LA SERIE D'EXERCICE N°03

-EXO-01-:

Soit un tirant d'une section carrée (30×30) cm² sollicité par un effort de traction à l'E.L.U.R avec Nu = 0,50 MN et. Les matériaux sont FeE400 et $f_{c28} = 20$ MPa.

- Calculez la section des armatures longitudinales ?

<u>-EXO-02-:</u>

Soit un tirant d'une section (40×40) cm² sollicité par un effort de traction à Nu = 1450KN et. Les matériaux sont FeE500 et $f_{c28} = 25$ MPa.

- Calculez la section des armatures longitudinales ?

<u>-EXO-03-:</u>

Soit une longrine d'une section (30×40) cm² sous l'effort de traction à l'E.L. U.R Nu = 39000 kg et. Les matériaux sont FeE400 et f_{c28} = 30 MPa.

- Calculez la section des ferraillages longitudinaux ?
- Calculez la section de ferraillage min **RPA**?

<u>-EXO-04-:</u>

Calculez la section des armatures longitudinales une longrine de section (0.45×0.45) m² sous l'effort de traction Nu = 555000 daN et. L'acier utilisé FeE400 et f_{c28} = 35 MPa.

- Calculez la section de ferraillage min *RPA*?

- Solution :

- -Exo(01)=14,37 cm²
- *Exo* (02)=33,36 cm²
- $-Exo(03)=1,12 \text{ cm}^2, \text{Arpa}=7,2\text{cm}^2$
- -<u>Exo (04)</u>=15,96cm² A_{rpa}=12,15cm²