n$ المتقية $ext{CF}_n$ عن التدفق النقدي التدفق النقدي $ext{CF}_n$ المتحدد $ext{CF}_n$

$$IP=rac{VAN}{I_0}+1$$
 $IP=rac{\sum CF(1+i)^{-t}}{I_0}+1$ $IP=rac{\sum CF(1+i)^{-t}}{I_0}$ $IP=rac{\sum CF(1+i)^{-t}}{I_0}$

 $i = TIR \rightarrow VAN = 0$

الطريقة الحسابية: (نظرية القيم المتوسطة في الرياضيات) طريقة التناسب الخطي (القاعدة الثلاثية أو طريقة الرسم البياني)

$$\begin{array}{ll} i=i_1 & \rightarrow VAN_1>0 \\ i=i_2 & \rightarrow VAN_2>0 \end{array}$$

1) نبحث عن معدلي خصم أو وزا بحيث:

$$TIR=i_{1+} \quad rac{VAN_1 (i_2-i_1)}{VAN_1 + VAN_2}$$
 نطبیق القانون: (2

الطريقة الجدولية (الجدول المالي رقم 04 (في حالة تدفقات نقدية منتظمة):

(1) نحسب المقدار:
$$\frac{I_0}{i} = \frac{I_0}{CF}$$
 علومان. (1) نحسب المقدار: $\frac{I_0}{CF}$

2) باستخدام الجدول المالي رقم 04: ندخل من السطر n (قيمتها معلومة)، حتى نصل إلى قيمة I_0/CF أو قيمة مقاربة لها داخل الجدول، ومنها نصعد شاقوليا حتى سطر قيم معدل الخصم، وقيمته تمثل معدل العائد الداخلي.

سادسا. معيار الدفعة المكافئة (القيمة الحالية الصافية السنوية):

1) نحسب القيمة الحالية الصافية لكل استثمار.
$$\frac{i}{1 - (1+i)^{-n}}$$
 AEQ= VAN $\frac{i}{1 - (1+i)^{-n}}$

2) الدفعة المكافئة لكل مشروع بتطبيق القاتون:

3) الاستثمار الأفضل هو الاستثمار ذو الدفعة المكافئة الأكبر.

سابعا. معيار المضاعف المشترك الأصغر:

مراحل الحساب:

- 1) نحسب القيمة الحالية الصافية لكل استثمار.
- 2) نحدد العمر التكراري: يمثل المضاعف المشترك الأصغر لعمري الاستثمارين. يتم تكرار الاستثمار α ب α مرة، ويتم تكرار الاستثمار α ب α مرة، مع α المشترك الأصغر.
 - 3) نحسب القيمة الحالية الصافية التكرارية لكل مشروع مكرر كما يلي:

$$VAN_{\alpha,X} = VAN_X$$
 $\frac{1 - (1+i)^{-\alpha,nA}}{1 - (1+i)^{-n}}$ معامل التكرار ق ح ص ق ح ص α عدد مرات للمشروع α للمشروع α التكرار غير مكرر مكرر مكرر مرة

$$VAN_{\alpha,Y} = VAN_Y \frac{1 - (1+i)^{-\beta,nA}}{1 - (1+i)^{-n}}$$
معامل التكرار ق ح ص ق ح ص β عدد مرات للمشروع γ للمشروع γ التكرار غير مكرر مكر β مرة

4) الاستثمار الأفضل هو الاستثمار ذو القيمة الحاليه الصافيه التكرارية الأكبر.