4. Microscopie électronique à balayage

- 4.1. Principe de formation des images en MEB
- 4.2. Mise en œuvre
- 4.3. Les différents modes d'imagerie
- 4.4. Les différents types de contraste

4.5. Performances

4.5.1. Résolution

4.5.2. Profondeur de champ

4.6. Microscopie pratique

MEB 4.1. Principe de formation des images

Formation d'une image par : balayage d'une zone par un faisceau d'électrons et détection de l'intensité de rayonnement émise en chaque point.

MEB 4.2. Mise en œuvre

• Canons à électrons

	Taille de la source	Brillance (A/m².sr)	Dispersion en énergie (eV)	Vide nécessaire (mbar)
Thermoélectronique	10 µm	10 ⁸ - 10 ¹⁰	1	10 ⁻⁴ — 10 ⁻⁷
Émission de champ	1-10 nm	10 ¹³	0,2-0,4	10 ⁻⁹ – 10 ⁻¹⁰

• Détecteurs

Lentille objectif

Détecteur à semi-conducteur (au-dessus de l'échantillon)

Compteur à scintillation (à côté de l'échantillon)

MEB 4.3. Modes d'imagerie

• Électrons secondaires

= Électrons arrachés aux atomes au cours d'interactions inélastiques avec pertes d'énergie aléatoires

Faible énergie : ~ 50 eV \Rightarrow on n'observe que les e- émis près de la surfaceLarge dispersion en énergie \Rightarrow leur spectre n'est pas caractéristique

des atomes émetteurs

Grande section efficace \Rightarrow signal intense

Section efficace légèrement dépendante de la nature des atomes émetteurs (proportionnelle à Z)

• Électrons rétrodiffusés

= Électrons incidents diffusés élastiquement vers l'arrière ($2\theta > 90^{\circ}$) Énergie élevée : ~ $E_0 \implies$ peuvent provenir de profondeurs importantes Faible section efficace \Rightarrow intensité plus faible qu'en mode é. secondaires Section efficace fortement dépendante de la nature des atomes émetteurs (proportionnelle à Z²) \Rightarrow cartographie en éléments

MEB 4.3. Modes d'imagerie

• Détection sélective des é. s. / é. r. avec le compteur a scintillation

V_C : tension de grille collectrice, V_d : tension d'accélération

MEB 4.3. Modes d'imagerie

• Détection des é. r. avec le détecteur à semi-conducteur

- Détection sur un grand angle solide
- Seuls les é. r. sont détectés car les é.s. n'ont pas assez d'énergie pour traverser la couche inactive jusqu'à la jonction p-n.

MEB 4.4. Origine du contraste

Contrastes de topographie

Contraste d'inclinaison :

Plus le faisceau est en incidence rasante, plus l'émission d'é.s et d'é.r. est importante car ils sont créés plus près de la surface.

Contraste d'ombrage :

Les zones qui sont cachées p/r au détecteur apparaissent plus sombres car les e- émis sont plus absorbés par les parois. Ce contraste est renforcé en é.r. car leur trajectoire est rectiligne.

Contraste d'arête ou de pointe :

Par effet de champ, la barrière de potentiel est plus faible à l'extrémité d'une pointe. L'émission d' é.s et d' é.r. y est donc plus importante.

MEB 4.4. Origine du contraste

• Contraste de composition ou de numéro atomique

Section efficace proportionnelle à :

• Z pour les é.s. (mais ils proviennent d'une couche superficielle)

• Z² pour les é.r.

⇒ Les éléments lourds apparaissent plus clairs, les éléments légers apparaissent plus sombres.

Ti (Z=22)

Cu (Z=29)

Contraste d'orientation cristalline

Le phénomène de diffraction par des échantillons cristallins engendre des différences d'intensités mesurées selon l'orientation du cristal p/r au faisceau incident et au détecteur.

En électrons rétrodiffusés seulement car la diffraction nécessite des e- élastiques.

MEB 4.4. Origine du contraste

• Renforcer le contraste avec le détecteur à semiconducteur

On est en mode électrons rétrodiffusés (seuls électrons mesurés par le détecteur à semi-conducteur)

Lorsqu'un point de la surface d'un échantillon est irradié par un faisceau d'électrons, des rayonnements sont émis dans tout un volume situé en dessous de la surface irradiée. Ce <u>volume d'émission définit la résolution</u> <u>accessible en imagerie MEB</u> ; il dépend de plusieurs paramètres :

- taille de la sonde \Rightarrow taille du "pixel" sur l'objet
- énergie des e- incidents
- numéro atomique des éléments sondés
- type de rayonnement mesuré

⇒ déterminent la profondeur de pénétration des faisceaux

• Taille de la sonde :

Quels sont les paramètres qui font varier le diamètre de la sonde ? ① Taille de la source (*cross-over*) : dépend du type de canon

> thermoélectronique : $d_v \sim 10 \ \mu m$

> effet de champ : $d_v \sim 1-10$ nm

• Taille de la sonde :

② Répulsions électrostatiques entre deux électrons (« chocs »)

- Les électrons se repoussent dans l'axe du faisceau
- Dispersion énergétique
- Aberration chromatique

- Les électrons se repoussent transversalement
- Dispersion énergétique et des trajectoires
- Aberration chromatique et sphérique

Ces effets sont d'autant plus importants que la densité d'électrons est forte (courant de sonde élevé) et leur énergie cinétique faible (faible tension d'accélération).

• Taille de la sonde :

③ Transfert dans la colonne : l'image d'un point est un disque à cause du phénomène de diffraction et des défauts des lentilles *(vu en MET).*

Le diamètre de la sonde vaut :

• Influence de l'énergie cinétique des électrons incidents :

Déjà vu : forte tension d'accélération ⇒ meilleure résolution (minimisation des répulsions électrostatiques et de l'aberration chromatique)

Mais il faut aussi tenir compte des interactions avec l'échantillon. Plus la tension d'accélération est élevée, plus les électrons pénètrent profondément dans l'échantillon et moins les rayonnements émis sont caractéristiques de la topographie de la zone d'incidence du faisceau.

En travaillant à faible tension d'accélération, on obtient un meilleur contraste pour l'observation des détails de la surface de l'échantillon.

• Influence du numéro atomique du matériau :

La section efficace de diffusion des électrons augmente avec le numéro atomique (en Z pour les électrons secondaires, en Z² pour les électrons retrodiffusés).

Pour les matériaux de numéro atomique élevé, les électrons sont plus fortement diffusés et explorent donc un volume moindre de l'échantillon.

La résolution en MEB est donc meilleure pour un échantillon composé d'éléments lourds que pour un échantillon composé d'éléments légers.

• Influence de la nature du rayonnement utilisé pour former l'image :

MEB 4.5.2. Profondeur de champ D

= distance des positions extrêmes du <u>plan objet</u> sans qu'il y ait perte de résolution (i.e. profondeur sur laquelle les détails de l'objet apparaissent nets).

 ϵ : distance de séparation de l'œil (~ 0,2 mm) ; G : Grandissement ; α : angle d'ouverture du faisceau incident

MEB 4.6. Microscopie pratique

Augmenter la **distance de travail** (*working distance, WD*) permet d'obtenir une plus grande profondeur de champ mais fait perdre en résolution car on augmente les aberrations sphériques (C_s augmente avec la distance focale, visible pour les forts grandissements surtout) :

Tension d'accélération : 5 kV, Grandissement : x 540

a) WD = 10 mm

b) WD = 20 mm

c) WD = 38 mm

MEB 4.6. Microscopie pratique

A fort grandissement, augmenter la **tension d'accélération** permet d'améliorer la résolution (netteté de l'image) :

A faible grandissement, diminuer la **tension d'accélération** permet d'améliorer le contraste des détails en surface.

MEB 4.6. Microscopie pratique

Diminuer le **courant de sonde** permet d'améliorer la résolution (netteté) et d'éviter la dégragation de l'échantillon mais l'image devient plus granuleuse car la statistique de mesure est moins bonne :

a) 1 nA

b) 0,1 nA

c) 10 pA

Tension d'accélération : 10 kV, Grandissement : x 5400

MEB 4.6. Microscopie pratique : résumé

• Préparation des échantillons

• Les échantillons peuvent être massifs (contrairement au MET).

 Les électrons doivent être évacués de la surface de l'échantillon pour éviter un effet de charge ⇒ échantillons conducteurs ou métallisés, utilisation de laques et scotchs conducteurs.

- Les échantillons doivent résister au vide et aux électrons.
 - vide et effet thermique ⇒ lyophilisation ou sublimation au point critique pour les échantillons contenant de l'eau
 - effet de déplacement atomique :

ΔE _{élastique} < seuil de déplacement atomique

 \Rightarrow E₀ pas trop élevée pour étudier les éléments légers.

MEB Illustration : un disque compact

Pour le prochain cours, lire le fascicule jusqu'à la FIN