Fonctions à variables complexes

Si à chaque valeur que peut prendre une valeur complexe z, il correspond une ou plusieurs valeurs d'une variable complexe ω , on dit que ω est une fonction de z et on écrit $w=f\left(z\right)$.

La valeur de la fonction f en z = a est écrite f(a), par exemple pour f(z) = z + i on a f(1) = 1 + i.

Fonctions uniformes et multiformes

Si une seule valeur de $w=f\left(z\right)$ correspond à chaque valeur de z on dira que $f\left(z\right)$ est une fonction uniforme de z. Si plusieurs valeurs de w correspondent à

chaque valeur de z, on dira que w est une fonction multiforme de z. Exemple:

La fonction f(z) = 3z + 2i est une fonction uniforme de z car à chaque valeur de z il correspond une seule valeur de f(z).

La fonction $w = f(z) = z^{1/2}$ est une fonction multiforme de z car à chaque valeur de z il correspond deux valeurs de f(z).

Par exemple pour z=i correspond deux valeurs $w_1=e^{i\pi/4}$ et $w_2=e^{5\pi/4}$. Fonctions inverses

Si w = f(z), on peut aussi considérer z comme fonction de w, ce qui peut s'écrire sous la forme $g(z) = f^{-1}(w)$. La fonction f^{-1} est appelée la fonction inverse de f.

Exemple: La fonction $g(z) = z^{1/3}$ est la fonction inverse de $f(z) = z^3$. Transformations

Si f(z) = u(x,y) + iv(x,y), (où u et v sont des fonctions réelles) est une fonction uniforme de z = x + iy, alors les fonctions u et v sont appélées respectivement partie réelle et imaginaire de f, et on note

 $u(x,y) = \operatorname{Re}(f(z)) \text{ et } v(x,y) = \operatorname{Im}(f(z)).$

Exemple:

f
$$(z) = z^2 + i = (x + iy)^2 + i = (x^2 - y^2) + i(2xy + 1)$$

 $u(x, y) = x^2 - y^2$ et $v(x, y) = 2xy + 1$.

Fonctions élémentaires

1) Fonctions polynômiales

Les fonctions polynômiales de degrés n, où n est un entier positif sont définies par/ $f(z) = P(z) = a_0 z^n + a_1 z^{n-1} + a_{n-1} z + a_n$,

où $a_0, a_1, a_2, ..., a_n$ sont des constantes complexes avec $a_0 \neq 0$.

2) Les fractions rationnelles

Les fractions rationnelles sont définies par $f(z) = \frac{P(z)}{Q(z)}$

où P et Q sont des polynômes.

Exemple:

 $f(z) = \frac{z^2 + 2}{z^3 + 2i}$ est une fraction rationnelle.

3) Les fonctions exponentielles

Les fonctions exponentielles sont définies par:

$$f(z) = e^z = e^{x+iy} = e^x \left(\cos y + i \sin y \right).$$

Si a est un réel et positif on définit

$$f(z) = a^z = e^{a \ln z}$$

4) Fonctions trigonométriques

On définie les fonctions trigonométriques par

on define les iontelons trigonometriques par
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

$$\tan z = \frac{\sin z}{\cos z} = \frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})}, \quad \cot z = \frac{\cos z}{\sin z} = \frac{i(e^{iz} + e^{-iz})}{e^{iz} - e^{-iz}}.$$
5) Les fonctions hyperboliques

Les fonctions hyperboliques sont définies par

$$sh \ z = \frac{e^z - e^{-z}}{2}, \ ch \ z = \frac{e^z + e^{-z}}{2}$$

$$th \ z = \frac{shz}{chz} = \frac{e^z - e^{-z}}{e^z + e^{-z}}, \ coth \ z = \frac{e^z + e^{-z}}{e^z - e^{-z}}.$$

6) Fonctions logarithmiques

Si $z = e^w$ alors la fonction $w = f(z) = \ln z$, où $z \neq 0$ est définie comme l'inverse de la fonction exponentielle par:

$$w = f(z) = \ln r + i(\theta + 2k\pi), \ k = 0, \pm 1, \pm 2, ..., \text{ où } z = re^{i\theta} = re^{i(\theta + 2k\pi)}.$$

Fonctions holomorphes

Définition:

Soit f une fonction d'un domaine $D \subseteq \mathbb{C}$ dans \mathbb{C} et z_0 un point de D, alors on dit que la fonction f admet une dérivée au point z_0 ou f est dérivable

au point z_0 si $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ existe, et on note cette limite par $f'(z_0)$.

Et on peut écrire
$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$
.

Définition:

Une fonction f est dite holomorphe en un point z_0 si elle est dérivable au point z_0

On dit que la fonction f est holomorphe dans un domaine D si elle est dérivable en tout point de D.

Exemple

1) La fonction $f(z) = z^2$ est holomorphe dans tout \mathbb{C} $\forall z_0 \in \mathbb{C}$

$$\lim_{z \to z_0} \frac{z^2 - z_0^2}{z - z_0} = \lim_{z \to z_0} \frac{(z - z_0)(z + z_0)}{z - z_0} = 2z_0$$

Propriétés des fonctions holomorphes dans un domaine.

Soient f et g des fonctions holomopphes dans un domaine D. Alors :

- 1) f+g est holomorphe dans D, et on a $(f+g)'(z)=f'(z)+g'(z) \ \forall z\in D$
- 2) fg est holomorphe dans D, et on a (fg)'(z) = f'(z)g(z) + f(z)g'(z)
- 3) Pour tout $\alpha \in \mathbb{C}$, αf est holomorphe dans D, et on a $(\alpha f)'(z) = \alpha f'(z)$.

4) Si de plus g ne s'annule en aucun point de D, alors $\frac{f}{g}$ est holomorphe

dans
$$D$$
, et on a $\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{g^2(z)}$.

Conditions de Cauchy-Riemann

On va chercher dans quelles conditions une fonction $f: D \to \mathbb{C}$ est holomorphe dans D

Théorème:

Soient u, v deux fonctions réelles définies sur un domaine I de \mathbb{R}^2 , alors pour que la fonction f(z) = u(x, y) + iv(x, y) (où $z = x + iy \in D$) soit

holomorphe dans D il faut et il suffit que les dérivées partielles $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ existent et continues en tout point de I, et vérifient les conditions de

Cauchy-Riemann

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 et $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$,

et alors la dérivée de f est donnée par

$$f^{'}\left(z\right) = \frac{\partial u}{\partial x}\left(x,y\right) + i\frac{\partial v}{\partial x}\left(x,y\right) = \frac{\partial u}{\partial x}\left(x,y\right) - i\frac{\partial u}{\partial y}\left(x,y\right) = \frac{\partial v}{\partial y}\left(x,y\right) + i\frac{\partial v}{\partial x}\left(x,y\right)$$

La fonction $f(z) = \frac{1}{z}$ est holomorphe dans tout \mathbb{C}^*

 $f(z) = \frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2} = u(x, y) + iv(x, y)$

donc
$$u\left(x,y\right) = \frac{x}{x^2 + y^2}$$
, et $v\left(x,y\right) = \frac{-y}{x^2 + y^2}$

$$\frac{\partial u}{\partial x}(x,y) = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\operatorname{donc} u(x,y) = \frac{x}{x^2 + y^2}, \text{ et } v(x,y) = \frac{-y}{x^2 + y^2}$$

$$\frac{\partial u}{\partial x}(x,y) = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\frac{\partial v}{\partial y}(x,y) = \frac{-(x^2 + y^2) + 2y^2}{x^2 + y^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial u}{\partial x}(x,y)$$

$$\frac{\partial u}{\partial y}(x,y) = \frac{-2xy}{(x^2 + y^2)^2},$$

$$\frac{\partial u}{\partial y}(x,y) = \frac{-2xy}{(x^2 + y^2)^2},$$

$$\frac{\partial v}{\partial x}(x,y) = \frac{2xy}{(x^2 + y^2)^2} = -\frac{\partial u}{\partial y}(x,y)$$

La fonction
$$f$$
 est donc holomorphe dans \mathbb{C}^* , et $f'(z) = \frac{y^2 - x^2}{(x^2 + y^2)^2} + i \frac{2xy}{(x^2 + y^2)^2}$.

Les conditions de Cauchy-Riemann peuvent être écrites de la forme suivante

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0,$$

ou

$$\frac{df(z)}{d\bar{z}} = 0$$

tel que $\bar{z} = x - iy$

Exemple:

Est-ce que la fonction $f(z) = z \operatorname{Re} z$ est holomorphe dans tout \mathbb{C} On a $f(z) = (x + iy) x = x^2 + ixy = u(x, y) + iv(x, y)$ donc $u(x, y) = x^2$, et v(x, y) = xy

$$\frac{\partial u}{\partial x}(x,y) = 2x, \ \frac{\partial v}{\partial y}(x,y) = x \neq \frac{\partial u}{\partial x}(x,y)$$
donc la fonction $f(z) = z \operatorname{Re} z$ n'est pas holomorphe dans \mathbb{C}

$$\frac{\partial u}{\partial y}(x,y) = 0, \ \frac{\partial v}{\partial x}(x,y) = y.$$

La fonction
$$f$$
 est holomorphe simplement en $z_0 = 0$
On a $f(z) = z \operatorname{Re} z = z \frac{z + \overline{z}}{2} = \frac{z^2 + z\overline{z}}{2} \Rightarrow \frac{df(z)}{d\overline{z}} = \frac{z}{2}$.
D'où la fonction f ne peut pas être holomorphe en aucun domaine de \mathbb{C}

sauf en $z_0 = 0$

Fonctions harmoniques

Définition:

Soit la fonction u de $I \subseteq \mathbb{R}^2$ dans $\mathbb{R}, u \in \mathcal{C}^2(I)$, si les dérivées partielles $\frac{\partial^{2} u}{\partial x^{2}}(x,y)$, $\frac{\partial^{2} u}{\partial x \partial y}(x,y)$ et $\frac{\partial^{2} u}{\partial y^{2}}(x,y)$ sont continues sur I.

Soit la fonction $u \in \mathcal{C}^2(I)$, où $I \subseteq \mathbb{R}^2$, alors on dit que u est harmonique dans I si

$$\forall (x,y) \in I, \ \frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial u^2}(x,y) = 0$$

Autre écriture u est harmonique dans I si $\forall (x,y) \in I$, $\triangle u(x,y) = 0$

où $\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ est un opérateur différentiel appelé laplacien.

Soit la fonction $u\left(x,y\right)=e^{y}\sin x$

$$\frac{\partial u}{\partial x}(x,y) = e^y \cos x, \quad \frac{\partial u}{\partial y}(x,y) = e^y \sin x$$

$$\frac{\partial^2 u}{\partial x^2}(x,y) = -e^y \sin x, \quad \frac{\partial^2 u}{\partial y^2}(x,y) = e^y \sin x$$

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = -e^y \sin x + e^y \sin x = 0.$$

la fonction u(x,y) est harmonique

Théorème:

Soit f(z) = u(x,y) + iu(x,y) une fonction holomorphe dans un domaine $D \subseteq \mathbb{C}$, alors les deux fonctions réelles u et v sont harmoniques dans D.

On a vu que la fonction $f(z) = \frac{1}{z}$ est holomorphe dans tout \mathbb{C}^* .

On en déduit que les fonctions $u(x,y) = \frac{x}{x^2 + y^2}$, et $v(x,y) = \frac{-y}{x^2 + y^2}$ sont harmoniques dans $\mathbb{R}^2 - \{(0,0)\}$.

Définition:

Soit u une fonction harmonique dans $I \subseteq \mathbb{R}^2$. Alors une fonction v est dite harmonique conjuguée de u si les fonctions u et v vérifient les conditions de Cauchy-Riemann.

Théorème:

Soit u une fonction harmonique dans $I \subseteq \mathbb{R}^2$. Alors il existe une fonction f holomorphe de $D \subseteq \mathbb{C}$ tel que Re f = u.

Exemple:

Soit la fonction
$$u(x,y) = y^2 - x^2 + xy$$

$$\frac{\partial u}{\partial x}(x,y) = -2x + y, \quad \frac{\partial u}{\partial y}(x,y) = 2y + x$$

$$\frac{\partial^2 u}{\partial x^2}(x,y) = -2, \quad \frac{\partial^2 u}{\partial y^2}(x,y) = 2$$

$$(\Delta u)(x,y) = \frac{\partial^2 u}{\partial x^2}(x,y) + \quad \frac{\partial^2 u}{\partial y^2}(x,y) = -2 + 2 = 0$$

donc la fonction u(x, y) est harmonique.

Pour trouver une fonction v pour que f = u + iv soit holomorphe, il faut que les les fonctions u et v vérifient les conditions de Cauchy-Riemann.

$$\frac{\partial v}{\partial y}(x,y) = \frac{\partial u}{\partial x}(x,y) = -2x + y = \text{et } \frac{\partial v}{\partial x}(x,y) = -\frac{\partial u}{\partial y}(x,y) = -2y - x.$$

En intégrant $\frac{\partial v}{\partial y}(x,y)$ par rapport à y on trouve $v(x,y) = -2xy + \frac{y^2}{2} + c_1(x)$.

En dérivant la fonction $v\left(x,y\right)$ par rapport à x on trouve

$$\frac{\partial v}{\partial x}(x,y) = -2y + c_1'(x) = -2y - x \Rightarrow c_1(x) = \frac{-x^2}{2} + c_2$$
d'où $v(x,y) = -2xy + \frac{y^2}{2} - \frac{x^2}{2} + c_2$.