Solutions TD N 3

Solution Exercice 1

- 1. On cherche toutes les valeurs prises par x^2 lorsque x parcourt [-1,4]. Entre -1 et 0, ce sont toutes les valeurs de 0 à 1 qui sont prises, et entre 0 et 4, toutes les valeurs entre 0 et 16. On a donc f(A) = [0,16].
- 2. On a $x \in f^{-1}(A)$ si et seulement si $x^2 \in [-1, 4]$. Bien sûr, les valeurs négatives sont exclues, et pour que x^2 soit dans [0, 4], il est nécessaire et suffisant que $x \in [-2, 2]$. On a donc $f^{-1}(A) = [-2, 2]$.
- 3. L'image directe de \mathbb{R} comme de $[0, 2\pi]$ est [-1, 1]. L'image directe de $[0, \pi/2]$ est [0, 1]. Pour déterminer l'image réciproque de [0, 1], on cherche les réels x tels que $\sin(x) \in [0, 1]$. Ce sont tous les réels qui peuvent s'écrire $u + k2\pi$, avec $u \in [0, \pi]$ et $k \in \mathbb{Z}$. On peut encore écrire cet ensemble

$$\bigcup_{k\in\mathbb{Z}} [2k\pi, (2k+1)\pi].$$

Aucun réel n'a son sinus dans [3, 4]. L'image réciproque de [3, 4] est donc l'ensemble vide. Enfin, l'image réciproque de [1, 2] est identique à l'image réciproque de $\{1\}$, et elle est égale à $\{\pi/2 + 2k\pi; k \in \mathbb{Z}\}$.

Solution Exercice 2

 f_1 est injective, non surjective (et donc non bijective) : 1 n'a pas d'antécédents. f_2 est bijective.

 f_3 n'est ni injective (f(-1) = f(1) = 1), ni surjective (-1 n'a pas d'antécédents). f_4 et f_5 sont surjectives, mais non injectives.

Solution Exercice 3

- 1. f est clairement injective, mais n'est pas surjective car 0 n'a pas d'antécédent.
- 2. g est bijective : l'équation n+1=k, avec $k\in\mathbb{Z}$ admet une unique solution $n\in\mathbb{Z}$ qui vaut n=k-1.
- 3. h est bijective : prenons en effet un couple (x_1, y_1) de \mathbb{R}^2 , et essayons de résoudre le système :

$$\left\{ \begin{array}{lcl} x+y & = & x_1 \\ x-y & = & y_1 \end{array} \right.$$

Ce système possède une unique solution, donnée par $x = (x_1 + y_1)/2$ et $y = (x_1 - y_1)/2$. L'application est bijective.

Solution Exercice 4

On a $g \circ f(x) = g(2x)$. Mais 2x est pair, et donc g(2x) = (2x)/2 = x. Ainsi, $g \circ f(x) = x$. D'autre part, si x est pair, on a $f \circ g(x) = f(x/2) = x$. Si x est impair, $f \circ g(x) = f(0) = 0$.

1

En particulier, on a $f \circ g \neq g \circ f$ puisque $f \circ g(1) = 0$ alors que $g \circ f(1) = 1$. f n'est pas surjective, car les nombres impairs ne sont pas des valeurs prises par f.

En revanche, f est injective car si f(x) = f(y), on a 2x = 2y et donc x = y. q n'est pas injective, car q(1) = q(3) = 0 alors que $1 \neq 3$.

En revanche, q est surjective. Prenons en effet y n'importe quel entier naturel. Alors, 2y est pair et g(2y) = (2y)/2 = y. Des deux études précédentes, on déduit par définition que ni f ni g ne sont bijectives.

Solution Exercice 5

1. Soit $x \in \mathbb{R}$. On a

$$f \circ g(x) = f(x^2 - 1) = 3(x^2 - 1) + 1 = 3x^2 - 2.$$

D'autre part, on a

$$g \circ f(x) = g(3x+1) = (3x+1)^2 - 1 = 9x^2 + 6x.$$

En particulier, on a $f \circ q \neq q \circ f$.

- 2. Pour chacun des cas, on peut poser :
 - 1. $u(x) = \sqrt{x}, v(x) = 3x 1;$
 - 2. $u(x) = \sin x$, $v(x) = x + \frac{\pi}{2}$; 3. $u(x) = \frac{1}{x}$, v(x) = x + 7.

Solution Exercice 1 de la série 2

- 1. La relation n'est pas réflexive, car 1 n'est pas en relation avec lui-même. En effet, $1 \neq -1$. La relation est symétrique, car $x = -y \iff y = -x$. Elle n'est pas antisymétrique, car $1\mathcal{R}-1$ et $-1\mathcal{R}1$, alors que $1\neq -1$. Elle n'est pas transitive, sinon, comme elle est symétrique, elle serait réflexive. On peut aussi vérifier que 1R-1, -1R1 et 1 et 1 ne sont pas en relation. Cette relation n'est ni une relation d'équivalence, ni une relation d'ordre.
 - 2. De la formule $\cos^2 x + \sin^2 x = 1$, on déduit que la relation est réflexive. Elle est aussi symétrique. En effet, si $x\mathcal{R}y$, ie $\cos^2 x + \sin^2 y = 1$, alors on a

$$\sin^2 x + \cos^2 x + \cos^2 y + \sin^2 y = (\cos^2 x + \sin^2 y) + (\cos^2 y + \sin^2 x) = 1 + (\cos^2 y + \sin^2 x)$$

d'une part, et

$$\sin^2 x + \cos^2 x + \cos^2 y + \sin^2 y = 1 + 1 = 2$$

d'autre part, ce qui entraîne bien

$$\cos^2 y + \sin^2 x = 1$$

et donc la relation est symétrique.

Elle n'est pas antisymétrique, car $0\mathcal{R}2\pi$ et $2\pi\mathcal{R}0$ alors que $0 \neq 2\pi$.

Elle est transitive. Si $x\mathcal{R}y$ et $y\mathcal{R}z$, on a

$$\cos^2 x + \sin^2 y = 1$$
 et $\cos^2 y + \sin^2 z = 1$

soit en sommant

$$\cos^2 x + (\cos^2 y + \sin^2 y) + \sin^2 z = 2$$

ce qui implique

$$\cos^2 x + \sin^2 z = 1.$$

On a donc affaire à une relation d'équivalence.

3. La relation est réflexive (prendre p = q = 1).

Elle n'est pas symétrique car si $x\mathcal{R}y$, on a forcément $x \leq y$. Ainsi, on a $2\mathcal{R}4$ (prendre p=2, q=1), alors qu'on n'a pas $4\mathcal{R}2$.

La relation est antisymétrique : si $x\mathcal{R}y$ et $y\mathcal{R}x$, alors on a $x \leq y$ et $y \leq x$ et donc x = y. Enfin, la relation est transitive. Si $x\mathcal{R}y$ et $y\mathcal{R}z$, alors il existe des entiers $p, q, a, b \geq 1$ tels que

$$y = px^q \text{ et } z = ay^b.$$

On en déduit

$$z = a(px^q)^b = (ap^b)x^{bq}$$

et donc $x\mathcal{R}z$. La relation est une relation d'ordre.