
www.it-ebooks.info

http://www.it-ebooks.info/

SFML Game Development

Learn how to use SFML 2.0 to develop your own
feature-packed game

Jan Haller

Henrik Vogelius Hansson

Artur Moreira

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

SFML Game Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1170613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-684-5

www.packtpub.com

Cover Image by Vivek Sinha (vivek.ratan.sinha@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Artur Moreira

Henrik Vogelius Hansson

Jan Haller

Reviewers
Brandon DeRosier

Karol Gasiński

Eyal Kalderon

Acquisition Editor
Edward Gordon

Lead Technical Editor
Mayur Hule

Technical Editors
Sanhita Sawant

Priya Singh

Nitee Shetty

Dennis John

Project Coordinator
Amey Sawant

Proofreaders
Dan McMahon

Stephen Swaney

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

I'm really honored to write the first words of this book, the very first one about SFML.
When I started to write this library, in 2006, I couldn't imagine that it would become so
much popular. Around 100,000 visitors per month, 100 new forum posts everyday...
this is huge! And this is just the beginning; with the release of SFML 2.0, the library
makes an important step forward. While SFML 1 is a constantly evolving (understand
"unstable") API, SFML 2.0 is meant to be a robust, stable, and mature foundation for
the future. And hopefully a solid base for more and more great games.

Increasing popularity also means more effort from the authors to provide complete
and quality documentation. Sadly, this is often overlooked by developers.

Although I do my best to provide detailed tutorials for SFML, they are nothing more
than an improved API documentation. Users often ask me where they can find a
more complete guide to start programming games with SFML. And until today,
I had nowhere to direct them to. But Artur, Henrik, and Jan did a great job to fill
this hole. They have gathered their wisdom and experience into a unique book that
covers the basics of game programming, as well as everything that SFML has to
offer—from audio to network, through advanced graphics. What I really appreciate
about this book is that it is written with the same philosophy that is behind SFML:
good design, simplicity, and modern code.

I hope you will enjoy reading this book as much as I did and find what you're
looking for; whether you're a beginner who wants to learn game programming with
SFML, or a more experienced programmer who wants to improve his design and
technical skills. And don't hesitate to come to the SFML forum if you have questions
or comments. I, the authors of this book, and all the community will be glad to
answer you.

Laurent Gomila

Author of SFML

Software Engineer, Tegesoft, France

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Artur Moreira is a game development enthusiast who ultimately aims to start a
new game development company in his home country. He has been programming
games and game-related software for over 4 years. Most of the effort in that time
was put in creating an open source game-making library with lots of flexibility and
portability. The library is called Nephilim and is known for supporting all major
desktop and mobile operating systems, making game development fully cross-
platform and fast. Alongside this big project, he keeps making his own prototypes
and games for educational and commercial purposes.

Aside from the programming, he also puts some focus in creative areas such as 3D
modeling, digital painting, and music composing.

I would like to thank, first of all, my girlfriend for her patience and
unconditional support every single time the writing was taking
all of my time and energy. Also, I can't be thankful enough for
the support of my parents and sisters, along with all the closest
relatives, whose support is ever-present and always helpful. On the
technical side, I would like to directly thank Jan Haller and Henrik
Vogelius Hansson, the co-authors of the book, for their remarkable
collaboration, skill, and teamwork. It's been always a pleasure to
work with them.

www.it-ebooks.info

http://www.it-ebooks.info/

Henrik Vogelius Hansson has always been in love with both games and
programming. He started his education fairly early and continued on into the indie
scene with Defrost Games and their game Project Temporality. The next company that
hired him was Paradox Development Studio where he got to work on titles such as
Crusader Kings 2.

Beside the game companies, Henrik has also been very active in the SFML
community and has even provided a binding for Ruby called rbSFML.

I would like to thank my co-authors, Jan and Artur, for the amazing
cooperation and great times. I am also very happy and would like
to thank my family that encouraged me to pursue this line of work.
Also special thanks to my grandmother.

Jan Haller is a Master's degree student of Electrical Engineering and Information
Technology. In his free time, he occasionally develops games in C++. He is also
interested in the creation of graphics and 3D models.

In 2008, Jan stumbled upon SFML. Since then, he has used the library for many of his
works. One of his bigger projects was a 2D Jump'n'Run game, where the character
has to find its way through different levels, defeating enemies and collecting various
items. During the years, Jan has actively participated in the SFML community,
getting a lot of insights into the development of SFML 2. He has also written a C++
library called Thor, which extends SFML by ready-to-use features such as particle
systems or animations.

I would like to thank Laurent Gomila for the passion and huge
efforts he invested into the Simple and Fast Multimedia Library. It
has always been interesting to discuss with him about the library
and its development process. I would also like to thank my co-
authors, Artur Moreira and Henrik Vogelius Hansson, who have
been a very nice team to work with.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Brandon DeRosier is a free software supporter, software engineer, and a hobbyist
game developer living in the Greater Boston area. Driven by an early interest
in programming, he took to the reverse engineering of his favorite games of his
childhood; he would later write several small augmentation tools to run alongside
these games. Over time, he developed his skills as a programmer—as well as an
interest in music composition, animation, and interactive media. Currently, he is
directing these skills and interests towards game design.

As a member of the Free Software Foundation, he understands that the
concealing of source code is unethical and regressive; dedicated to the digital
rights of users everywhere, he has actively participated in the development and
distribution of free software.

Brandon is currently pursuing a Bachelor of Science degree in Computer
Science at Wentworth Institute of Technology in Boston and takes pride in helping
others learn. Occasionally, he gives lectures in classes and clubs, with hopes of
encouraging interest in interactive media development with frameworks such as
SFML and LWJGL.

I'd like to thank my partner, Yamilah Atallah, for brainstorming
game ideas with me, coming up with meaningful concepts and
wonderful designs, and changing my life in so many positive ways;
with this support, my interest in game development has grown.

www.it-ebooks.info

http://www.it-ebooks.info/

Karol Gasiński is a programmer, entrepreneur, and traveler living in Poland,
Europe. He works as a Graphic Software Engineer at an Intel Research &
Development facility, and has worked on 6 generations of Intel graphic cards. As a
member of KHRONOS group, Karol contributes to the development of OpenGL and
OpenGL ES Specifications—the industry standard for high-performance graphics.

Outside of his work, Karol's biggest passion is game development and low-level
programming. He has been associated with the games industry for over 6 years. In
the past, he has worked on mobile versions of games such as Medieval Total War,
Pro Evolution Soccer, and Silent Hill. Currently he is the founder and chairman of
the Polish Conference on Computer Games Development—the biggest and fastest
growing industry event in the country.

Karol gives lectures on most Polish conferences and events for game developers
including WGK, GameDay, SWPC, the DigitalFrontier course, IGK, and others.
You can also meet him on GDC Europe and GDC San Francisco, where each year
he gathers inspiration for his new games.

Eyal Kalderon is a self-taught computer programmer and high school student.
Having been introduced to the programming scene at a fairly young age, Eyal
developed his early skills in Visual Basic and made a switch to C# early on. Eyal
has made himself at home for several years now programming with C and C++ and
using shell scripts to automate every task he finds boring. After trying SDL, Eyal
switched to SFML in 2010, enjoyed it, and has been following its progress closely
ever since.

Understanding the power of print, having gained much from the Internet and
professional publications, Eyal chose to erect 'nullpwd' (nullpwd.wordpress.com)
in March of 2010, a casual software-centered blog that acts as an unintimidating
front for various software topics, such as programming, penetration systems, and the
current happenings of the open source community.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Making a Game Tick	 7

Introducing SFML	 7
Downloading and installation	 8
A minimal example	 9

A few notes on C++	 10
Developing the first game	 12

The Game class	 13
Game loops and frames	 16

Input over several frames	 17
Vector algebra	 19
Frame-independent movement	 21
Fixed time steps	 22
Other techniques related to frame rates	 24

Displaying sprites on the screen	 24
File paths and working directories	 25
Real-time rendering	 25
Adapting the code	 27

Summary	 28
Chapter 2: Keeping Track of Your Textures – Resource
Management	 29

Defining resources	 29
Resources in SFML	 30

Textures	 31
Images	 31
Fonts	 32
Shaders	 32
Sound buffers	 33

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Music	 33
A typical use case	 34

Graphics	 34
Audio	 35
Acquiring, releasing, and accessing resources	 35

An automated approach	 36
Finding an appropriate container	 37
Loading from files	 38
Accessing the textures	 39

Error handling	 40
Boolean return values	 41
Throwing exceptions	 41
Assertions	 42

Generalizing the approach	 43
Compatibility with sf::Music	 45
A special case – sf::Shader	 45

Summary	 47
Chapter 3: Forge of the Gods – Shaping Our World	 49

Entities	 50
Aircraft	 51
Alternative entity designs	 52

Rendering the scene	 53
Relative coordinates	 53
SFML and transforms	 54
Scene graphs	 55
Scene nodes	 55
Node insertion and removal	 56
Making scene nodes drawable	 58
Drawing entities	 61
Connecting entities with resources	 61
Aligning the origin	 63
Scene layers	 64

Updating the scene	 64
One step back – absolute transforms	 66

The view	 67
Viewport	 68
View optimizations	 68
Resolution and aspect ratio	 69
View scrolling	 70
Zoom and rotation	 71

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Landscape rendering	 71
SpriteNode	 71
Landscape texture	 73
Texture repeating	 73

Composing our world	 74
World initialization	 76
Loading the textures	 77
Building the scene	 78
Update and draw	 80

Integrating the Game class	 81
The run() method	 81

Summary	 83
Chapter 4: Command and Control – Input Handling	 85

Polling events	 86
Window events	 87
Joystick events	 88
Keyboard events	 88
Mouse events	 89

Getting the input state in real time	 90
Events and real-time input – when to use which	 92
Delta movement from the mouse	 93

Playing nice with your
application neighborhood	 94
A command-based communication system	 95

Introducing commands	 96
Receiver categories	 98
Command execution	 100
Command queues	 101
Handling player input	 102
Commands in a nutshell	 106
Implementing the game logic	 107
A general-purpose communication mechanism	 108

Customizing key bindings	 109
Why a player is not an entity	 111

Summary	 112
Chapter 5: Diverting the Game Flow – State Stack	 113

Defining a state	 113
The state stack	 114

Adding states to StateStack	 117
Handling updates, input, and drawing	 118

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Input	 119
Update	 119
Draw	 119

Delayed pop/push operations	 120
The state context	 121
Integrating the stack in the Application class	 121
Navigating between states	 123

Creating the game state	 123
The title screen	 124
Main menu	 125
Pausing the game	 128

The loading screen – sample	 129
Progress bar	 130
ParallelTask	 132
Thread	 133
Concurrency	 133
Task implementation	 134

Summary	 136
Chapter 6: Waiting and Maintenance Area – Menus	 137

The GUI hierarchy, the Java way	 138
Updating the menu	 146
The promised key bindings	 147
Summary	 150

Chapter 7: Warfare Unleashed – Implementing Gameplay	 151
Equipping the entities	 151

Introducing hitpoints	 152
Storing entity attributes in data tables	 152
Displaying text	 154

Creating enemies	 156
Movement patterns	 156
Spawning enemies	 158

Adding projectiles	 161
Firing bullets and missiles	 163
Homing missiles	 167

Picking up some goodies	 170
Collision detection and response	 173

Finding the collision pairs	 174
Reacting to collisions	 176
An outlook on optimizations	 179

An interacting world	 180
Cleaning everything up	 180

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Out of view, out of the world	 181
The final update	 182

Victory and defeat	 183
Summary	 183

Chapter 8: Every Pixel Counts – Adding Visual Effects	 185
Defining texture atlases	 186

Adapting the game code	 187
Low-level rendering	 189

OpenGL and graphics cards	 189
Understanding render targets	 189
Texture mapping	 190
Vertex arrays	 191

Particle systems	 192
Particles and particle types	 193
Particle nodes	 194
Emitter nodes	 197
Affectors	 199
Embedding particles in the world	 200

Animated sprites	 200
The Eagle has rolled!	 204

Post effects and shaders	 205
Fullscreen post effects	 205
Shaders	 208
The bloom effect	 208

Summary	 215
Chapter 9: Cranking Up the Bass – Music and Sound Effects	 217

Music themes	 218
Loading and playing	 219
Use case – In-game themes	 220

Sound effects	 221
Loading, inserting, and playing	 223
Removing sounds	 224
Use case – GUI sounds	 224

Sounds in 3D space	 225
The listener	 226
Attenuation factor and minimum distance	 227
Positioning the listener	 227
Playing spatial sounds	 228
Use case – In-game sound effects	 230

Summary	 233

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Chapter 10: Company Atop the Clouds – Co-op Multiplayer	 235
Playing multiplayer games	 236
Interacting with sockets	 236

TCP	 237
UDP	 238
Socket selectors	 239
Custom protocols	 240

Data transport	 241
Network architectures	 242

Peer-to-peer	 242
Client-server architecture	 243

Authoritative servers	 244
Creating the structure for multiplayer	 245
Working with the Server	 246

Server thread	 246
Server loop	 247
Peers and aircraft	 248
Hot Seat	 250
Accepting new clients	 250
Handling disconnections	 252
Incoming packets	 253
Studying our protocol	 256
Understanding the ticks and updates	 257

Synchronization issues	 258
Taking a peek in the other end – the client	 258

Client packets	 261
Transmitting game actions via network nodes	 261
The new pause state	 263
Settings	 263
The new Player class	 264

Latency	 264
Latency versus bandwidth	 265
View scrolling compensation	 265
Aircraft interpolation	 266

Cheating prevention	 267
Summary	 268

Index	 269

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Welcome to the pages of SFML Game Development!

Whether you are just grabbing our book in a store, previewing it in your e-book
reader, or you have already bought it—you have taken your first step in becoming a
game developer by picking up this book.

Game development is a very interesting topic, as it combines many different
fields such as software development, graphical design, music composition, and
storytelling. Nowadays, there is an enormous variety of games available, yet
developers never cease to be creative and to come up with innovations. This book
conveys the process of game development in a way that covers state-of-the-art
techniques, leaving you ready to implement your own ideas.

It does not matter if you are already an experienced developer or an ambitious
newcomer to the field of making games. Although the book requires no previous
knowledge on game development, we also teach valuable concepts and techniques
that will help you grow as a game developer.

Throughout the book, we develop a 2D game with SFML. We focus on a top-scrolling
aircraft shooter, where the player acts as a pilot and is confronted with various
challenges. We begin with the bare bones of each element and continuously add
functionality as we progress in the book. In every chapter, new features are introduced,
and the code is updated accordingly. Therefore, you will not only see the concepts in
theory, but also will have a direct implementation at hand, which you can investigate
and extend the way you like.

That said, we would like to wish you a great journey through the chapters of this
book. May it be a good experience in all its extent! Please enjoy!

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

What this book covers
Chapter 1, Making a Game Tick, introduces the SFML library and shows you basic
concepts such as the game loop and rendering.

Chapter 2, Keeping Track of Your Textures – Resource Management, covers the loading
and management of external resources such as images, fonts, and sounds.

Chapter 3, Forge of the Gods – Shaping Our World, builds up the framework of the game
world and addresses the concept of scene graphs and game entities.

Chapter 4, Command and Control – Input Handling, shows how to react to user input
from the keyboard, mouse, and joystick.

Chapter 5, Diverting the Game Flow – State Stack, covers switching between application
states such as different menus, or between menus and the game itself.

Chapter 6, Waiting and Maintenance Area – Menus, introduces a simple graphical user
interface in the menus.

Chapter 7, Warfare Unleashed – Implementing Gameplay, approaches actual gameplay
mechanisms. Enemies, bullets, missiles, power-ups and collision detection are
implemented.

Chapter 8, Every Pixel Counts – Adding Visual Effects, enhances the graphical
appearance of the game by adding animations, particle systems, and shaders.

Chapter 9, Cranking Up the Bass – Music and Sound Effects, explains a way to integrate
audio into the game.

Chapter 10, Company Atop The Clouds – Co-op Multiplayer, covers networking basics
and a multiplayer implementation over the network.

What you need for this book
Since this book is built around the SFML library, you need to download and
install it. You can get SFML at www.sfml-dev.org; the first chapter gives a brief
installation guide.

In case you decide to recompile SFML yourself, you will also require the
cross-platform build tool CMake, which can be downloaded from www.cmake.org.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Who this book is for
SFML Game Development is aimed at audiences of all ages who already know how to
program in C++, at least to an intermediate level. It is optimal if the reader already
has some experience in programming and knows the language well.

The ideal reader for such a book would be a person who is experienced in C++ and
would now like to enter the world of game development in a simple yet serious
way. However, if the reader already knows a good deal of it and still wants to read
through the pages to see different approaches, or if he simply wants to learn more
about SFML in a bigger practical example, we strongly encourage to read on!

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "To manage all these screens and
transitions, we create the StateStack class."

A block of code is set as follows:

namespace GUI
{
 class Component : public sf::Drawable,
 public sf::Transformable
 {
 public:
 typedef std::shared_ptr<Component> Ptr;

 Component();

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

: mChildren()
, mSelectedChild(-1)
{
}

void Container::pack(std::shared_ptr<GUI::Component> component)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "It shows a
background with a little information about the game, besides its title and then blinks
a big old Press any key to continue message".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick
Through the words in this book, we will attempt to convey the best knowledge we
possibly can. We aim to teach techniques that we learned along the years, techniques
that we would like to have been told about in our early days of game development.
We now write this book to save your time, by showing you directly the solution to
common problems, and why things work the way they do.

Alongside our attempt to teach the basics and a little beyond game development,
we will especially focus on the Simple and Fast Multimedia Library (SFML). Every
part of this book will be about developing a game and leveraging the advantages
that SFML is able to provide us. To spice things up a little, and since we use the C++
programming language, we will try our best to use the language in a modern way,
applying more recent language features, techniques, and programming styles, in a
fully object-oriented approach. C++ is a great tool and it always has been, however,
it is a good thing if we grow with it and adapt to the possibilities it has to offer in the
present day.

This chapter introduces the SFML library and shows you its capabilities by creating
a small application. We are going to address the basic concepts relevant to game
development, namely; rendering, game loops, and code organization. Furthermore,
the first part of our game code developed, will serve as a basis for the coming chapters.

Introducing SFML
Before we start developing a game, we would like to tell you a little bit about
the library we will use throughout the book. SFML is an object-oriented C++
framework. As can be guessed by the name, its philosophy consists of having a
simple, user-friendly application programming interface (API), and allowing for
both high performances and fast development.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[8]

SFML is a multimedia library, meaning that it provides a layer between you and the
hardware. It is split into five modules:

•	 System: This is a core module upon which all other modules are built. It
provides two-dimensional and three-dimensional vector classes, clocks,
threads, and Unicode strings, among other things.

•	 Window: The Window module makes it possible to create application
windows, and to collect user input, such as mouse movement or key presses.

•	 Graphics: This module provides all functionalities that are related to two-
dimensional rendering, such as images, texts, shapes, and colors.

•	 Audio: SFML also offers a module to work with sound. When you want to
load a music theme and play it on the computer's loudspeakers, this is the
module you have to look for.

•	 Network: Another medium SFML covers is the network, a more and more
important part of our interconnected world. This module allows you to send
data over LAN or the Internet; it also lets you work with protocols, such as
HTTP or FTP.

If you don't need all the modules, it is possible to use only a part of SFML. We will
cover every module in SFML, but of course we are not able to use every single class.
We recommend having a look at the SFML documentation, which is available at
www.sfml-dev.org/documentation.php. The documentation explains every class
and function in a detailed manner, and is an invaluable tool when developing a
game using SFML.

SFML is open source, which means that you have access to its complete source code.
Usually, the implementations aren't relevant to the user, but if you are interested in
how something was solved, don't hesitate to skim through SFML's code.

The library uses the zlib/libpng license, which is extremely permissive. You can use
SFML in both open and closed source projects, both free and commercial.

Downloading and installation
There are two possibilities when using SFML: download the pre-built libraries, or
recompile them yourself. The first option is simpler, but you have to wait for major
versions (2.0, 2.1, and so on) to be released. If you want to use the latest development
sources, you can download the current Git revision. The configuration software
CMake is used to prepare the sources for compilation with a compiler of your
choice. For example, CMake creates Visual Studio solutions or g++ Makefiles. The
recompilation process is explained in detail in the SFML tutorials, which can be
found at www.sfml-dev.org/tutorials.php.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

As mentioned, SFML is split into five modules. There are five headers to include a
complete module (and its dependencies). To include the whole Audio module, you
can write:

#include <SFML/Audio.hpp>

On the other hand, if you need a specific header file, you can find it in the directory
of the corresponding module:

#include <SFML/Audio/Sound.hpp>

Each module is compiled to a separate library, which makes it possible to use only
the modules you need. SFML can be built for release or debug mode, and it can be
linked statically or dynamically. The resulting libraries are named according to the
scheme sfml-module[-s][-d]. The -s postfix is required if you link statically; the
-d postfix specifies debug mode. For example, to link the Graphics module statically
in release mode, you have to specify the library sfml-graphics-s in your linker
options. Depending on your compiler, a file extension (such as .lib) might be
necessary. Keep in mind that some modules depend on others; therefore, you have
to link the dependencies too. For example, Graphics depends on Window, which
depends on System; therefore, you should link the three (in this order).

An important point to note is that if you link SFML statically, you have to define
the macro SFML_STATIC in your projects, so that the linker knows what functions to
resolve.

In case you do not know how linking a library works for a specific compiler, please
refer to the online tutorials. They explain how to install everything correctly, and are
always up-to-date.

A minimal example
Before you go deeper into the book and SFML itself, let's take a look at a minimal
application example to show how an application that uses this library looks like, its
general flow of execution, and some basic functionality.

#include <SFML/Graphics.hpp>

int main()
{
 sf::RenderWindow window(sf::VideoMode(640, 480), "SFML
Application");
 sf::CircleShape shape;
 shape.setRadius(40.f);
 shape.setPosition(100.f, 100.f);

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[10]

 shape.setFillColor(sf::Color::Cyan);
 while (window.isOpen())
 {
 sf::Event event;
 while (window.pollEvent(event))
 {
 if (event.type == sf::Event::Closed)
 window.close();
 }
 window.clear();
 window.draw(shape);
 window.display();
 }
}

All this application does is to open a window onto which we can render, with a
width of 640 pixels and a height of 480 pixels. Its title says "SFML Application".
Then, a cyan geometric circle is created, and while the window is open, it is drawn
to the screen. Finally, for each time the circle is drawn, the program checks for user
input that may have arrived from the underlying window. In our case, we only
handle the sf::Event::Closed event, which arrives every time the application
is requested to terminate, such as when we click on the close button, or press an
application-terminating shortcut, such as Alt + F4.

If you failed to understand a part of or the whole snippet of code, don't fear.
This book contains all you need to know about this and much more.

A few notes on C++
C++ is a very powerful, but also very complex programming language; even after
years one never stops learning. We expect you to understand the basic language
features (variables, data types, functions, classes, polymorphism, pointers, and
templates), as well as the most important parts of the standard library (strings,
streams, and the STL). If you feel unsure, we recommend reading a good C++ book,
before or in parallel to this book, since SFML and our code sometimes uses advanced
techniques. Game development is a difficult topic on its own; it is very frustrating
if you additionally have to fight C++. Even if it takes some time to reasonably learn
the programming language, it is a good investment, since it will save you days of
tedious debugging.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

You may have heard that in 2011, a new C++ standard was released, which
introduced a lot of extremely useful features. We are going to use a few C++11
features in the book, and show how they can improve code. Each time we use a new
C++11 technique, we will briefly explain it.

An issue that is widely underestimated, especially by beginners, is the importance of
clean code. Before making a game, it is always a good idea to have a rough imagination
of the game features and their implementation. It may help to draw sketches on a
paper, in order to visualize contexts better. Also during development, it is crucial to
keep an eye on the code design, and to refactor messy code where necessary.

Some key aspects of good code are as follows:

•	 Modularity: In this the functionalities are separated, and dependencies
between them are reduced to a minimum. This allows you to maintain and
debug application parts locally, as well as, to change the implementation of
a module without affecting the other modules. Concretely, we achieve this
by widely avoiding global variables, distributing functionality to different
classes, and keeping interfaces between them small. We also split the code
base to different headers and implementation files, and try to include only
what is really necessary.

•	 Abstraction: In this, the functionality is encapsulated into classes and
functions. Code duplication is avoided. The usage of low-level operations,
such as manual memory management (new/delete) is minimized,
because it is inherently error-prone, and replaced with idioms such as
RAII. In short, keep most of your code on a high abstraction level, such that it
is expressive and achieves a lot of actions within a few lines. When you need
boilerplate code, wrap it into functions, so that the code using it still looks
clean.

•	 Code style: One thing, be consistent. It does not matter what naming
convention you use, or if you have a space between if and the opening
parenthesis, so long as you stick to one style. It is important that you keep the
code readable and expressive, so that you still recognize what you have done
after several weeks. Use comments where appropriate.

After this initial sermon, we hope that you have recognized how a well-structured
code can keep up your motivation to develop, while on the other hand, a total mess
is contra-productive and frustrating, when it comes to maintenance, debugging, or
integration of new features. Don't be afraid if this advice sounds very abstract; you
will automatically gain experience while developing projects.

By the way, the code we are going to develop during the chapters is available for
download on the Packt Publishing website.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[12]

Developing the first game
Now that we got the boring parts finished, we can finally start making a game. So
where do we start? What do we do first? First, you should have an idea of what kind
of game you want to develop, and what elements it will incorporate. For the purpose
of this book, we have chosen to create a shoot-em-up game. The player controls an
aircraft viewed from the top, and has to find its way through a level full of enemies.

In order to tease you a little, we show you a screenshot we will have at the end of
this chapter.

It might not be the most amazing game you have seen so far, but it exemplifies a
good point. To make a game, we need a medium for communicating what is going
on to the user. For us, that amounts to showing images on the screen to the player,
and having a way for the player to manipulate the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

The Game class
In this chapter, we implement the basis for your game that will get you going. The
root for us is a class called Game; instead of doing our logic in the main() function
as we did in the minimal example, we move everything into the Game class instead.
This is a good starting point—it gives us a better overview of our code, as we can
extract separate functionality into their own functions, and use them within the Game
class. If we look at the minimal example, we had three distinct areas in the code:
initialization, event processing, and rendering. Now if we continued to develop
there, these three parts would grow quite a lot, and we would end up with a gigantic
wall of code, which would be nearly impossible to navigate. The Game class helps us
out here.

Here is the general design of the class and its intended usage:

class Game
{
 public:
 Game();
 void run();

 private:
 void processEvents();
 void update();
 void render();

 private:
 sf::RenderWindow mWindow;
 sf::CircleShape mPlayer;
};

int main()
{
 Game game;
 game.run();
}

As you can clearly see, we replaced all the code in the main() function from the
minimal example with just a Game object and a call to its run() function. The idea
here is that we have hidden the loop we had previously in the run() function. It
doesn't happen very often that we have to fiddle with it anyway. Now, we can move
the actual code that updates the game to the update() function, and the code that
renders it to the render() function. The method processEvents() is responsible for
player input. So if we want to get something actually done, we implement it in one of
the three private functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[14]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com . If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Let's have a look at the code now:

Game::Game()
: mWindow(sf::VideoMode(640, 480), "SFML Application")
, mPlayer()
{
 mPlayer.setRadius(40.f);
 mPlayer.setPosition(100.f, 100.f);
 mPlayer.setFillColor(sf::Color::Cyan);
}
void Game::run()
{
 while (mWindow.isOpen())
 {
 processEvents();
 update();
 render();
 }
}

The function processEvents() handles user input. It polls the application window
for any input events, and will close the window if a Closed event occurs (the user
clicks on the window's X button).

void Game::processEvents()
{
 sf::Event event;
 while (mWindow.pollEvent(event))
 {
 if (event.type == sf::Event::Closed)
 mWindow.close();
 }
}

The method update() updates the game logic, that is, everything that happens in the
game. For the moment, we leave the implementation empty. We are going to fill it as
we add functionality to the game.

void Game::update()
{
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

The render() method renders our game to the screen. It consists of three parts.
First, we clear the window with a color, usually black. Therefore, the output of the
last rendering is completely overridden. Then, we draw all the objects of the current
frame by calling the sf::RenderWindow::draw() method. After we have drawn
everything, we need to actually display it on the screen. The render() method looks
as follows:

void Game::render()
{
 mWindow.clear();
 mWindow.draw(mPlayer);
 mWindow.display();
}

Later in the chapter, when we display something more interesting than a cyan circle,
we are going to have a deeper look at the rendering step.

Even though this actually is more code than what we started with, it still looks like it
is less, because at any given time, our eyes only have to rest on a smaller part.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[16]

And with this you should still get the same result as you would in the SFML minimal
example: a cyan-colored circle in a window with a black background. Nothing fancy
yet, but we are well on our way.

Game loops and frames
Now talking a little more in-depth about the loop we have placed in the run()
function. This loop is most often called the main loop or the game loop because it
controls the lifetime of an application. As long as this one continues to iterate, the
application will stay alive. In our case, we would like our application to terminate its
execution as soon as the window ceases to exist.

Now what do we do during an iteration of this loop? First we process the events
from the window, then we update the game, and finally we render the results on
the screen. An iteration of the game loop is most often called a frame or a tick. You
might have heard of the term frames per second (FPS). This is a measurement of
how many loop iterations the game can do during a second. Sometimes, the concept
of FPS only accounts for rendering times, but it is not unusual for it to encompass the
input processing and logic updates as well.

We can explain this visually with a flow chart to further help you see clearly the logic
of our loop.

No

Yes

Application Start

Game setup

Update Game

Render game state onto window

Process events from window

Is window still open?

Application Shutdown

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

It accurately describes what our application does at the moment. The only thing left
out is the event processing. That functionality could have its own flow chart. But it
does one task only in our basic example. It tells the window to close itself if the user
requests it.

Now, the way we work with the computer in C++ is very linear. Everything is done
in the set order that we give it, and the computer does nothing for us unless we
explicitly tell it to. So, if we don't tell it to draw the circle, it won't draw it. If the state
of the game somehow changes, and we don't tell the computer how to render a new
frame, then nothing will change on the screen because the computer won't know that
the graphics have changed.

Now that we got this sorted out, let's see if we can get something to happen over
several frames. We make the circle move by pressing keys on our keyboard.

Input over several frames
First we have to be able to detect that the user is pressing down a key on his
keyboard. SFML provides this functionality in several ways, but for now we will
settle with input detection by responding to events.

What are events? The word itself implies something that is happening with our
window, emitting a notice of the happening. As soon as the user somehow interacts
with our window, the operating system sends an event that we can process. For our
convenience, SFML translates events from the underlying operating systems to a
uniform structure that we can use with ease: sf::Event. Once the window internally
detects that some kind of input has happened, it will store an sf::Event object
containing information about that input. We will then poll all those events as fast as
we can, in order to respond to them.

SFML supports a wide variety of events, but there are two event types that interest
us here: sf::Event::KeyPressed and sf::Event::KeyReleased. They represent a
key being pressed and released respectively.

So let's change our code so that it can handle this. We again poll the window for
events, and have a case differentiation on the event type.

void Game::processEvents()
{
 sf::Event event;
 while (mWindow.pollEvent(event))
 {
 switch (event.type)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[18]

For each time the while loop iterates, it means a new event that was registered by
the window is being handled. While there can be many different events, we will only
check for some types of events, which are of our interest right now.

 case sf::Event::KeyPressed:
 handlePlayerInput(event.key.code, true);
 break;
 case sf::Event::KeyReleased:
 handlePlayerInput(event.key.code, false);
 break;
 case sf::Event::Closed:
 mWindow.close();
 break;
 }
 }
}

In the handlePlayerInput() function, we check which key on the keyboard has
been pressed or released. To store this information, we use four Boolean member
variables: mIsMovingUp, mIsMovingDown, mIsMovingLeft, and mIsMovingRight.
We set the corresponding variable depending on the key being pressed or released.

void Game::handlePlayerInput(sf::Keyboard::Key key,
bool isPressed)
{
 if (key == sf::Keyboard::W)
 mIsMovingUp = isPressed;
 else if (key == sf::Keyboard::S)
 mIsMovingDown = isPressed;
 else if (key == sf::Keyboard::A)
 mIsMovingLeft = isPressed;
 else if (key == sf::Keyboard::D)
 mIsMovingRight = isPressed;
}

In Game::handlePlayerInput()we receive the enumerator describing the key that
was pressed or released. The flag describing whether a press or release occurred is
passed as the second argument. So we check what key the user is manipulating, and
change our state depending on that.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Now, we have a way to perceive that the user is pressing a key. We know when we
want to move up, down, left, and right. We know at each iteration of the main loop
exactly, what the user wants; we just have to update the circle with a new position
depending on this input. This method gives us a great advantage. So finally we can
write something in our update() function, namely, the movement of our player.
We check which of the four Boolean member variables is true, and determine the
movement accordingly. By using += (instead of =) and if (instead of else if), we
implicitly handle the case where two opposite keys, such as right and left are pressed
at the same time—the movement stays zero. The update() function is shown in the
following code snippet:

void Game::update()
{
 sf::Vector2f movement(0.f, 0.f);
 if (mIsMovingUp)
 movement.y -= 1.f;
 if (mIsMovingDown)
 movement.y += 1.f;
 if (mIsMovingLeft)
 movement.x -= 1.f;
 if (mIsMovingRight)
 movement.x += 1.f;

 mPlayer.move(movement);
}

We introduce two new things here: a vector and the move() function on the circle
shape. The move() function does what its name says, it moves the shape by the
amount we provide it.

Vector algebra
Vectors are an important part of algebraic mathematics. They imply lots of rules and
definitions, which go beyond the scope of our book. However, SFML's sf::Vector2
class template is way more practical, both in concept and functionality. To be as
simple as we could possibly be, we know that a coordinate in a two-dimensional
Cartesian system would need two components: x and y. Because in graphics all
coordinates are expressed with the decimal float data type, sf::Vector2 is
instantiated as sf::Vector2<float>, which conveniently has a typedef named
sf::Vector2f. Such an object is made to contain two member variables, x and y.
This makes our life simpler, because now we don't need to pass two variables to
functions, as we can fit both in a single sf::Vector2f object. sf::Vector2f also
defines common vector operations, such as additions and subtractions with other
vectors, or multiplications and divisions with scalars (single values), effectively
shortening our code.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[20]

To be a little more precise in the explanation, vectors are not only used to define
positions, but they also are a perfect fit to define orientations. So, a vector is great to
store a two-component coordinate, be it an absolute or relative position, or even to
express a direction to follow, or to shoot a bullet towards. There is a little more to
know about two-dimensional vectors, especially if they are directions, such as the
concept of normalization or unit vector. This operation applies only to directions,
as it makes no sense in positions. We consider a vector normalized if it has length
one (hence the term unit vector) and the vector still expresses the same direction as
before normalization. The following figure visualizes the vector (2, 3). This vector
represents a translation of 2 units to the right and 3 units down.

y=3

x=2

Please do not confuse sf::Vector2f with std::vector. While their names are
similar, the first refers to the mathematical concept; the latter is simply a dynamically
allocated array from the standard C++ library.

In our case, our vector called movement expresses a movement from the origin of
the current coordinate system. For us, this origin is the shape's position. It might be
a bit tricky getting into the whole way of thinking in different spaces if you don't
like math.

Vector algebra is very interesting, and definitely something very useful if you know
it. So we recommend you study it. Mathematics is your friend as soon as you stop
fighting it; it really makes a lot of things easier for you in programming. It is almost
safe to claim that this subsection of math is the single most important topic when
we need to implement gameplay mechanics. A wide range of problems that you
will face in almost any kind of game are already solved and well-studied before, so
you're better off learning this subject than reinventing the wheel every time. To avoid
leaving you hanging, here's an example: Let's say you have point A and point B,
which represent two characters in an action game. When the enemy at point A wants
to shoot our player at point B, it needs to know the direction in which to shoot the
projectile. Why waste your brains thinking on how to solve this problem if this field
of math defines this operation as one of its most basic rules? All you need is to find
the direction vector C, which is obtained by calculating B minus A. The difference
between two positions gives us the direction between the two. Yes, that easy!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Frame-independent movement
If you run everything we have done so far, you will be able to move the circle, but
it won't move uniformly. It will probably be very fast, because currently we have
done the movement in a very naive way. Right now your computer will be running
the update() function as fast as it can, which means it will probably call it a couple
of hundreds of times each second, if not more. If we move the shape by one pixel
for every frame, this can count up to several 100 pixels every second, making our
little player fly all over the screen. You cannot just change the movement value to
something lower, as it will only fix the problem for your computer. If you move to a
slower or faster computer, the speed will change again.

So how do we solve this? Well, let's look at the problem we are facing. We are having
a problem because our movement is frame-dependent. We want to provide the
speed in a way that changes depending on the time a frame takes. There is a simple
formula you should remember from your old school days. It's the formula that goes:
distance = speed * time. Now why is this relevant for us? Because with this formula
we can calculate a relevant speed for every frame, so that the circle always travels
exactly the distance we want it to travel over one second, no matter what computer
we are sitting on. So let's modify the function to what we actually need to make this
work.

void Game::update(sf::Time deltaTime)
{
 sf::Vector2f movement(0.f, 0.f);
 if (mIsMovingUp)
 movement.y -= PlayerSpeed;
 if (mIsMovingDown)
 movement.y += PlayerSpeed;
 if (mIsMovingLeft)
 movement.x -= PlayerSpeed;
 if (mIsMovingRight)
 movement.x += PlayerSpeed;

 mPlayer.move(movement * deltaTime.asSeconds());
}

The major difference we have made here is that we now receive a time value every
time we call the update. We calculate the distance we want to travel every frame,
depending on how much time has elapsed. We call the time that has elapsed since
the last frame delta time (or time step), and often abbreviate it as dt in the code. But
how do we get this time? We are lucky because SFML provides the utilities for it.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[22]

In SFML, there is a class that measures the time from when it was started. What
we have to do is to measure the time each frame takes. We are talking about the
class sf::Clock. It has a function called restart(), which lets the clock return
the elapsed time since its start, and restarts the clock from zero, making it ideal
for our current situation. SFML uses the class sf::Time for all time formats; it is a
convenient data type that can be converted from and to seconds, milliseconds, and
microseconds. Here's the modified Game::run() member function:

void Game::run()
{
 sf::Clock clock;
 while (mWindow.isOpen())
 {
 sf::Time deltaTime = clock.restart();
 processEvents();
 update(deltaTime);
 render();
 }
}

There is no big difference; we create a clock, and in every frame we query it for its
current elapsed time, restart the clock, and then pass this time to the update function.

Fixed time steps
The solution we have come up with so far is sufficient for many cases. But it is not
a perfect solution, because you can have problems in certain scenarios where delta
times vary strongly. The code can be quite hard to debug, because it is impossible
to get 100 percent reproducible results, since every frame is unique, and you can't
guarantee that the delta time remains the same.

Consider that a frame may sometimes take three times the average delta time. This
can lead to severe mistakes in the game logic, for example, when a player moves
three times the distance and passes through a wall he would normally collide with.
This is why physics engines expect the delta time to be fixed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

The following is a figure describing the problem we are referring to:

Normal Lag

What we will do now is use a technique called fixed time steps. We write code that
guarantees that in any circumstances, we always give the same delta time to the
update function, no matter what happens. If you find that sounding difficult, there is
no big difference from what we already have. We just have to do some book-keeping
in our code for how much time has passed since we last called the update() function.

void Game::run()
{
 sf::Clock clock;
 sf::Time timeSinceLastUpdate = sf::Time::Zero;
 while (mWindow.isOpen())
 {
 processEvents();
 timeSinceLastUpdate += clock.restart();
 while (timeSinceLastUpdate > TimePerFrame)
 {
 timeSinceLastUpdate -= TimePerFrame;
 processEvents();
 update(TimePerFrame);
 }
 render();
 }
}

The actual effect of this change is that we accumulate how much time has elapsed in
a variable timeSinceLastUpdate. When we are over the required amount for one
frame, we subtract the desired length of this frame (namely TimePerFrame), and
update the game. We do this until we are below the required amount again. This
solves the problem with variable delta times, as we are guaranteed that the same
amount of frames is always run. In the application you can download, the logic
frame rate will be set to 60 frames per second by having the TimePerFrame constant
equal to sf::seconds(1.f / 60.f).

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[24]

Eventually, we have two while loops. The outer one is the game loop as we know
it, and calls the render() method. The inner one collects user input, and computes
the game logic; this loop is executed at a constant rate. If rendering is slow, it may
happen that processEvents() and update() are called multiple times before one
render() call. As a result, the game occasionally stutters, since, not every update is
rendered, but the game doesn't slow down. On the other hand, fast rendering can
lead to render() being called multiple times without a logic update in between.
Rendering the same state multiple times does not change anything on the screen,
but it allows for techniques such as interpolations between two states to smoothen
the game flow.

If you are interested in the topic, there is a famous article with detailed explanations
at http://gafferongames.com/game-physics/fix-your-timestep.

Other techniques related to frame rates
SFML provides a few utilities that are worth knowing with respect to time handling
and frame updates. One of them is sf::sleep(), a function that interrupts the
execution for a given time, which gives the processor an opportunity to work on
other tasks. Sleeping is not very accurate, so you should not use it for exact timing
purposes. The method sf::RenderWindow::setFramerateLimit() tries to achieve
the specified frame rate by calling sf::sleep() internally. It is a nice function for
testing purposes, but it also lacks precision.

Another important technique is vertical synchronization, also known
as V-Sync. Enabled V-Sync adapts the rate of graphical updates (calls of
sf::RenderWindow::display()) to the refresh rate of the monitor, usually around
60Hz. This can avoid graphical artifacts such as screen tearing, where a part of your
window shows the old frame, and another the new one. You can enable or disable
V-Sync using the method sf::RenderWindow::setVerticalSyncEnabled().

Displaying sprites on the screen
Now let's get something interesting on the screen. Instead of just rendering a boring
single color circle to the screen, let's actually render an image. To do this, SFML
provides a couple of tools to make your life easy. First we have the sf::Texture
class that holds the actual image data loaded from the hard drive. Next is the
sf::Sprite class that represents an instance with position and orientation in the
scene. The texture describes the image, while the sprite describes where and how to
put one on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

A simple example of their relationship is as follows:

sf::Texture texture;
if (!texture.loadFromFile("path/to/file.png"))
{
 // Handle loading error
}
sf::Sprite sprite(texture);
sprite.setPosition(100.f, 100.f);
window.clear();
window.draw(sprite);
window.display();

Here, we load a texture from the hard drive, and check if loading has succeeded.
We construct a new sprite to use the texture and set its position to (100, 100), relative
to the upper-left window corner.

File paths and working directories
About file paths, it would be useful to make some things clear. First, the slashes
that separate directories in a path in order to locate a file will be most often forward
slashes (/), especially in Unix-like operating systems. In Windows, you will
occasionally see back slashes (\) used instead, but probably not everywhere. Do not
let this confuse you, the only true cross-platform way to specify a file path is using
forward slashes, so make sure they are always your choice, even in Windows.

Also, it is of extreme importance to note that every program being run in the
operating systems that SFML supports has a working directory while being
executed. Usually, when you run the program from a graphical window manager,
the working directory is exactly where the executable is located; however, this is not
always the case. It is possible to run a program with any working directory, and it
is even possible to change the working directory programmatically from inside the
program. In the context of a game, the point of understanding working directories is
for loading files, which are loaded in paths relative to the executable in most cases.
All paths passed on to SFML are relative to the working directory, unless you make
them absolute by starting them with a slash in Unix-like operating systems, or with a
drive letter in Windows.

Real-time rendering
In a game simulation, it is highly likely that there will be changes to what's drawn
in every frame. Even when there is no player input, you will observe in most cases
some kind of animation, which will effectively change the end result on the screen
for that given frame.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[26]

Many programs use a render-on-demand approach. They will only redraw a new
frame on the screen when a change actually happens, minimizing the performance
costs in applications where the screen doesn't change very often. But, by the nature
of gaming software, this approach would be made redundant, as we would be
requesting new frames all the time. Because of this, game programmers adopted
entirely the concept of real-time rendering, which ignores frame requests as they
were previously known, and blindly draws to the screen as fast as possible. If while
playing your favorite game you eventually noticed a usual FPS count of 30 or 60, this
is due to the fact that our eyes can't perceive, in regular circumstances, more frames
than that amount in a second. Because it makes virtually no difference to the end
user, the programmers limit the FPS count to such a number, and save the processor
power for other tasks, such as logic processing. In short, nowadays, the whole scene
is rendered again and again, independently of what changed since the last frame.

To explain the notion of real-time rendering a bit further, we would like to mention
the concept of double buffering that comes inherently attached to it. Double
buffering is a technique that was created to negate graphical glitches derived from
asynchronies in the rendering tasks. Before this technique became widely used,
programmers needed to have additional concerns when drawing to the screen, to
ensure that only what belongs to a frame is drawn in it, and that there are no remains
of pixels from previous frames.

Double buffering defines two virtual screens to draw graphics to. The front buffer
and the back buffer are the names chosen to address these render targets. The front
buffer is what is currently displayed on the screen, while the back buffer is the one
we are drawing to at the moment, preparing a new frame. Once our frame is fully
drawn in the back buffer, we use the SFML's sf::RenderWindow::display()
function to put the contents of the back buffer on the screen. The back buffer
becomes the front buffer, while the front buffer that was set will now be the back
buffer to draw on. This way we ensure that we always have a buffer with the
previous frame unharmed, as well as a working buffer that we can safely change at
any time, without affecting what is on the screen. By clearing, drawing, and then
displaying these buffers in an interleaved manner, we achieve double buffering.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Adapting the code
In our code, we replace sf::CircleShape with sf::Sprite, which only requires
minor modifications. We load an image file called Eagle.png. The relative path to
it is Media/Textures. Don't worry if you don't have the file; you can download it
together with the whole source code.

// Game.hpp
class Game
{
 public:
 Game();
 ...
 private:
 sf::Texture mTexture;
 sf::Sprite mPlayer;
 ...
};

// Game.cpp
Game::Game()
: ...
, mTexture()
, mPlayer()
{
 if (!mTexture.loadFromFile("Media/Textures/Eagle.png"))
 {
 // Handle loading error
 }
 mPlayer.setTexture(mTexture);
 mPlayer.setPosition(100.f, 100.f);
}

No code changes have to be done to get our render() function to work with sprites
instead of shapes. SFML is nice in that way. Everything that can be drawn to a
window has to inherit from the abstract class sf::Drawable. As long as it is possible,
the SFML API keeps a consistency to it. This makes it a lot easier to use, because if
you have used a function on one class, you can be pretty sure there will be identical
or similar functions in other classes.

Now you have achieved the results you observed in the screenshot we had in the
beginning of the chapter. You are also very well on the way to making your game.
With these few tools alone you would be able to make a simple game, such
as Snake or Pac-Man with ease.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Game Tick

[28]

Summary
We had to cover a lot of ground in this chapter. We have explained the most basic
concepts that are required to create a game; concepts that you should always have
present in order to save yourself from losing time in such issues, and instead, focus
on making a great game.

In this chapter we:

•	 Learned what SFML is, and what functionality it provides
•	 Listened to input, and moved the player over several frames
•	 Rendered an image to the screen
•	 Learned about game loops and delta times, and saw the strengths and

weaknesses of different approaches to handle time steps.

And if you are interested in how you would measure your FPS and render that to the
screen, then have a look at the code base. We have implemented that functionality
there, and it is based on the subjects we have already covered. We would
recommend you try yourself; the only things you need are sf::Text and sf::Font
in order to render text on the screen. You can learn more about these classes in
SFML's API documentation at www.sfml-dev.org.

This concludes our introduction chapter. From now on we are going to investigate
different aspects of SFML and game development in a more detailed manner. In
the next chapter, we start with resource handling, which explains the backgrounds
behind textures, fonts, and other resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of
Your Textures – Resource

Management
In the previous chapter, you have learned how to load a texture, and display a sprite
that uses the texture. During the process of game development, you encounter such
situations again and again: you need to load data from the hard disk, be it images,
fonts, or sounds. This chapter intends to give you a broader understanding of the
following points:

•	 What is the motivation behind external resources
•	 Which classes for resource handling and manipulation does the Simple and

Fast Multimedia Library (SFML) provide
•	 What might a typical use case in a game look like
•	 How do we cope with the constantly recurring need to manage resources in a

simple way

Defining resources
In game development, the term resource denotes an external component, which the
application loads during runtime. Another often-used term for a resource is asset.

Mostly, resources are heavyweight multimedia items, such as images, music themes,
or fonts. "Heavyweight" refers to the fact that those objects occupy a lot of memory,
and that operations on them, especially copying, perform slowly. This affects the
way we use them in our application, as we try to restrict slow operations on them to
a minimum.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of Your Textures – Resource Management

[30]

Non-multimedia items such as scripts that describe the in-game world, menu
content, or artificial intelligence are also considered resources. Configuration files
containing user settings such as the screen resolution and the music volume are good
examples of resources as well. However, when we mention resources in the book, we
mostly refer to multimedia resources.

Resources are usually loaded from a file on the hard disk. Although being the most
common approach, it is not the only one—other possible examples are the RAM or
the network.

Resources in SFML
SFML offers classes to deal with a wide variety of resources. Often, the resource
classes are not directly used to output multimedia on the periphery. Instead, there
is an intermediate front-end class, which refers to the resource. In contrast to the
resource class which holds all the data, the front-end class is lightweight and can be
copied without severe performance impacts.

All resource classes contain member functions to load from different places.
Depending on the exact resource type, there may be slight deviations. A typical
method to load a resource from a file has the following signature:

bool loadFromFile(const std::string& filename);

The function parameter contains the path to the file, where the resource is stored,
and the return value is a bool, which is true if loading was successful, and false
if it failed. It is important to check return values in order to react to possible errors,
such as invalid file paths.

SFML resources also provide methods to load resources from media other than the
hard disk. The function loadFromMemory() loads a resource from RAM, which
may be useful to load resources that are directly embedded into the executable.
The member function loadFromStream() loads the resource using a custom
sf::InputStream instance. This allows the user to exactly specify the loading
process. Important use cases of user-defined streams are encrypted and/or
compressed file archives.

SFML's resource classes are explained in more detail in the following sections. For
this game, we will focus on loading from files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Textures
The class sf::Texture represents a graphical image. The image is stored as an array
of pixels in the graphics card's video memory, that is, it does not reside in the RAM.
Each pixel is a 32 bit RGBA value, specifying a color with the components red, green,
blue, and alpha (transparency), at a certain position in the image. Many common
image formats are supported by SFML, for example, JPEG, BMP, PNG, or GIF.

Textures can be drawn on the screen with the sf::Sprite class. A sprite is a
lightweight object that refers to a texture or a rectangular part of it. It stores
attributes such as the position, rotation, scale, or color to affect the way the texture
is represented on the screen. Multiple sprites can refer to the same texture and have
different attributes, while the texture itself is not affected. The separation between
sprites and textures has a big advantage that we have a simple possibility to deal
with graphics using sf::Sprite, while the heavyweight sf::Texture need not
be modified.

Images
The sf::Image class is a container for pixel values. It behaves similarly to
sf::Texture; however it stores its pixels on the RAM instead of the video
memory, which makes it possible to manipulate single pixels. sf::Image is able
to load the same image formats as sf::Texture. It is also capable of saving the
stored image back to a file. It is interesting to know that sf::Texture loads the data
using an intermediate sf::Image, more exactly, the sf::Texture::loadFromX()
functions are just a shortcut for combined sf::Image::loadFromX() and
sf::Texture::loadFromImage() calls.

When we want to display a sf::Image on the screen, we first have to convert it
into a sf::Texture, and create a sf::Sprite referring to it. It is also possible to
construct a texture only from a rectangular part of an image, in situations where not
all the pixels are going to be displayed. As a result, no memory on the graphics card
is wasted. In cases where we do not need to access the single pixels of an image after
loading, we are better off when we directly use sf::Texture.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of Your Textures – Resource Management

[32]

An important use case for sf::Image is the situation where big textures
are required. sf::Texture can only store textures on the graphics card that
do not exceed a hardware-dependent size. This limit can be retrieved with
sf::Texture::getMaximumSize(). If you try to load bigger textures into
sf::Texture, loading will fail. However, you sometimes still need to draw big
sprites, for example, a static background for the whole window. What you can do is
to load the pixels into sf::Image, which does not use the graphics card's memory to
store them. Afterwards, you can create multiple sf::Texture objects, of which each
one is only loaded from a rectangular part of the image. Eventually, the whole image
can be drawn by using multiple sf::Sprite objects, where each sprite references
one texture.

Fonts
The sf::Font class is SFML's resource type that stores a character font and provides
an interface to manipulate it. A font consists of glyphs, where a glyph is the visual
representation of a character. Glyphs are loaded on demand, that is, when the user
needs to render a certain character with a certain font size, the corresponding glyph
is sought in the font file. Therefore, sf::Font does not load the complete font data
into memory. As a consequence, the font source (file, memory location, or stream)
must remain accessible throughout the font's lifetime. SFML supports many font
formats, most notably, true type fonts (TTF) and open type fonts (OTF).

To display text on the screen, we use the class sf::Text. Analogous to sprites, texts
are lightweight objects that refer to fonts. In a game, there are usually only a few
fonts, but many different places where text is rendered. Therefore, we have many
sf::Text instances that refer to a small amount of sf::Font objects.

Shaders
A shader is a program that operates directly on the graphics card. Shaders are used
to apply a variety of graphical effects to rendered objects. Examples include a bloom
shader that amplifies bright parts of the scene, a toon shader that makes objects
look like in a cartoon, or a blur effect which simulates flickering hot air. Since SFML
builds upon OpenGL, its shader instances use the OpenGL Shading Language
(GLSL), a programming language similar to C. SFML supports vertex shaders
(which affect the geometry of objects in the scene) and fragment shaders (which
manipulate pixels of the scene).

sf::Shader can be created from a std::string containing the GLSL code of a
vertex or a fragment shader. It can also hold both shaders at once; in this case it can
be loaded from two strings. It is also possible to initialize a sf::Shader instance by
passing the filename of a GLSL source file to its constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Sound buffers
The sf::SoundBuffer class is used to store a sound effect. It holds an array of 16 bit
audio samples, where each sample specifies the amplitude of the audio waveform
at a given time. A sound buffer allows access and modification of the samples, but
it cannot play audio. Supported file formats are WAV, OGG, AIFF, and many more.
The MP3 format is not supported because of its restrictive license.

sf::Sound is the class that plays audio from a sound buffer. Like a sprite refers
to a texture containing the pixels, a sound refers to a sound buffer containing the
audio samples. Analogous to textures, sound buffers must remain alive while
they are used by sounds. sf::Sound objects can be played, paused, and stopped
and have configurable attributes such as volume or pitch. Note that a sf::Sound
object must stay valid as long as it is played, destroying it ceases to play the sound
effect immediately.

Music
sf::Music is the class to play music. While sf::SoundBuffer is appropriate for
short sound effects (explosions, button clicks, and so on.), sf::Music is designed
to handle music themes. Themes are usually much longer and thus require more
memory than sound effects. As a result, sf::Music does not load all data at once.
Instead, it streams the music, meaning that it continuously loads small chunks of
samples. The streaming semantics imply that the source of the music (for example,
a file or memory location) must remain valid while the music is in use. That is also
why sf::Music methods are called openFromX() instead of loadFromX(), where "X"
denotes a source media such as "File". The supported audio formats are the same as
for sf::SoundBuffer.

For music themes, there is no separation between heavyweight resource and
lightweight front-end. sf::Music manages all at once: in addition to the loading
functionality, it offers many of the sf::Sound methods to play, pause, or stop a
theme or to configure other parameters. Its objects must also remain alive while the
music plays.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of Your Textures – Resource Management

[34]

The difference between sound buffers and music is shown in the following diagram.
On the left, you see a sound buffer object, which loads the whole audio data from
the hard disk at once. It can be played using a separate sound object. On the right, a
music object streams from the hard disk, that is, it continuously loads small chunks.
It can be played on its own.

A typical use case
Now we have seen what kinds of different resources there are, but we do not know
yet how to apply this knowledge to our game. While the approach you have seen in
Chapter 1, Making a Game Tick, may work for simple examples, it does not scale well
to a bigger project. As our game grows, we have to reflect about how the resources
are going to be used. This is explained in the next sections.

Graphics
In our game, a crucial part will be the visual representation of the world and
different objects in it. We need to think about how we get from an image on the hard
disk to its visualization on the screen.

•	 Game entities such as the player's airplane, enemies, or the landscape are
represented with sprites and possibly texts. They do not own the heavy
textures and fonts; instead they use the front-end classes to refer to them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

•	 As a consequence, the resources (textures and fonts) need to be accessible by
the entities. We must make sure that the resource objects stay alive as long as
any front-end object refers to them, so we have to find an appropriate scope
to declare the resources.

•	 A sprite in the airplane must somehow get a reference to the texture stored
outside. Therefore, we have to transport this information via constructor
parameter to the airplane class.

Audio
Another important resource is audio, which can be divided into sound effects and
background music. We have to consider how to make both of them audible in the
final application, when all we start with is a bunch of audio files in a directory:

•	 Sound effects are not tied to a specific game entity such as an airplane; they
persist independently of the object that causes them. Imagine an airplane that
explodes and creates an explosion sound. When we destroy the plane object,
we still want the explosion to be audible for some time. As a result, we do
not store sf::Sound instances in the game entities, but in an object which
remains alive throughout a mission. The same applies to the underlying
sf::SoundBuffer objects which are used by sf::Sound.

•	 For music themes, the semantics are similar. It may even occur that the same
theme is played across multiple missions. Ideally, the sf::Music objects exist
in a scope that outlives a single mission.

•	 Although the game entities do not own sound effects, they are supposed
to play them. As a consequence, we shall provide an interface that allows
playing new sound effects.

Acquiring, releasing, and accessing
resources
Once we have decided which resources are required by the application, the next step
is to investigate how long and by whom they are used. This allows us to decide how
the resources are stored in the application, as well as who is responsible of loading
and releasing them.

•	 We want to load the resource in advance, for example, at the time the game
starts or the player begins a new mission. In contrast to loading on demand
(as soon as a resource is needed), this approach has the advantage that possible
loading times occur in the beginning and not during a game. Therefore, the
game itself remains fluent and is not interrupted because of resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of Your Textures – Resource Management

[36]

•	 When resources are likely to not be needed anymore, we can release them
and free the memory. This is usually the case at the end of a mission or
when the application is quit. We do not want to release resources too early
if we risk reloading them shortly after. For example, we do not release the
explosion sound buffer as soon as the sound effect is over, because the next
explosion may follow a few seconds later.

•	 There must be a possibility to get a reference to a certain resource after it has
been loaded—using a resource identifier. This identifier (ID) could be the file
path as a std::string. This has some disadvantages: all classes that use a
resource must hardcode the path, so if it changes, a lot of code needs to be
refactored. Strings are also quite error-prone regarding typographic or case
errors. An alternative to strings are enums, where each enumerator denotes
an ID. Since an enum has a predefined set of possible states, we get some
compile-time safety, and we can handle the paths in a central place.

In conclusion, we have the heavy resource classes which shall be loaded when
appropriate, but before the game. Throughout their lifetime, front-end classes such
as sprites or sounds may reference them, so we must keep the resources alive. When
they are not needed anymore, we can release them.

An automated approach
Our goal is to encapsulate the just mentioned functionality into a class that relieves
us from managing resources again and again. For resource management, the C++
idiom Resource Acquisition Is Initialization (RAII) comes in handy.

RAII describes the principle that resources are acquired in a class'
constructor and released in its destructor. Since both constructor and
destructor are invoked automatically when the object is created or goes
out of scope, there is no need to track resources manually. RAII is mostly
used for automatic memory management (as in smart pointers), but it
can be applied to any kind of resources. A great advantage of RAII over
manual allocation and deallocation (such as new/delete pairs) is that
deallocation is guaranteed to take place, even when there are multiple
return statements or exceptions in a function. To achieve the same safety
with manual memory management, every possible path would have to be
protected with a delete operator. As a result, the code becomes quickly
unreadable and error-prone.

In our application, we want to take advantage of RAII to determine the construction
(loading) and destruction (release) of SFML resource objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Let's begin with a class that holds sf::Texture objects and loads them from files.
We call it TextureHolder. Once we have implemented the semantics for textures, we
can generalize the implementation to work with other resource types.

Finding an appropriate container
First, we must find the right data structure to store the textures. We ought to choose
an STL container that does not perform unnecessary copies. std::vector is the
wrong choice, since inserting new textures can trigger a reallocation of the dynamic
array and the copying of all textures. Not only is this slow, but also all references
and pointers to the textures are invalidated. As mentioned before, we like to access
the textures by an enum, so the associative container std::map looks like the perfect
choice. The key type is our enumeration, the value type is the sf::Texture.

The C++11 standard introduces strongly typed enumerations, also
known as enum class. Unlike traditional enums, they do not offer
implicit conversion to integers, and their enumerators reside in the
scope of the enum type itself. Since C++11 is still being implemented
by compiler vendors, not all features are widely supported yet. In this
book, we focus on C++11 features that have already been implemented
for a few years. Unfortunately, strongly typed enums do not fall into
this category, that's why we do not use them in the book. If they are
supported by your compiler, we still recommend using them.

We call our enum as ID, and let it contain three texture identifiers Landscape,
Airplane, and Missile. We nest it into a namespace Textures. The namespace
gives us a scope for the enumerators. Instead of writing just Airplane, we have
Textures::Airplane which clearly describes the intention and avoids possible
name collisions in the global scope:

namespace Textures
{
 enum ID { Landscape, Airplane, Missile };
}

We do not store the sf::Texture directly, but we wrap it into a std::unique_ptr.

Unique pointers are class templates that act like pointers. They
automatically call the delete operator in their destructor, thus
they provide means of RAII for pointers. They support C++11
move semantics, which allow to transfer ownership between objects
without copying. A std::unique_ptr<T> instance is the sole
owner of the T object it points to, hence the name "unique".

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of Your Textures – Resource Management

[38]

Unique pointers give us a lot of flexibility; we can basically pass around heavyweight
objects without creating copies. In particular, we can store classes that are non-
copyable, such as, sf::Shader. Our class then looks as shown in the following code:

class TextureHolder
{
 private:
 std::map<Textures::ID,
 std::unique_ptr<sf::Texture>> mTextureMap;
};

The compiler-generated default constructor is fine, our map is initially empty.
Same for the destructor, std::map and std::unique_ptr take care of the proper
deallocation, so we do not need to define our own destructor.

Loading from files
What we have to write now is a member function to load a resource. It has to take a
parameter for the filename and one for the identifier. The identifier is used as a key
to store the resource in the map:

void load(Textures::ID id, const std::string& filename);

In the function definition, we first create a sf::Texture object and store it in the
unique pointer. Then, we load the texture from the given filename. After loading,
we can insert the texture to the map mTextureMap. Here, we use std::move()
to take ownership from the variable texture and transfer it as an argument to
std::make_pair(), which constructs a key-value pair for the map:

void TextureHolder::load(Textures::ID id, const std::string& filename)
{
 std::unique_ptr<sf::Texture> texture(new sf::Texture());
 texture->loadFromFile(filename);

 mTextureMap.insert(std::make_pair(id, std::move(texture)));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Accessing the textures
So far, we have seen how to load resources. Now we finally want to use them.
We write a method get() that returns a reference to a texture. The method has one
parameter, namely the identifier for the resource. The method signature looks as
follows:

sf::Texture& get(Textures::ID id);

Concerning the implementation, there is not much to do. We perform a lookup
in the map to find the corresponding texture entry for the passed key. The
method std::map::find() returns an iterator to the found element, or end() if
nothing is found. Since the iterator points to a std::pair<const Textures::ID,
std::unique_ptr<sf::Texture>>, we have to access its second member to get the
unique pointer, and dereference it to get the texture:

sf::Texture& TextureHolder::get(Textures::ID id)
{
 auto found = mTextureMap.find(id);
 return *found->second;
}

Type inference is a language feature that has been introduced with
C++11, which allows the compiler to find out the type of expressions.
The decltype keyword returns the type of an expression, while the
auto keyword deduces the correct type at initialization. Type inference
is very useful for complex types such as iterators, where the syntactic
details of the declaration are irrelevant. In the following code, all three
lines are semantically equivalent:

int a = 7;
decltype(7) a = 7; // decltype(7) is int
auto a = 7; // auto is deduced as int

In order to be able to invoke get() also, if we only have a pointer or reference to a
const TextureHolder at hand, we need to provide a const-qualified overload. This
new member function returns a reference to a const sf::Texture, therefore the
caller cannot change the texture. The signature is slightly different:

const sf::Texture& get(Textures::ID id) const;

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of Your Textures – Resource Management

[40]

The implementation stays the same, so it is not listed again. Our class now
looks as follows:

class TextureHolder
{
 public:
 void load(Textures::ID id,
 const std::string& filename);
 sf::Texture& get(Textures::ID id);
 const sf::Texture& get(Textures::ID id) const;
 private:
 std::map<Textures::ID,
 std::unique_ptr<sf::Texture>> mTextureMap;
};

Now the get() method is easy to use and can directly be invoked when a
texture is requested:

TextureHolder textures;
textures.load(Textures::Airplane, "Media/Textures/Airplane.png");

sf::Sprite playerPlane;
playerPlane.setTexture(textures.get(Textures::Airplane));

Error handling
The basic steps are done, the main functionality is implemented. However, there
may be errors which we have to recognize and handle meaningfully. The first
error can occur during the loading of the texture. For example, the specified file
might not exist, or the file might have an invalid image format, or be too big
for the video memory of the graphics card. To handle such errors, the method
sf::Texture::loadFromFile() returns a Boolean value that is true in case of
success, and false in case of failure.

There are several strategies to react to resource loading errors. In our case, we
have to consider that the texture is later needed by sprites that are rendered on the
screen—if such a sprite requests the texture, we must give something back. One
possibility would be to provide a default texture (for example, plain white), so the
sprites are just drawn as a white rectangle. However, we do not want the player of
our game to fiddle around with rectangles; he should either have a proper airplane
or nothing. But how can we implement "nothing"? We have to notify the caller of
our load() method that something did not work. A possibility to implement these
notifications is shown in the next sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Boolean return values
We could follow SFML's philosophy and return a Boolean value denoting success or
failure. This approach has some disadvantages. We cannot use the return type for
something else. Additionally, the caller has to check the returned value every time
he calls load(). This is easily overlooked, and if it is not, it leads to messy usage
code that is full of error checks. That is not what we want, as initially stated our
objective consists of performing as much work as possible in the TextureHolder,
to relieve the user from writing boilerplate code.

Throwing exceptions
Another approach to react to a loading failure is to throw an exception. We choose
the standard exception type std::runtime_error. To its constructor, we pass an
error message describing the problem as clearly as possible, including the filename:

if (!texture->loadFromFile(filename))
 throw std::runtime_error("TextureHolder::load - Failed to load "
 + filename);

Exceptions have the big advantage that user code can be kept clean of error handling.
Clients can now have the following code:

TextureHolder textures;
textures.load(Textures::Landscape, "Media/Textures/Desert.png");
textures.load(Textures::Airplane, "Media/Textures/Airplane.png");
textures.load(Textures::Missile, "Media/Textures/Missile.png");

We do not need to check every single call. If an error occurs, an exception will be
thrown until a try-catch block catches it and reacts meaningfully. It is possible that
the exception passes several functions before it is eventually handled.

Once the resource is loaded, we insert it into the map. Here, we have to be aware of
possible error sources too. When the given ID is already stored, the map will refuse
to insert our ID-resource pair, as it cannot contain duplicate keys. The member
function std::map::insert() returns a pair with an iterator to the inserted element
and a Boolean value which is true if inserting was successful. We store this returned
pair and check its second member (the Boolean value). Instead of writing std::pa
ir<std::map<Textures::ID, std::unique_ptr<sf::Texture>>::iterator,
bool>, we can use C++11 type inference:

auto inserted = mTextureMap.insert(std::make_pair(id,
std::move(resource)));

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of Your Textures – Resource Management

[42]

Now, inserted is our pair containing an iterator and a Boolean value, inserted.
second is the Boolean value denoting the success of the insertion. If it is false, we
know that the ID is already stored in the map. How do we react to this situation?

We could throw a std::runtime_error exception again. However, in contrast to a
loading failure, double insertion is not a runtime error. The attempt to insert the same
ID twice in the map is a logic error, meaning, there is a mistake in the application
logic—in other words, a bug. A well-formed program would not attempt to load
the same resource twice. In comparison, runtime errors occur in correctly written
programs too, for example, if the user renames or moves the resource files. For logic
errors, the standard library provides the exception class std::logic_error.

This raises already the next question: how do you handle such exceptions? It is not
that once you have thrown an exception, you can forget about it and the world is in
harmony. Somebody has to catch those exceptions, and it had better be you and not
the operating system (unless you like crashing applications). In the case of a loading
failure, we can tell the player that the files were not found, and prevent him from
starting the game. But what in our double insertion case? Are we supposed to tell
the player that the programmer accidentally called load() twice? Certainly not.
This bug must not occur in the final application. There is no way to recover from
it—continuing the application is dangerous, because its logic is broken, and we risk
upsetting even more if we ignore the error. What if the two load() calls are passed
the same ID, but different filenames? We do not know with which resource the ID
is associated. If we later want to access a resource by its ID, we might get the wrong
resource, and thus display a wrong image on the screen. In this manner, errors can
propagate further and further, sometimes remaining for a long time before being
noticed. In case of a logic error, we would like the program to interrupt immediately.

Assertions
Clearly, a mechanism apart from exceptions is appropriate, which shows us directly
and inevitably when something goes wrong. This is where assertions come into play.
The macro assert evaluates its expression; if it is false in debug mode, a breakpoint
is triggered, halting the program execution and directly pointing to the source
of the error. In release mode, assertions are optimized away, so we do not waste
any performance to check for errors that cannot occur. The assert expression is
completely removed in release mode, so make sure you only use it for error checks,
and not to implement actual functionality with possible side effects.

We have to insert a single line, we expect that the Boolean member of the pair
returned by std::map::insert() is true:

assert(inserted.second);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

That is already it. The whole method looks now as follows:

void TextureHolder::load(Textures::ID id, const std::string& filename)
{
 std::unique_ptr<sf::Texture> texture(new sf::Texture());
 if (!texture->loadFromFile(filename))
 throw std::runtime_error("TextureHolder::load -
 Failed to load " + filename);

 auto inserted = mTextureMap.insert(std::make_pair(id,
 std::move(texture)));
 assert(inserted.second);
}

In our method get(), there are things that may go wrong too. The requested texture
might not exist in the map. This is also a logic error; we are supposed to load the
textures before we access them. Consequently, we verify whether the texture has
been found, again using assert:

sf::Texture& TextureHolder::get(Textures::ID id)
{
 auto found = mTextureMap.find(id);
 assert(found != mTextureMap.end());

 return *found->second;
}

Generalizing the approach
We have implemented everything we need for textures, but we would like to handle
other resources such as fonts and sound buffers too. As the implementation looks
extremely similar for them, it would be a bad idea to write new classes FontHolder
and SoundBufferHolder with exactly the same functionality. Instead, we write a
class template, which we instantiate for different resource classes.

We call our template ResourceHolder and equip it with two template parameters:

•	 Resource: The type of resource, for example, sf::Texture. We design the
class template to work the SFML classes, but if you have your own resource
class which conforms to the required interface (providing loadFromFile()
methods), nothing keeps you from using it together with ResourceHolder.

•	 Identifier: The ID type for resource access, for example, Textures::ID.
This will usually be an enum, but the type is not restricted to enumerations.
Any type that supports an operator< can be used as identifier, for example,
std::string.

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of Your Textures – Resource Management

[44]

The transition from TextureHolder to ResourceHolder<Resource,
Identifier> is straightforward. We replace the used types with the generic
template parameters: sf::Texture becomes Resource, and Textures::ID becomes
Identifier. Furthermore, we rename some variables to reflect the fact that we are
talking about resources in general, not only textures. We also adapt the member
functions accordingly.

One thing we have to note when using templates is that the complete
implementation needs to be in the header. We cannot use .cpp
files for the method definitions anymore, but we would still like
to separate interface and implementation. That is why we use
a file ResourceHolder.hpp for the class definition, and a file
ResourceHolder.inl for the method definitions. At the end of the
.hpp file, we include the .inl file containing the implementation.
.inl is a common file extension for inline template implementations.

The generalized class definition has the following interface:

template <typename Resource, typename Identifier>
class ResourceHolder
{
 public:
 void load(Identifier id,
 const std::string& filename);

 Resource& get(Identifier id);
 const Resource& get(Identifier id) const;

 private:
 std::map<Identifier,
 std::unique_ptr<Resource>> mResourceMap;
};

The load() method can be written in the following way. Like before, we attempt to
load the resource from a file, and then we insert the unique pointer into the map and
make sure the insertion was successful:

template <typename Resource, typename Identifier>
void ResourceHolder<Resource, Identifier>::load(Identifier id,
const std::string& filename)
{
 std::unique_ptr<Resource> resource(new Resource());
 if (!resource->loadFromFile(filename))
 throw std::runtime_error("ResourceHolder::load - Failed to
 load " + filename);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

auto inserted = mResourceMap.insert(
std::make_pair(id, std::move(resource)));
 assert(inserted.second);
}

The two overloaded get() member functions are generalized using the same
principle, that is why they are not listed here. You can refer to the online code base
for a complete implementation.

Compatibility with sf::Music
As initially mentioned, the class sf::Music has semantics that are very different
from other resource types. This begins already with its openFromFile() method that
is not compatible to the loadFromFile() call in our implementation. Because of its
streaming nature, a music object cannot be shared between multiple clients—each
object represents one point in time of a certain music theme. No object contains the
whole music data at once.

Instead of forcing sf::Music into a concept it does not fit, we decide to not store
it inside ResourceHolder instances. This does not imply that there will be no
encapsulation for music; we are rather going to cover music handling in-depth
during Chapter 9, Cranking Up the Bass – Music and Sound Effects.

A special case – sf::Shader
There is one resource type we have yet to cover: shaders. Since a SFML shader
object can consist of a fragment and/or a vertex shader, the interface of sf::Shader
deviates slightly from the other resource classes in SFML. sf::Shader provides two
methods to load from a file:

bool loadFromFile(const std::string& filename, sf::Shader::Type type);
bool loadFromFile(const std::string& vertexShaderFilename,
const std::string& fragmentShaderFilename);

The first function loads either a fragment or a vertex shader (which one is specified
by the second parameter). The second function loads both a vertex and a fragment
shader.

This interface is an issue for our generic implementation, because
ResourceHolder::load() contains the following expression:

resource->loadFromFile(filename)

www.it-ebooks.info

http://www.it-ebooks.info/

Keeping Track of Your Textures – Resource Management

[46]

Which assumes that loadFromFile() is invoked with one argument. For
sf::Shader, we have to specify two instead.

The solution is simple: we write an overloaded ResourceHolder::load()
function that takes an additional parameter and forwards it directly as the second
argument to sf::Shader::loadFromFile(). This parameter can have the type
sf::Shader::Type or const std::string&. In order to cope with both types,
we add a function template parameter. Our new load() function has the following
declaration:

template <typename Parameter>
void load(Identifier id, const std::string& filename,
const Parameter& secondParam);

The function definition is listed in the following code. Do not confuse yourself
by the two template parameter lists; the first one is required for the class
template ResourceHolder and the second one for the function template
ResourceHolder::load(). In the function body, only the loadFromFile() call is
different from before.

template <typename Resource, typename Identifier>
template <typename Parameter>
void ResourceHolder<Resource, Identifier>::load(Identifier id,
const std::string& filename, const Parameter& secondParam)
{
 std::unique_ptr<Resource> resource(new Resource());
 if (!resource->loadFromFile(filename, secondParam))
 throw ...;

 ... // insertion like before
}

A nice side effect of this additional overload is that it enables other argument
combinations for loadFromFile() too. The method of sf::Texture actually looks
as shown in the following line of code:

bool loadFromFile(const std::string& filename,
const IntRect& area = IntRect())

The default parameter can be used if we want the texture to load only a rectangular
area of the image. Usually, we do not specify it and load the whole file, but thanks to
our second load() overload, we have now the possibility to use this parameter.

In our complete implementation, we have written a separate function that inserts
resources into the map, in order to reduce code duplication.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Using the new ResourceHolder class template, we can visualize a possible in-game
situation in the following diagram. On the left you see two resource holders, one for
textures and one for fonts. Each one contains a map of enumerators to resources. The
player's Aircraft class on the right stores a sprite that points to a texture, as well as
a text that points to a font.

ResourceHolder<sf::Texture, Textures::ID>

sf::Sprite

sf::Text

ResourceHolder<sf::Font, Fonts::ID>

Landscape sf::Texture

Airplane sf::Texture

Missile sf::Texture

Arial sf::Font

sf::FontTimes

Aircraft

Summary
In this chapter, we have learned the important points about resource management.
By now, we know the ideas behind resources and the facilities SFML provides to
work with them. We have taken a look at a possible way resources are used in a
bigger project, and implemented a generic resource holder that helps us with passing
resources to different parts of the application. We also investigated possible error
sources as well as techniques to handle them appropriately.

In the next chapter, we are going to develop the game world with a variety of objects
in it. Most of these objects require different resources, which is a good opportunity to
show our resource holder in a real-world example.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping
Our World

In the previous chapter, we have covered loading, managing, and releasing of
external resources. To sum up, we have investigated mechanisms to ensure that
textures, fonts, or sounds are ready to be used as soon as we need them. This chapter
attempts to bring knowledge around a few key topics:

•	 Entity systems in concept and practice
•	 The viewable area of our world and scrolling
•	 Tree-based scene graphs, rendering and updating of many entities
•	 Composition of all elements to shape the world

When writing a game, we invariably find the need to conceptualize our vision of the
game into actual data structures. In other words, it is extremely important to have
a clear idea of the scope of our vision. The world in our mind doesn't even have
to scale remotely to what we consider our real world; it is a product of our own
creation. It is well within our power, as game developers, to forge the whole world
as a simple board game table, or an ant farm, or even scale up to a whole universe
along with all the stars and planets.

The point is, it does not matter how our vision of the world looks, how small or big it
is, or how realistic or abstract the concepts in it are, we will always want to represent
that world in one or more data structures. For the reach of this book, we will apply
these concepts directly to our own sample vision of a game, while leaving a solid
background on the topic, for later implementation of new ideas and concepts.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[50]

Entities
An entity denotes a game element in the world. In our game, possible entities are
friendly and enemy airplanes, bullets, missiles, or pickups that increase the player's
strength. Entities interact with each other: enemy airplanes can fire missiles, the
player's airplane may evade them, and the missiles may explode if they hit the
player's plane, dealing damage to it. The player's aircraft can touch a pickup to
collect it, as a result of which it gets a new ability. The possibilities are nearly
unlimited, and they may occur between almost any pair of entity types.

In our code, we represent entities using the traditional approach of an entity
hierarchy. We have a base class called Entity, which contains the data and
functionality that all different kinds of entities have in common. We have multiple
classes that derive from Entity, and that implement specific functionality. These
derived classes could represent airplanes, projectiles (such as missiles), or pickups.
One commonality between different entities is that they can move in our world with
a certain velocity.

We implement the velocity attribute in the base class Entity, so each concrete entity
has it. The velocity is represented using a two-dimensional vector. In addition to the
member variable, we provide the get and set functions to access the velocity from
outside the class. The setVelocity() method is overloaded to take either a vector or
two separate floats. The header Entity.hpp contains the following class definition:

class Entity
{
 public:
 void setVelocity(sf::Vector2f velocity);
 void setVelocity(float vx, float vy);
 sf::Vector2f getVelocity() const;

 private:
 sf::Vector2f mVelocity;
};

After initialization, we want the velocity to be zero. Since the class sf::Vector2f
has a default constructor, which initializes the vector to a zero vector, we need not
define our own constructor; the compiler-generated one works fine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

The function definitions in the file Entity.cpp are not terribly surprising:

void Entity::setVelocity(sf::Vector2f velocity)
{
 mVelocity = velocity;
}

void Entity::setVelocity(float vx, float vy)
{
 mVelocity.x = vx;
 mVelocity.y = vy;
}

sf::Vector2f Entity::getVelocity() const
{
 return mVelocity;
}

Aircraft
Using the example of the aircraft, we need to define a concrete entity class. We derive
it from Entity. Since we have different airplanes in our game, it would be nice to
have a data type that can store them. An enumeration comes in handy; we call it
Type and make it a member of the Aircraft class. Therefore, we can now refer to it
as Aircraft::Type, which is quite expressive when we see it in the code. Up to now,
we have two distinct airplanes, we call them Eagle and Raptor. Each type of aircraft
corresponds to an enumerator in our enum.

Furthermore, we declare a constructor for the aircraft that takes its current type as
parameter. We also declare a member variable for the type in the following code:

class Aircraft : public Entity
{
 public:
 enum Type
 {
 Eagle,
 Raptor,
 };

 public:
 explicit Aircraft(Type type);

 private:
 Type mType;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[52]

The constructor's definition is straightforward; we let it initialize our mType
member variable:

Aircraft::Aircraft(Type type): mType(type)
{
}

Now this is the fundament for our Aircraft class. During this book, we will
continuously extend it and add new functionality.

Alternative entity designs
You should be aware that a class hierarchy is not the only option to model game
entities. There are always different possibilities to design a piece of software, all of
which have its own advantages and drawbacks.

The hierarchy-based approach gets to its limits when we introduce many, slightly
different entity types. Imagine a complex game with different kinds of vehicles,
such as tanks, ships, submarines, airplanes, and more. Every entity type has
different capabilities, such as flying, transporting people, carrying weapons, and
diving. It may be tempting to create corresponding base classes TransportEntity,
ArmedEntity, DivingEntity that all derive from Entity. A submarine could
then inherit ArmedEntity and DivingEntity; an armed freighter could inherit
TransportEntity and ArmedEntity. On one hand, this design leads hand to the
so-called diamond of death, where the base class Entity is indirectly inherited
multiple times, requiring virtual inheritance. On the other hand, the hierarchy
becomes very deep and rigid. In order to reuse functionality for different entities, it
is moved to base classes. This makes classes towards the root of the hierarchy a lot
heavier than they should be. This in turn results in derived classes which inherit a
lot of functions and data they never need. Eventually, objects become overly large,
hence slower to process and more difficult to maintain.

In such a case, component-based design would be an alternative, meaning that
abilities are aggregated as components in the single entities, instead of base classes.
Each entity would then hold the abilities as members. But as you might expect, this
approach is not the silver bullet, either. Components often depend more on each
other than theory would like them to, and they need an efficient and flexible way to
communicate with each other. While component-based approaches are certainly an
option to consider for large-scale games, they are rather complex for the first game
to develop. In our basic aircraft shooter, the typical problems of entity hierarchies do
not show, so we chose this approach for the sake of simplicity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

If you are interested in a more detailed explanation on the topic of component-based
game design, we recommend reading the article series on the following website:

http://stefan.boxbox.org/game-development-design.

Rendering the scene
At one point, we have to reflect about how the game is rendered on the screen.
How do we draw all the entities, the scenery, and interface elements (such as a health
bar)? A simple option is to have different sequential containers through which we
iterate. For each element, we call a possible Entity::draw() function to draw the
corresponding entity on the screen. We only have to make sure that objects that
appear behind others (such as the scenery background) are drawn first.

Relative coordinates
The sequential rendering approach works well for many cases, but makes it difficult
to handle an entity relative to another one. Imagine we have a formation of airplanes,
where one is the leader and the rest follows it. It would be nice if we could set the
position of the following airplanes dependent on the leader, in the sense of "plane
A is located 300 units behind (below on the screen) and 100 units right of the leader"
instead of "plane A is located at position (x, y) in the world". We call (300, 100) a
relative position, expressing where plane A is located with respect to the leader.

We can apply the principle of relative coordinates not only to position, but also to
rotation and scale. In the mentioned example of a plane formation, we also want the
planes to be headed towards the same direction as the leader. In other words, we
want their rotation to be the same. If the followers' relative rotation is zero, all planes
will face the same direction, namely the leader's one.

The advantage of relative coordinates consists of avoiding the need for manual
synchronization of different entities. Using absolute coordinates, we have to
recognize the leader and its followers, copy the leader's position to every follower,
and add it to the follower's own position. This has to be done every time the position
of the leader changes, which is cumbersome and error-prone (one can easily forget to
update a single plane). Now compare that with the relative coordinate approach: we
set the position of the leader, done. All followers adapt automatically.

This relationship is not limited to a single layer. An airplane that is following the
leader can in turn have other followers that move relatively to it. Eventually, we
build up a hierarchy of objects with relative transforms.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[54]

SFML and transforms
Now, the question is how we achieve the semantics of relative transforms in our
game. Fortunately, SFML provides already the basic framework, on top of which we
can build our own abstractions.

A geometrical transform specifies the way an object is represented on the screen.
In mathematical terms, a transform maps a coordinate system onto another.
Translation affects the position of an object, rotation affects its orientation, and scale
affects its size. Although transforms are not limited to these three operations, we will
focus on them, because they are the ones mostly used.

SFML provides an API to work with position, rotation, and scale in the class
sf::Transformable. The class stores the three transforms separately and provides
useful accessor functions such as setPosition(), move(), rotate(), getScale(),
and many more. It can be used as a base class, such that the derived class
automatically inherits those functions. The following diagram visualizes the three
transforms you will encounter again and again:

Rotation

Translation Scale

sf::Transformable also contains the methods setOrigin() and getOrigin(),
which give access to the coordinate system's origin. The origin is the reference point for
the three transforms—it determines, which point in the object is looked at to set/get
the position, or around which point the object rotates, or which point the object uses as
the center for scaling. The origin is specified in local coordinates (relative to the object).
By default, it has the value (0, 0) and resides in the object's upper-left corner. Calling
setOrigin() with the half object size places the origin to the object's center.

SFML provides another useful base class for graphical entities: the class
sf::Drawable is a stateless interface and provides only a pure virtual function with
the following signature:

virtual void Drawable::draw(sf::RenderTarget& target,
 sf::RenderStates states) const = 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

The first parameter specifies, where the drawable object is drawn to. Mostly, this
will be a sf::RenderWindow. The second parameter contains additional information
for the rendering process, such as blend mode, transform, the used texture, or
shader. SFML's high-level classes Sprite, Text, and Shape are all derived from
Transformable and Drawable.

Scene graphs
In order to manage transform hierarchies in a user-friendly way, we develop a scene
graph—a tree data structure consisting of multiple nodes, called scene nodes. Each
scene node can store an object that is drawn on the screen, most often this is an entity.

Each node may have an arbitrary amount of child nodes, which adapt to the
transform of their parent node when rendering. Children only store the position,
rotation, and scale relative to their parent.

A scene graph contains a root scene node, which exists only once in a world. It
resides above all other scene nodes in the hierarchy, thus it has no parent node.

Scene nodes
We represent the nodes in the scene graph with a class called SceneNode. Before we
can implement it, we need to think about ownership semantics. The scene graph
owns the scene nodes; therefore it is responsible for their lifetime and destruction.
We want each node to store all its child nodes. If a node is destroyed, its children are
destroyed with it. If the root is destroyed, the whole scene graph is torn down.

To store the children, we make use of the STL container std::vector. We cannot
use std::vector<SceneNode>, since element types must be complete types (which
they are only at the end of the SceneNode class definition, but not at the time of
declaring the container as a member variable) and since our class is polymorphic
(there will be derived classes overriding virtual functions of SceneNode). We could
use std::vector<SceneNode*>, but then we would have to manage memory
ourselves, so we take std::vector<std::unique_ptr<SceneNode>> instead. Since
we are going to use the type std::unique_ptr<SceneNode> really often, we create a
typedef for it, as a member inside the SceneNode class.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[56]

In addition to the children container, a pointer to the parent node is stored, so our
class looks as follows:

class SceneNode
{
 public:
 typedef std::unique_ptr<SceneNode> Ptr;

 public:
 SceneNode();

 private:
 std::vector<Ptr> mChildren;
 SceneNode* mParent;
};

The constructor initializes the parent pointer to nullptr and leaves the
container empty.

nullptr is a keyword introduced with C++11 and represents
the value of a null pointer. The formerly used NULL is a macro
for the integer value 0, which implies many problems. A function
overloaded for int and char*, that is passed NULL as argument,
would unexpectedly choose the int overload.
For null pointer literals, nullptr should always be preferred
over 0 or NULL. It is also convertible to the standard library smart
pointers std::unique_ptr and std::shared_ptr.

Node insertion and removal
Now we write an interface to insert or remove child nodes into or from a scene node.
We do this by adding the following two functions:

void attachChild(Ptr child);
Ptr detachChild(const SceneNode& node);

The first method takes a unique_ptr<SceneNode> by value, taking ownership
of the scene node. The second method searches for an occurrence of the specified
node, releases it from the container, and returns it to the caller, again wrapped in a
unique_ptr. If the return value is ignored, the node will be destroyed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

The function to attach a child node is simple to implement. We set its parent
pointer to the current node, and add the smart pointer to the container by moving
its contents in the following code snippet:

void SceneNode::attachChild(Ptr child)
{
 child->mParent = this;
 mChildren.push_back(std::move(child));
}

The second method is slightly more complex. First, we search for the specified node
in the container with the help of a lambda expression.

Lambda expressions are a C++11 language feature. They allow the
definition of local functions inside other functions, and the direct
usage in surrounding code.
A lambda expression creates an anonymous function object, similar to
a named functor class with overloaded operator(). Its declaration
consists of the following parts:

•	 The capture list specifies to which variables in the surrounding
scope the lambda expression has access. [] captures no
variables, [&] captures all variables by reference, [=] by
value, [&node] and [node] capture only the listed variables
by reference or value, respectively. The capture list is
comparable to the arguments passed to a functor's constructor.

•	 The parameter list contains the parameters passed to the
function. These correspond to the parameters of the
functor's operator().

•	 The return type has the syntax -> type. If the function
body consists of a single return statement, the return type
can be omitted.

•	 The function body is enclosed in {} and contains the
actual statements.

The lambda expression is invoked with each container element and returns true if
the element's pointer p.get() is equal to the address of the wanted node. The STL
algorithm std::find_if() returns an iterator to the found element, which we check
for validity using assert.

SceneNode::Ptr SceneNode::detachChild(const SceneNode& node)
{
 auto found = std::find_if(mChildren.begin(), mChildren.end(),
 [&] (Ptr& p) -> bool { return p.get() == &node; });

 assert(found != mChildren.end());

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[58]

In the second part of the function, we move the found node out of the container
into the variable result. We set the node's parent pointer to nullptr, erase the
empty element from the container, and return the smart pointer containing the
detached node.

 Ptr result = std::move(*found);
 result->mParent = nullptr;
 mChildren.erase(found);
 return result;
}

Now that the basic tree operations of our scene graph are working, we can
concentrate on the actual rendering.

Making scene nodes drawable
Our SceneNode class shall be rendered on the screen, thus we derive it from
sf::Drawable. It shall store its current position, rotation, and scale as well as
providing an interface to access them. Instead of re-inventing the wheel, we derive
also from sf::Transformable, which gives us all that for free. In addition, we
derive privately from sf::NonCopyable to state that our scene nodes cannot be
copied (copy constructor and copy assignment operator are disabled).

We override the pure virtual draw() function of sf::Drawable to render the whole
scene node. We also provide a new virtual function drawCurrent() which only
draws the current object (but not the children). It can be overridden by classes
deriving from SceneNode.

class SceneNode : public sf::Transformable, public sf::Drawable,
 private sf::NonCopyable
{
 public:
 typedef std::unique_ptr<SceneNode> Ptr;

 public:
 SceneNode();

 void attachChild(Ptr child);
 Ptr detachChild(const SceneNode& node);

 private:
 virtual void draw(sf::RenderTarget& target,
 sf::RenderStates states) const;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 std::vector<Ptr> mChildren;
 SceneNode* mParent;
};

The draw() function allows our class to be used as shown in the following
code snippet:

sf::RenderWindow window(...);
SceneNode::Ptr node(...);
window.draw(*node); // note: no node->draw(window) here!

The window class internally calls our draw() function. No other classes need access
to it, so we can make it private. If your compiler already supports this feature, you
can declare draw() with the final keyword, to prevent the function from being
overridden in classes derived from SceneNode.

Our function to draw the scene node has to deal with different transforms:

•	 The current node's transform that determines position, rotation, and scale
relative to the parent node. It is retrieved via base class method sf::Transfo
rmable::getTransform().

•	 The parameter states, which is passed by value and has a member variable
transform of type sf::Transform. This variable holds the information
where to render the parent scene node.

Two transforms can be chained (applied one after other) using the overloaded
multiplication operators. Our expression with operator*= combines the parent's
absolute transform with the current node's relative one. The result is the absolute
transform of the current node, which stores where in the world our scene node
is placed.

void SceneNode::draw(sf::RenderTarget& target,
 sf::RenderStates states) const
{
 states.transform *= getTransform();

Now, states.transform contains the absolute world transform. We can draw the
derived object with it by calling drawCurrent(). Both parameters are forwarded.

By the way, the sf::Sprite class handles transforms very similarly: it also combines
its own transform with the one passed in the render states. Thus, we effectively copy
SFML's behavior in SceneNode.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[60]

Eventually, we have to draw all the child nodes. We iterate through our container of
smart pointers, and recursively invoke draw() on each element, again forwarding
both parameters.

 drawCurrent(target, states);

 for (auto itr = mChildren.begin();
 itr != mChildren.end(); ++itr)
 {
 (*itr)->draw(target, states);
 }
}

In the code, we have factored out the last part into a function drawChildren().

In C++11, iteration through sequences can be achieved with the
range-based for statement. It has the following syntax, which can
be read as "for each variable in sequence":

for (Type variable : sequence)

If all current compilers supported range-based for, we could use the following code
to iterate over all child nodes:

for (const Ptr& child : mChildren)
{
 child->draw(target, states);
}

Fortunately, C++ is a very powerful language. It allows us to emulate the range-
based for loop with a few limitations, using a self-written macro FOREACH. We chose
it to make code more readable, and to make porting to C++11 easier, when the
feature is widely supported. Our loop then looks as follows:

FOREACH(const Ptr& child, mChildren)
{
 child->draw(target, states);
}

Note the increase in expressiveness and readability over the classical iterator loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Drawing entities
Meanwhile, our data structure for hierarchical rendering is operational, but nothing
is actually rendered yet. In order to do so, the virtual method drawCurrent() must
be overridden in derived classes. One of these derived classes is Entity; it inherits
SceneNode, so that entities can be placed in the scene and rendered by SFML.

Since we want our plane to be rendered as an image on the screen, we use a
sf::Sprite object. This sprite becomes a member of the Aircraft class.

class Aircraft : public Entity // inherits indirectly SceneNode
{
 public:
 explicit Aircraft(Type type);
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 Type mType;
 sf::Sprite mSprite;
};

In drawCurrent(), we only draw the sprite. We call sf::RenderTarget::draw(),
and pass const sf::Drawable& (our sprite) as first argument and the render states
as second argument.

void Aircraft::drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const
{
 target.draw(mSprite, states);
}

As you see, we needn't care about transforms anymore. Implementing rendering for
a new entity has now become extremely simple! This is due to the fact that all the
actual work is performed in our scene node and SFML.

Connecting entities with resources
There is one thing we have concealed: how our sprite is initialized. As you know,
sprites need a texture to refer to, but where to get it from?

In Chapter 2, Keeping Track of Your Textures – Resource Management, we have
developed the class template ResourceHolder<Resource, Identifier> which
is able to store SFML resource objects such as textures. Now the time for its first
application has come. We need to choose the template arguments with which
we instantiate the template. Because we draw a sprite which needs a texture, the
resource type will be sf::Texture.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[62]

Next, we ought to find a type for the resource identifier. For aircraft textures, we
could use the enum Aircraft::Type. However, there might be other objects than
airplanes that also require textures. The landscape is such an example. Therefore, we
create a new enumeration Textures::ID with identifiers for the textures. So far, we
only have two texture IDs, one for each of our aircraft types.

namespace Textures
{
 enum ID
 {
 Eagle,
 Raptor,
 };
}

Having defined the identifier type, we are ready to instantiate our resource holder
for textures. Because it is used in several places, we create a type definition for it:

typedef ResourceHolder<sf::Texture, Textures::ID> TextureHolder;

We will now go back to our Aircraft class. In its constructor, we want to initialize
the sprite with the correct texture. We could add a constructor parameter const
sf::Texture&, but we directly pass a const reference to our texture holder instead.
This has the advantage that the knowledge about the used texture stays local to our
plane—the creator of the plane need not know what texture it uses. Also, if the plane
suddenly requests more than one texture (for example, for an attached missile), we
do not have to change the constructor signature and the code that invokes it.

Our constructor has now this declaration:

Aircraft(Type type, const TextureHolder& textures);

The TextureHolder class, which is an instantiation of the ResourceHolder class
template, provides a function const sf::Texture& get(Textures::ID id) const
which we can invoke with an identifier to get a texture back.

We do not have the identifier yet, but we have the plane type, stored in the
constructor parameter type. We can map the aircraft type to the corresponding
texture ID, for example, with a switch statement:

Textures::ID toTextureID(Aircraft::Type type)
{
 switch (type)
 {
 case Aircraft::Eagle:
 return Textures::Eagle;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

 case Aircraft::Raptor:
 return Textures::Raptor;
 }
}

We define this global function at the beginning of the Aircraft.cpp file, so it does
not appear in the Aircraft interface. In our constructor, we then initialize our sprite
with the texture:

Aircraft::Aircraft(Type type, const TextureHolder& textures):
mType(type), mSprite(textures.get(toTextureID(type)))

{

}

Instead of the sf::Sprite constructor which takes const sf::Texture&, it would
also have been possible to call the method sf::Sprite::setTexture().

Aligning the origin
By default, the origin of sprites is located in their upper-left corner. When we call
setPosition(), we therefore always set the position of the sprite's upper-left
corner. For various tasks such as object alignment or rotation, it is however more
comfortable to work with the center. Therefore, we have to move the sprite's origin
to its center.

For the center, we need the half size of the sprite. With getLocalBounds(), we get
the local bounding rectangle (local means not taking any sf::Sprite transforms
into account—as opposed to getGlobalBounds()). The rectangle is of type
sf::FloatRect, which stores four float variables called left, top, width, and
height. SFML also provides sf::IntRect, which stores four int varibles. Our local
bounding rectangle's left and top coordinates are zero, while its width and height
correspond to the sprite's texture size.

sf::FloatRect bounds = mSprite.getLocalBounds();
mSprite.setOrigin(bounds.width / 2.f, bounds.height / 2.f);

After all this work, our aircraft is finally drawable! When it is added to a scene
graph, and somebody draws it, our plane will appear on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[64]

Scene layers
In the game, we often have different scene nodes that must be rendered in a certain
order. Nodes with objects that are located "above" others (closer to the sky) must
be drawn after them. For example, we might first draw a desert background, then
an oasis and some buildings, above which we draw the planes, and eventually
some health bars located in front of them. This is rather cumbersome to handle
when we insert node by node to the scene graph, because we have to ensure the
order manually.

Luckily, we can easily automate the ordering, even using the scene graph's current
capabilities. We call a group of scene nodes that are rendered together a layer. Inside
a layer, the rendering order is irrelevant—we just make sure we render the different
layers in the right order. We represent a layer with an empty scene node, directly
under the graph's root node. A layer node itself contains no graphics; it is only
supposed to render its children. Since the scene graph is traversed node by node, we
know that all children of layer one will be rendered before any children of layer two.
We can assign a node to a certain layer by attaching it as a child to the corresponding
layer node. As a result, we have an automatic ordering of different layers, without
the need to manually sort objects.

Let us introduce two layers for now: one for the background, and one for entities
in the air. We use an enum to have an appropriate type. The last enumerator
LayerCount is not used to refer to a layer; instead it stores the total amount of layers.

enum Layer
{
 Background,
 Air,
 LayerCount
};

Updating the scene
In each frame, we update our world with all the entities inside. During an update,
the whole game logic is computed: entities move and interact with each other,
collisions are checked, and missiles are launched. Updating changes the state of
our world and makes it progress over time, while rendering can be imagined as a
snapshot of a part of the world at a given time point.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

We can reuse our scene graph to reach all entities with our world updates. To
achieve this, we implement a public update() member function in the SceneNode
class. Analogous to the way we have proceeded for the draw() function, we split up
update() into two parts: an update for the current node, and one for the child nodes.
We thus write two private methods updateCurrent() and updateChildren(), of
which the former is virtual.

All update functions take the frame time dt as a parameter of type sf::Time (the
SFML class for time spans). This is the frame time we computed for the Game class
in Chapter 1, Making a Game Tick. In our game, we work with fixed time steps, so dt
will be constant. Nevertheless, we pass the frame time every time to the scene nodes
and make entity behavior dependent on it. This leaves us the flexibility to change the
frame rate or to experiment with other approaches to compute the frame time.

We add the following methods to our SceneNode class:

public:
 void update(sf::Time dt);

private:
 virtual void updateCurrent(sf::Time dt);
 void updateChildren(sf::Time dt);

The implementation is the same as for rendering. The definition of updateCurrent()
remains empty, by default we do nothing for a scene node.

void SceneNode::update(sf::Time dt)
{
 updateCurrent(dt);
 updateChildren(dt);
}

void SceneNode::updateCurrent(sf::Time)
{
}

void SceneNode::updateChildren(sf::Time dt)
{
 FOREACH(Ptr& child, mChildren)
 child->update(dt);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[66]

In derived classes, we can now implement specific update functionality,
such as movement of each entity. In the Entity class, we override the virtual
updateCurrent() method, in order to apply the current velocity. The class definition
of Entity is expanded by the following lines of code:

private:
 virtual void updateCurrent(sf::Time dt);

We offset the position by the velocity depending on the time step. A longer time step
leads to a bigger offset, meaning that our entity is moved further over longer time.

void Entity::updateCurrent(sf::Time dt)
{
 move(mVelocity * dt.asSeconds());
}

Here, move() is a function of the indirect base class sf::Transformable. The
expression move(offset) is a shortcut for setPosition(getPosition() + offset).

Since Aircraft inherits Entity, the update functionality for it is also inherited. We
thus do not need to re-define updateCurrent() in the Aircraft class, unless we
want to execute further actions specifically for aircraft.

One step back – absolute transforms
Relative coordinates are nice and useful, but there are cases where we still want
to access the absolute position of an object in the world. For example, to find out
whether two entities collide, relative positions won't help us—we need to know
where in the world the entities are located, not where in the local coordinate system.

To compute the absolute transforms, we can step upwards in the class hierarchy, and
accumulate all relative transforms until we reach the root. This was also the reason
why we introduced the parent pointer in the SceneNode class. In addition to the
function getPosition(), which is inherited from sf::Transformable and returns
the relative position, we add a new method getWorldPosition() to SceneNode,
which returns the absolute position. First, we add a function getWorldTransform()
that takes into account all the parent transforms. It multiplies all the sf::Transform
objects from the root to the current node, its iterative implementation looks as
follows. The position can be computed by transforming the origin sf::Vector2f()
using the absolute transform.

sf::Transform SceneNode::getWorldTransform() const
{
 sf::Transform transform = sf::Transform::Identity;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

 for (const SceneNode* node = this;
 node != nullptr; node = node->mParent)
 transform = node->getTransform() * transform;

 return transform;
}

sf::Vector2f SceneNode::getWorldPosition() const
{
 return getWorldTransform() * sf::Vector2f();
}

The constant sf::Transform::Identity represents the identity transform, which
does not have any effect on the object. Strictly speaking, it is not necessary in this
code, but it clarifies the way how transforms are applied from the beginning.

The view
A view is a concept that allows us to select the part of our world we want to see. You
can imagine a view to work like an image recording device. Essentially, every game
programmer needs to understand views in depth, simply because every graphical
game will require that knowledge to be applied directly. Sometimes it is called view,
camera, or differently. Be it a two-dimensional or three-dimensional simulation, this
concept will always be present.

Talking about graphics in two dimensions, we can describe a view as a rectangle that
represents the subset of our world that we want to see at a particular time.

Such a simple and yet powerful concept gives us the possibility to perform many
interesting tasks, such as an animated camera following the player around, a spy
camera that allows us to take a peek at a remote location, a combination of two views
to create a split-screen multiplayer experience, as well as many other applications.

It is not hard to grasp the power of the view; you may begin by knowing SFML,
which provides us this utility in the conveniently named class sf::View. This class
acts as a viewing lens, which ensures that anything you attempt to draw to the screen
that is outside the view's rectangle will remain unseen.

Besides the viewing rectangle, another parameter that defines the sf::View class is
the viewport, which gives us control over how to map the viewing rectangle to the
actual application window.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[68]

Viewport
It is very easy to visualize what a viewport does. It is no more than a rectangle, in
unit-length coordinates, that defines what region of the application's window is
going to be used. So, a viewport rectangle starting at (0, 0) and ending in (1, 1) means
essentially that the entire window area will be used to render the world. This is the
most common use of viewports.

Another special use case for this concept is to provide split-screen multiplayer
support. In order to do that, one would only need to have two sf::View objects,
one for the top half of the screen, and another for the bottom. Then, each view would
be configured to take its respective portion of the screen, having their viewport
rectangles defined as, respectively, (left=0, top=0, width=1, height=0.5) and (left=0,
top=0.5, width=1, height=0.5).

This would immediately mean that we would have two distinct "eyes" looking at the
world, and that they would only render in their own viewports. Each of these eyes
may be looking at any region of the world without any conflicts. After having those
two views configured, having a split-screen support would be as simple as activating
the first view, rendering the world, then activating the second, and rendering it
again. But always beware that rendering the world twice will effectively consume
twice as much rendering power.

View optimizations
Requesting an object to draw itself to the screen, also known as a draw call, is one
of the most expensive operations you can do in a game, therefore, for any game that
goes beyond only a few sprites being drawn, we need to worry about rendering
performance by reducing draw calls as much as we can.

One way to do this is to use culling, which is a term that encompasses a wide range
of techniques. Using culling techniques is always a great optimization to do, and
the benefits will almost always be worth the extra work. For example, checking if
every object is within the viewing rectangle and only draw them if they are, is a very
simple form of efficient culling.

Of course, for big scenes with lots of objects, the simple fact that we are iterating
potentially thousands or millions of objects every frame will be a drag in the
performance. Because of this, game developers usually implement some kind of
spatial subdivision. A spatial subdivision system can be done in many ways, but
it always consists on dividing the scene in multiple cells, which group all objects
that reside within that given cell. This way it's possible to cull a group of objects
altogether, avoiding expensive iterations and tests on those objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

One of the most popular ways to subdivide space is to use a quad tree. A quad tree
is a hierarchical tree of cells. Only leaf nodes can contain objects and they subdivide
again when a predetermined number of objects are present. Every cell is at least
big enough to contain all its children cells. The hierarchical approach allows us to
stop iterating through every object and only perform tests down the tree if each cell
passes the test. This effectively reduces the complexity of the algorithm from O(n) to
O(log n), which is a very good optimization already. A quad tree is also much more
efficient to find objects within the scene.

An alternative is a circle tree, which is similar to the quad tree, but instead each cell
is a circle. This allows a different distribution of the objects and cheaper to compute
tests. Whether to use one algorithm or the other depends on many factors. For each
scene you may want to pick the most appropriate algorithm that will give you the
most efficiency.

Resolution and aspect ratio
We have seen how viewports work, even though they are not always used explicitly.
Now, it is very important to know how the viewing rectangle interacts with the
specified viewport, and what pitfalls can we avoid by knowing that, along with what
effects can we achieve by exploiting these notions to the limit. The resolution is the
number of pixels a monitor or application window displays in each dimension. It is
usually specified as width times height, for example, 1024 x 768. The aspect ratio is
the ratio of the width to the height, for example, 1024:768 = 4:3.

The simplest possible use case of views is to have a window with a fixed size, and
a view with the exact same dimensions, which implicitly means, the aspect ratio
of view and window will be equal. This ratio is very important, because if the
view rectangle is not proportional to the window size, we will experience a case of
shrinking or stretching of our world.

Let's create an example by saying we have a window with size (640, 320) and a view
with an equal rectangle. Then, we draw a circle in the middle of that screen, and
when we verify, we see a perfect circle. However, as soon as we increase the view's
rectangle height, without growing its width, as a result of trying to map more pixels
to the very same space, we will notice that the circle is now shrunk vertically. It
maintains the same width as before, but the height is smaller, turning the circle into
an ellipse. This does not mean that we drew an incorrect circle, but rather that our
view rectangle is not proportional and therefore shows distorted results.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[70]

It is very difficult to the programmer to predict view sizes that will fit perfectly to
every screen, while keeping the same aspect ratio. There are tiny screens as well as
very wide ones, and sometimes there is no perfect solution to this issue. However,
there are tricks that can help handling this situation, to provide a better gaming
experience to the audience, such as the "widescreen" technique, which leaves a
bar on top of the screen and another on bottom without rendering, just so the
remaining area is more alike the window size the programmer idealized. This kind
of techniques is outside the scope of the book, but it is likely that after understanding
the concept of viewports and the viewport rectangle, the reader is able to implement
them by intuition.

This mapping of the view to the window can also be exploited beyond preventing
graphical glitches. It can be used to apply effects to the world, by animating the
view's rectangle, to create shrinking and stretching illusions in many ways.

View scrolling
Now that we covered the most important parameters of sf::View, we will talk about
how we use it in the context of the chapter's sample game.

After knowing how to define the viewport, and mapping to it an arbitrary region
of the world with sf::View::setRect() with correct aspect ratio, we now want to
move the view around, to create movement along the game world.

Since our game's action occurs in a vertical corridor, with no horizontal movement
apart from moving the plane inside the fixed width window we see, we don't need to
consider the x axis.

In every step of the game loop, when updating the state of the world, we also scroll
the view a little. We do this at a constant speed towards the negative y axis (up), so
we see a little further at each time step. Of course, we also move the player's aircraft
by the exact same distance, so it won't get left behind, but remains in action.

This incremental and automatic scrolling operation of the view is simply done in the
update code, by doing:

mWorldView.move(0.f, mScrollSpeed * dt.asSeconds());

It is always important to multiply our values by the elapsed time in seconds, so
we ensure that the speed of n pixels per second is guaranteed, independent of the
simulation frame rate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

Zoom and rotation
The sf::View utility gives us another two precious features: zooming and rotating
our view.

We can use the sf::View::zoom(float factor) function to easily approach or
move away from the center of the view. The factor parameter means that the
current view's rectangle will be multiplied by it. It is really that simple. A factor of
one will have no effects on the zoom function. A factor bigger than one will grow the
view's rectangle, which makes objects appear smaller and gives us the impression to
watch from a more distant point of view. The opposite applies when using a factor
less than one, which will make the world appear to be closer, just like when we zoom
in a real camera.

About rotation, sf::View allows us to turn our view orientation to another angle
than the default one, zero, in degrees. The easiest way to visualize the results of this
operation is to picture how our world is seen under the default view orientation, and
then imagine the whole content rotating relative to the center of the view.

This is a concept that is better understood by experimenting until the desired effect is
reached. You can use sf::View::rotate(float degrees) to add a rotation angle
to the current one, or sf::View::setRotation(float degrees) to set the rotation
of the view to an absolute value.

Landscape rendering
As you can observe in the C++ sample for this chapter, our aircraft travels
continuously over a desert. This continuity can be achieved in many ways and with
many different levels of detail and complexity. However, we chose to go in a very
simple and yet effective way of doing it, using a feature that SFML provides out of
the box.

SpriteNode
In order to display our background sprite through the scene graph, we created a
new SceneNode type, the SpriteNode, which acts as a simple sf::Sprite that can
be plugged into our tree structure. Conveniently, this is all we need to make our
landscape. We only have to create SpriteNode and attach it to our background layer
of the scene graph.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[72]

To demonstrate the implementation of a new node type, there follows a small
snippet of the SpriteNode declaration:

class SpriteNode : public SceneNode
{
 public:
 explicit SpriteNode(const sf::Texture& texture);
 SpriteNode(const sf::Texture& texture,
 const sf::IntRect& rect);

 private:
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 sf::Sprite mSprite;
};

The sf::Sprite class is constructed and prepared at startup and not touched again
in the future. This is a proof of the scene graph's power, showing us that the relative
transforms work very well because we can manipulate the positioning, rotation, and
scale of SpriteNode, and these transforms are inherently applied to the sf::Sprite
object as well.

With the sprite node, we have also introduced the last piece in our scene graph for
the moment. The following diagram should give you an impression of the current
inheritance hierarchy. The grey classes at the top are part of SFML, the black ones
are ours.

sf::Drawable sf::Transformable sf::NonCopyable

SceneNode

SpriteNode Entity

Aircraft

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Landscape texture
In order to have a good landscape, without wasting too much memory having
multiple images to represent it along the whole level, we used a tileable texture.

A tileable texture is no more than an image that can be put together continuously,
without letting the player notice that we actually have one single image repeating
itself. This is possible because the seam between every two instances of the image
is not noticeable. The image's beginning fits perfectly into its ending, creating an
illusion of infinity, with just one texture. As you can see in the following figure,
multiple desert images can be put together without creating a hard seam, giving
the illusion that it's only one image.

That is exactly what we did. We made a desert "tile", which is only big enough to fill
one screen. Using the following technique, we made it look infinite, repeating itself
along the whole level.

Texture repeating
The key to our tiling effect is exactly the texture repeating feature that SFML
provides us. Every sf::Texture comes along with the option to enable repeating
along both axis with the sf::Texture::setRepeated(bool) function.

When repeating is enabled for a texture, it means that it will be theoretically infinite,
tiling itself continuously as much as required. When a sf::Sprite object links to
a texture in this mode, it will behave normally until the sprite requests a texture
rectangle that is larger than the texture's real dimensions. In that moment, the sprite
will display the texture along its whole size.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[74]

As a practical case, we can picture a texture that is only a square, such as
a floor's tile. Using this texture with a sf::Sprite object would normally
allow us to see only one tile, no matter how big dimensions we have set with
sf::Sprite::setTextureRect(). However, as soon as the texture activates its
repeating mode, sf::Sprite would now render a nice tiled floor, without any
extra effort!

Composing our world
Up to now, we have taken a look at entities and the scene graph, we know how to
render and update objects in the world, and we have seen how views and scrolling
work. We have a concrete knowledge about many building blocks, now it is time to
assemble them to shape a model of our fictional world.

Completely unforeseen, we create a new class called World. On one side, our World
class must contain all the data related to rendering:

•	 A reference to the render window
•	 The world's current view
•	 A texture holder with all the textures needed inside the world
•	 The scene graph
•	 Some pointers to access the scene graph's layer nodes

On the other hand, we store some logical data:

•	 The bounding rectangle of the world, storing its dimensions
•	 The position where the player's plane appears in the beginning
•	 The speed with which the world is scrolled
•	 A pointer to the player's aircraft

Concerning functionality, we implement public functions to update and draw the
world. We also add two private functions to load the texture and to build up the
scene. Since we only have one world and we don't want it to be copied, the class
derives privately from sf::NonCopyable.

class World : private sf::NonCopyable
{
 public:
 explicit World(sf::RenderWindow& window);
 void update(sf::Time dt);
 void draw();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

 private:
 void loadTextures();
 void buildScene();

 private:
 enum Layer
 {
 Background,
 Air,
 LayerCount
 };

 private:
 sf::RenderWindow& mWindow;
 sf::View mWorldView;
 TextureHolder mTextures;
 SceneNode mSceneGraph;
 std::array<SceneNode*, LayerCount> mSceneLayers;

 sf::FloatRect mWorldBounds;
 sf::Vector2f mSpawnPosition;
 float mScrollSpeed;
 Aircraft* mPlayerAircraft;
};

For the scene layers, we use an array of pointers with the size LayerCount.

std::array is a C++11 class template for fixed-size static arrays. It
offers the same functionality and performance as C arrays, but has many
advantages. It provides value semantics, which allow copies, assignments,
and passing or returning objects from functions. There is no implicit
conversion to pointers, and index access is checked in debug mode.
Additionally, an STL-conforming interface with useful methods such as
size(), begin(), or end() is provided. Because of the additional safety
and features, std::array should always be preferred over C arrays.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[76]

World initialization
In the constructor, we build up the world. The following figure can help to imagine
the dimensions of our world:

World bounds

View after

some time

Initial view

Spawn position

mWorldBounds.left

mSpawnPosition.x

mWorldBounds.left

+mWorldBounds.width

mSpawnPosition.y

mWorldBounds.top

+mWorldBounds.height

mWorldBounds.top

+

The constructor initializes the important attributes. The mWorldBounds rectangle
is initialized so that the upper-left corner lies at position (0, 0). Its width equals the
window's width, and for its height we take an arbitrary value, here 2000. This is
rather small value, but it shows already after a short time that the desert texture
ceases to repeat any longer, leaving behind a black background.

The mSpawnPosition vector is initialized depending on the world bounds and the
window. According to the previous figure, the vector's x coordinate is assigned the
middle of the screen, and its y coordinate is the same as the bottom of the world
minus a half screen height.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

: mWindow(window)
, mWorldView(window.getDefaultView())
, mWorldBounds(
 0.f, // left X position
 0.f, // top Y position
 mWorldView.getSize().x, // width
 2000.f) // height
, mSpawnPosition(
 mWorldView.getSize().x / 2.f, // X
 mWorldBounds.height - mWorldView.getSize()
, mPlayerAircraft(nullptr) // Y
{
 loadTextures();
 buildScene();

 mWorldView.setCenter(mSpawnPosition);
}

For the scroll speed, we choose a negative value, since we scroll upwards and the y
axis points downwards. The aircraft pointer is initialized with a null pointer literal.
In the constructor body, we call our two private functions that are in charge of
further initialization. Finally, we move the view to the correct start position. As you
see in the figure, its center initially matches the player's spawn position.

Loading the textures
Now, let's have a look at texture loading. Thanks to our ResourceHolder class, this
part could not be simpler:

void World::loadTextures()
{
 mTextures.load(Textures::Eagle, "Media/Textures/Eagle.png");
 mTextures.load(Textures::Raptor, "Media/Textures/Raptor.png");
 mTextures.load(Textures::Desert, "Media/Textures/Desert.png");
}

We do not handle exceptions here, since the World class cannot react to them.
Without the textures, we are not able to construct our world meaningfully, thus it is
reasonable that we let possible exceptions abort the constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[78]

But if we handle exceptions nowhere, the program will crash. We put an exception
handler into the main() function, giving the user a meaningful error description:

int main()
{
 try
 {
 Game game;
 game.run();
 }
 catch (std::exception& e)
 {
 std::cout << "\nEXCEPTION: " << e.what() << std::endl;
 }
}

Building the scene
Now comes the interesting part: building up the scene, which is done in the
World::buildScene() method. First, we initialize the different scene layers.
We iterate through our array of layer node pointers and initialize each element.
std::unique_ptr::get() returns a raw pointer to the stored object, we do not
transfer ownership to the array. Finally, we attach the new node to the scene
graph's root node as shown in the following code:

for (std::size_t i = 0; i < LayerCount; ++i)
{
 SceneNode::Ptr layer(new SceneNode());
 mSceneLayers[i] = layer.get();

 mSceneGraph.attachChild(std::move(layer));
}

After the background texture for the desert is loaded, we configure it to repeat
itself. We also create a texture rect (with int coordinates) using the conversion
from the world bounds (which have the type sf::FloatRect and thus store
float coordinates).

sf::Texture& texture = mTextures.get(Textures::Desert);
sf::IntRect textureRect(mWorldBounds);
texture.setRepeated(true);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

Then, we create our SpriteNode class that links to the desert texture. We pass to its
constructor the texture rectangle. This grants that our sprite is as big as the whole
world. While the desert image is only one screen wide, it is tiled along the whole
level in -y direction.

std::unique_ptr<SpriteNode> backgroundSprite(
 new SpriteNode(texture, textureRect));
backgroundSprite->setPosition(
 mWorldBounds.left,
 mWorldBounds.top);
mSceneLayers[Background]
 ->attachChild(std::move(backgroundSprite));

Finally, we have come to the point where we add the airplanes! First, we create the
player's airplane. We set the world's pointer mPlayerAircraft to the newly created
scene node. Then, we specify an initial position (the spawn position) and velocity.
The forward velocity equals the scroll speed. We also introduce a sideward velocity
with value 40, to show a more interesting movement pattern. At last, we attach the
plane to the Air scene layer.

std::unique_ptr<Aircraft> leader(
 new Aircraft(Aircraft::Eagle, mTextures));
mPlayerAircraft = leader.get();
mPlayerAircraft->setPosition(mSpawnPosition);
mPlayerAircraft->setVelocity(40.f, mScrollSpeed);
mSceneLayers[Air]->attachChild(std::move(leader));

Since single planes are boring, we give our leader an escort of two other airplanes,
one on each side. After construction, we set a position and attach the escort to the
leader's scene node. The specified position is thus interpreted relative to the leader.
In the following example, the first escort plane is located 80 units to the left and 50
units behind the leader:

std::unique_ptr<Aircraft> leftEscort(
 new Aircraft(Aircraft::Raptor, mTextures));
leftEscort->setPosition(-80.f, 50.f);
mPlayerAircraft->attachChild(std::move(leftEscort));

For the second escort, the code is almost the same, except that the relative x position
is now positive, meaning that this plane is located to the right.

std::unique_ptr<Aircraft> rightEscort(
 new Aircraft(Aircraft::Raptor, mTextures));
rightEscort->setPosition(80.f, 50.f);
mPlayerAircraft->attachChild(std::move(rightEscort));

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[80]

That was it, now our scene is ready! Now, our scene graph looks as shown in the
following diagram. Below the description of each node, you see the most derived
class type.

Scene Graph Root

[SceneNode]

Desert

[SpriteNode] Leader Aircraft

[Aircraft]

Escort Aircraft 1

[Aircraft]

Escort Aircraft 2

[Aircraft]

Layer: Background

[SceneNode]

Layer: Air

[SceneNode]

Update and draw
The update() and draw() methods bring the encapsulated scene graph functionality
to the API of the World class.

The function to draw sets the current view and delegates the work to the
scene graph:

void World::draw()
{
 mWindow.setView(mWorldView);
 mWindow.draw(mSceneGraph);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

The update function controls world scrolling and entity movement. First, the view is
scrolled according to the passed time. Next, we check if the player's aircraft reaches
a certain distance (150) from the world's borders, and flip its x velocity in this case.
This results in the plane moving back, until it reaches the other border, and the
procedure repeats. Eventually, we forward the update to the scene graph, which
actually applies the velocities.

void World::update(sf::Time dt)
{
 mWorldView.move(0.f, mScrollSpeed * dt.asSeconds());

 sf::Vector2f position = mPlayerAircraft->getPosition();
 sf::Vector2f velocity = mPlayerAircraft->getVelocity();

 if (position.x <= mWorldBounds.left + 150
 || position.x >= mWorldBounds.left + mWorldBounds.width - 150)
 {
 velocity.x = -velocity.x;
 mPlayerAircraft->setVelocity(velocity);
 }

 mSceneGraph.update(dt);
}

Integrating the Game class
By now we already know how the Game class works, what a game loop is for, and
how to take advantage of it. For this chapter, we take the previously used Game class,
and plug into it our newcomer World class.

Because we obeyed a few principles, this integration is very easy and it's just a matter
of having a World object inside the Game class, and then letting it update and draw
itself in the appropriate times.

The run() method
Our application's main() function has a simple job. It allocates a Game object, and lets
it run itself through the run() method. When the run() method exits, the program
releases its resources and closes.

Therefore, it is within the run() method that the magic happens! It is responsible for
managing the famous game loop, fetching input from the window system, updating
the world, and ordering the rendering of the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Forge of the Gods – Shaping Our World

[82]

In the next chapter, events and input will be covered in depth. For now, it is
only important to understand how the drawing sequence happens inside the run()
method:

mWindow.clear();
mWorld.draw();

mWindow.setView(mWindow.getDefaultView());
mWindow.draw(mStatisticsText);
mWindow.display();

This code closely resembles the high-level drawing of a frame for any game. The
function call mWindow.clear() ensures that our frame buffer, the canvas where the
frame will be drawn, is cleaned up before we start drawing. Then, we let the world
draw itself, where it defines its own view and orders the scene graph to render
itself. Finally, because we want to display some text in the corner of the screen for
statistical purposes, we activate the default view, which is always the same so the
text always appears fixed on the screen.

On the mWindow.display() call, we tell SFML we are done drawing the frame and it
proceeds to upload it to our screen right away.

From this moment, you should be able to better dissect a game's mechanics and
visualize its structure in your mind, mapping it directly to a data structure in
C++. We can use the mental toolbox learned in this chapter to help us lay out our
thoughts into actual computational data. This hypothetical toolbox contains many
tools: managing entities and their transformations, scene graphs, views as cameras,
graphical tricks, and others. But more importantly, we have started to understand
how to properly glue all these elements together in a harmonious simulation.
Furthermore, you have also seen many smaller techniques, which you may or may
not have known, for example, practical use cases of C++11 features. So far, our result
looks as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

Summary
This chapter has moved away from the typical minimal examples, and has given
you deeper insights to a possible game architecture. As always, keep in mind that
we have chosen one of many design options—not every game needs a scene graph,
sometimes a list of entities is enough.

In the next chapter you can expect information about handling both input
events and real-time state of the keyboard and mouse. Also, you will learn about
command systems to deliver input to game entities as well as dynamic key binding
mechanisms, which allow you to configure the set of controls of a game in runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Command and
Control – Input Handling

In the previous chapter, we talked about how to implement the world our game
takes place in and the different objects that the world is made up of. In this chapter,
we will focus on how to give the player the power to manipulate this world.

In this chapter we aim to learn:

•	 SFML events and their purpose as input
•	 SFML real-time input and its difference from events
•	 A command-based communication system to deliver events in our world
•	 How to dynamically bind keys at runtime

In the previous chapters, we have used events to manage input, but we have not
really delved into what they are or what they are meant to be used for. That is the
first point of this chapter. After that, we will look at more concepts of input than just
simply events.

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[86]

Polling events
Generally speaking, events are objects that are triggered when something
happens; mostly related to the user input. Events are a construct in the underlying
operating system. On top of them, SFML provides a nice abstraction layer that is
easier to use and cross-platform. SFML goes with a polling design to have you
work with events. When an input occurs, the operating system reports it to the
application. SFML processes this input, converts it into the corresponding SFML
event type, and puts it into a queue of waiting events. In your actual application
code, you extract events from this queue using the sf::Window::pollEvent()
function (note that sf::Window is the base class of sf::RenderWindow, without the
rendering functionality). The pollEvent() function signature is a bit interesting:

bool sf::Window::pollEvent(sf::Event& event);

Now this is a bit special and might not be self-explanatory. The problem with
pollEvent() is that we want to receive two different values. We want to receive the
actual event and a value affirming that we got it from the list. If the second value is
false, we will not receive anything.

SFML uses a common approach to a polling system, which allows us to retrieve
one event instance at a time by continuously calling pollEvent() until the
function returns a false value, which means there are no more events to poll. In the
meanwhile, for every positive return value, we know that our sf::Event variable
has been filled with important event information.

That is why in all our examples up to now, we have received events in this
following fashion:

sf::Event event;
while (window.pollEvent(event))
{
 // Handle the event
}

Here we poll events from the window until its internal list becomes empty. There is a
waitEvent() function as well, that waits until it receives an event, but that is pretty
redundant for our case, so we will not dig into that.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

The event structure we have used so much already is built up of an enum and a union
of different event structures. As a short reminder, a union is similar to struct, with
the main difference that all the member variables occupy the same memory location.
Therefore, only one member can be actively used at a time. Applied to sf::Event, the
very nature of union grants that an event will never be two things at the same time.
Depending on the value of the sf::Event::type member variable, a different union
member is filled with useful data. When we receive an event, we first check the type of
it, and depending on it we access the specific data. We have to be careful to access the
correct union members, otherwise we risk undefined behavior.

We can group the different events to four different categories: window, joystick,
keyboard, and mouse. We will try to cover each and every one of the events, but it
will be near to impossible to go into too much detail, otherwise this chapter would be
huge. I urge you to check out SFML's documentation for more information, in case
anything is unclear on the events.

Window events
In this section, we have the window-based events which are the events that concern
windows directly. I have listed them as follows, with their intended purposes and
the conditions under which they are generated:

•	 sf::Event::Closed: This event occurs when the users somehow request
that they want the window closed. Mostly, this amounts to pressing the [X]
button in the window, or a shortcut such as Alt + F4 on Windows. This event
does not have any data associated with itself. We have already used it plenty
and your application should always handle this event.

•	 sf::Event::Resized: This event is triggered when the window is
resized. Most often this is when the user drags on the edges of the
window to manually resize it. The data type associated with this is
sf::Event::SizeEvent and can be accessed through the member
event.size. Of course, resizing the window is only possible if you have
enabled it to be resized.

•	 sf::Event::LostFocus and sf::Event::GainedFocus: These events come
from the window when it gains or loses focus. Focus here means that this
window is the one that the user has chosen right now and it will receive the
user input. No data apart from the event type is associated with these events.
These events are of interest when you want to pause the game if the user
clicks outside the window or switches to another application.

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[88]

Joystick events
Now we have to cover the joystick-based events. These events are fired whenever
a connected joystick or gamepad changes its state. Every joystick event has a data
structure associated with it. A common member they all have is the ID number for
the joystick. The ID is required in order to keep track of which joystick generated
the event, since there can be more than one joystick. We have the following joystick
events that can be generated:

•	 Joysticks have buttons, for button-related events we have
the event types sf::Event::JoystickButtonPressed and
sf::Event::JoystickButtonReleased. These are triggered when a
button on the joystick is pressed or released. The data structure associated
with this is sf::Event::JoystickButtonEvent with the member event.
joystickButton. You should keep in mind that the buttons can be of a
variable amount.

•	 The sf::Event::JoystickMoved event is generated when the analog stick or
digital cross moves; it has the structure sf::Event::JoystickMoveEvent for
its data. It is accessible through the member event.joystickMove. A thing
to note here is that joysticks work in axes, so the movement is measured in an
axis as well. It is not guaranteed that the joysticks support all axes.

•	 Last we have the event of when a joystick is connected or
disconnected, allowing you to handle hot-plugging joysticks.
The event types are sf::Event::JoystickConnected and
sf::Event::JoystickDisconnected. The data type is
sf::Event::JoystickConnectEvent and is accessible
through the member event.joystickConnect.

Keyboard events
Now the defining feature of a PC, the keyboard. The keyboard generates events as
the primary input device available to computers:

•	 For the event when the user presses down a key, we have the event
type sf::Event::KeyPressed. The data structure for this event is
sf::Event::KeyEvent, which is accessed through event.key. It holds all
the data of the current state of the keyboard associated with that key press.
The member variable event.key.code contains the actual key, while other
members such as event.key.control are Booleans that state whether a
modifier is pressed. If you hold a key for a while, multiple KeyPressed
events will be triggered. This key repetition option can be deactivated using
sf::Window::setKeyRepeatEnabled().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

•	 The event sf::Event::KeyReleased is the counterpart to KeyPressed; it
is triggered when you release a key. To retrieve information about the key
release, you can also access the structure sf::Event::KeyEvent via event.
key—just like when a key was pressed.

•	 Last, we have a little special event that SFML creates for your convenience. It
is called sf::Event::TextEntered and is designed for receiving formatted
text from the user. Using the normal key event for this is a very tedious task,
so this event helps out a lot. The data structure is sf::Event::TextEvent
and it is accessible through event.text.

Mouse events
Last, but not the least, we have the mouse-based events. These are generated when
the state of the cursor, the mouse buttons or the mouse wheel changes:

•	 First we have the sf::Event::MouseEntered and sf::Event::
MouseLeft events. These are triggered when the mouse cursor enters or
leaves the window.

•	 Next we consider when the cursor moves inside the window. The type
for this is sf::Event::MouseMoved and its associated structure is
sf::MouseMoveEvent. You can access the data from the event.mouseMove
member. The coordinates in the data structure are measured in window
pixels and they are unaffected by scaling or any other transformation from
your window's current view. Please notice how the Y coordinate increases as
we go down. The origin of the window is always at the top-left corner and
then grows up to the size of the window:

(0,0) X

Y

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[90]

•	 Then, we have the buttons of the mouse. For them we have
the sf::Event::MouseButtonPressed and
sf::Event::MouseButtonReleased types. They come associated with the
sf::Event::MouseButtonEvent structure and its data can be accessed
through the event.mouseButton member.

•	 Last is the mouse wheel on the mouse. When its state changes, it generates an
event of type sf::Event::MouseWheelMoved. Attached with this is the data
structure sf::Event::MouseWheelEvent that you can access via the member
event.mouseWheel.

Always remember, the mouse wheel doesn't have a global state.
This means that we will be notified that the mouse wheel is being
moved by some unit, but this information doesn't constitute an
actual rotation value, just an offset corresponding to the movement
we performed with the physical mouse.

Getting the input state in real time
Now, we have gone through many varieties of events. A problem with events is that
they report once when the state changes, but you cannot continuously ask them how
the state of the input devices look right now.

You can solve this by book keeping yourself, which we have done in the examples
preceding this chapter. But SFML, in an effort to make input management easier, has
implemented classes that let you access these states in real time whenever you want
from wherever you want. We will use the notion of real-time input to denote this
alternative method of handling user input.

The three classes sf::Joystick, sf::Keyboard, and sf::Mouse can provide almost
the same information that the event-based counterparts do, but with some minor
variations. They are summarized here and their difference to the events is shown;
we recommend visiting the SFML documentation for more details on them. The
three classes contain only static functions, so they are not designed to be instantiated.
Instead, you can access the real-time input state globally from any place:

•	 sf::Joystick: This class provides same tools that are similar to the
joystick-based events. They are based on ID numbers for the joystick, they
can state if a joystick is connected or disconnected or get the current input
state of the joystick. You can also ask how many buttons the joystick has and
if the joystick supports a specific axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

•	 sf::Keyboard: This is a really small class. It has one function
isKeyPressed(), you can ask if a key is pressed and it returns either true or
false. Nothing fancy.

•	 sf::Mouse: This class is a bit tricky. It behaves normally with the buttons,
the function isButtonPressed() tells you if a button is being pressed or not.
The part that differs from the events is the position. Previously, you polled
the event from a window so you always knew what window you wanted
the mouse to be relative to. Now you don't know that anymore. So if you
ask sf::Mouse::getPosition() for the mouse position, you will get the
screen coordinates. Luckily there is an overload that takes a window. It will
calculate the relative position from the provided window and the result is as
you first expected.

Now let's look at a real example where we would want to use this. Do you remember
when we had that circle that we moved by pressing keys on the keyboard? We
polled events from the window and pushed them to Game::handlePlayerInput()
and then we did the movement in Game::update():

void Game::handlePlayerInput(sf::Keyboard::Key key,
bool isPressed)
{
 if (key == sf::Keyboard::W)
 mIsMovingUp = isPressed;
 else if (key == sf::Keyboard::S)
 mIsMovingDown = isPressed;
 else if (key == sf::Keyboard::A)
 mIsMovingLeft = isPressed;
 else if (key == sf::Keyboard::D)
 mIsMovingRight = isPressed;
}

void Game::update()
{
 sf::Vector2f movement(0.f, 0.f);
 if (mIsMovingUp)
 movement.y -= 1.f;
 if (mIsMovingDown)
 movement.y += 1.f;
 if (mIsMovingLeft)
 movement.x -= 1.f;
 if (mIsMovingRight)
 movement.x += 1.f;

 mPlayer.move(movement);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[92]

If you look closely, you can see that we are book keeping what key has been pressed
down. But now we have got the real-time functions, so now we can minimize this
by asking sf::Keyboard if a button has been pressed down, instead of checking a
couple of Boolean values. The exact same functionality but using real-time input
instead will be significantly smaller. We do not even need the handlePlayerInput()
function anymore because everything will be handled in update() instead:

void Game::update(sf::Time elapsedTime)
{
 sf::Vector2f movement(0.f, 0.f);
 if (sf::Keyboard::isKeyPressed(sf::Keyboard::W))
 movement.y -= PlayerSpeed;
 if (sf::Keyboard::isKeyPressed(sf::Keyboard::S))
 movement.y += PlayerSpeed;
 if (sf::Keyboard::isKeyPressed(sf::Keyboard::A))
 movement.x -= PlayerSpeed;
 if (sf::Keyboard::isKeyPressed(sf::Keyboard::D))
 movement.x += PlayerSpeed;

 mPlayer.move(movement * elapsedTime.asSeconds());
}

This is all that we need now. Every frame, we query SFML if the appropriate keys
are being pressed. This removes our need of book keeping the events, making our
life much easier and our code much simpler to read and follow.

Although, even if we have this powerful tool provided to us, it is not a golden
hammer. Events are still very much needed and have their own purposes as we will
explore now.

Events and real-time input – when to
use which
It depends on the context. A rule of thumb is: if you are interested, if a state has
changed, you should use events. If you want to know the current state, then you use
the real-time functions. Here is an example:

if (sf::Mouse::isButtonPressed(sf::Mouse::Left))
 // WHILE the left mouse button is being pressed, do something
if (event.type == sf::Event::MouseButtonPressed)
 // WHEN the left mouse button has been pressed, do something

In the first if statement we do something during the time that the mouse is being
pressed down, while in the second version we only do something once after we have
pressed the button down.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

Delta movement from the mouse
A common thing that you want in your game is to get the delta movement of the
cursor. For the game we are making here in this book, it won't be needed but it's such
a common functionality that we should still go through what it is.

The delta movement is the difference of the cursor position between two frames; that
is, it is the distance that the cursor has traveled:

sf::Vector2i mousePosition = sf::Mouse::getPosition(mWindow);
sf::Vector2i delta = mLastMousePosition – mousePosition;
mLastMousePosition = mousePosition;

A little book keeping is needed here but nothing major. The delta vector contains the
data we need for anything relative. Now we are not making a first person shooter,
but in that scenario you would like this data in order to perform the rotation of the
camera. There are uses in 2D as well of course! Delta mouse movement can be used
for dragging the view of a map and lots more.

In some cases this naive method can become a problem eventually. What if you are
constantly moving more and more to the left? Eventually you will move outside the
window and reach the end of the screen. What then? The mouse will stop and the
delta will stay at a solid zero until you start moving back. This is no good, if we go
back to a first person shooter example, it would make the game totally unplayable.
But thanks to SFML this problem is easy to solve.

In the sf::Mouse class we have a setPosition() function pair. It works exactly the
same as the sf::Mouse::getPosition() functions, but it sets the mouse position on
the window instead of querying for it. And, you can use the basic version that sets it
in the screen coordinates or you can set it relative to your window:

sf::Vector2i windowCenter(mWindow.getSize() / 2u);
sf::Vector2i mousePosition = sf::Mouse::getPosition(mWindow);
sf::Vector2i delta = windowCenter – mousePosition;
sf::Mouse::setPosition(windowCenter, mWindow);

In this example, we reset the mouse to the center of the window, after we have
calculated the delta. And since we always know that the mouse starts from the center
of the screen, we don't have to book keep it anymore and can just use the half size of
the window.

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[94]

Playing nice with your
application neighborhood
Now what we learned in the last part is indeed handy, but it has got its problem. What
if the user tabs out and tries to interact with the other applications that are running in
the background? We would be constantly forcing the mouse back to the center of our
window, making it impossible to do anything else than playing our game.

Believe it or not, this is actually very annoying for a lot of people, including
ourselves. When we are debugging our application, this behavior will make it
impossible to work with the IDE in the background. We have to detect when the user
doesn't want to interact with us anymore and behave properly.

This is where events come in again. If you remember, we had the event types
sf::Event::GainedFocus and sf::Event::LostFocus that notify the application
as soon as the window gains or loses focus:

void Game::processEvents()
{
 sf::Event event;
 while(mWindow.pollEvent(event))
 {
 if (event.type == sf::Event::GainedFocus)
 mIsPaused = false;
 else if (event.type == sf::Event::LostFocus)
 mIsPaused = true;
 }
}

void Game::run()
{
 while (mWindow.isOpen())
 {
 if (!mIsPaused)
 update();

 render();
 processEvents();
 }
}

In this example, we keep track of the focus of our application. We toggle a Boolean
value depending on the focus that tells us if the game should be paused or not. Then,
how do we prevent the game from changing if we are paused? That is simple with
our current architecture; we just branch out the update call to only be called if the
game is not paused. That way the game will keep rendering, registering events, and
be responsive to the user and the OS. But it won't change its state over time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

A command-based communication
system
Up to now, you have seen how events and real-time inputs are handled. In our
game, we might handle them as follows (the aircraft methods are fictional to show
the principle):

// One-time events
sf::Event event;
while (window.pollEvent(event))
{
 if (event.type == sf::Event::KeyPressed
 && event.key.code == sf::Keyboard::X)
 mPlayerAircraft->launchMissile();
}

// Real-time input
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left))
 mPlayerAircraft->moveLeft();
else if (sf::Keyboard::isKeyPressed(sf::Keyboard::Right))
 mPlayerAircraft->moveRight();

There are several problems with this approach. On one side, we have hardcoded
keys, so a user cannot choose WASD instead of arrow keys for movement. On the
other side, we gather input and logic code in one place. The game logic code grows
as we implement more features, and makes the originally simple code complicated.

For example, imagine that we want to keep the airplane inside the screen bounds. So
we could only move the airplanes to the left if it is currently inside the screen, which
can be verified using an if condition. In case of the missiles, we want to check whether
enough ammunition is available before firing, leading to another if statement. Maybe,
we want to limit the fire interval, so that the player must wait at least one second
between two launched missiles. For this, we need a timer and further logic, and we
already have plenty of game-logic code mixed with the input-handling code. Sure, we
could outsource the code into functions, but there is still a problem.

Sometimes, we do not know whom to affect when the user input occurs. Imagine
a guided missile which is steered by the player. The missile itself may be stored
somewhere in the depths of the world's scene graph, we do not have access to it at
the time we handle input. To gain access, a pointer would have to be passed from the
scene graph via the World to the Game class. The same thoughts apply to many other
entities in the game, eventually we would duplicate the information about the world
at the place where input is handled.

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[96]

This is of course not what we want. Instead, we aim to separate input handling
and game logics. A possible approach to achieve this goal is discussed in the
following sections.

Introducing commands
Here after, commands denote messages that are sent to various game objects.
A command is able to alter the object and to issue orders such as moving an entity,
firing a weapon, and triggering an explosion.

We design a structure Command that contains a function object, which can be called
on any game object represented by a scene node:

struct Command
{
 std::function<void(SceneNode&, sf::Time)> action;
};

std::function is a C++11 class template to implements
callback mechanisms. It treats functions as objects and makes
it possible to copy functions or to store them in containers. The
std::function class is compatible with function pointers,
member function pointers, functors, and lambda expressions.
The template parameter represents the signature of the function
being stored.

The following example shows std::function in action. First, we assign a function
pointer to it, then we assign a lambda expression:

int add(int a, int b) { return a + b };
std::function<int(int, int)> adder1 = &add;
std::function<int(int, int)> adder2
 = [] (int a, int b) { return a + b; };

The std::function object can be called using its overloaded operator():

int sum = adder1(3, 5); // same as add(3, 5)

Using the standard function template std::bind(), the
function arguments can be bound to the given values. The
std::bind() function returns a new function object that can
be stored inside std::function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

In the earlier example, we can fix the second argument to 1 and thus have a new
function that takes only one argument. The placeholder _1 expresses that the first
argument is forwarded, while the second argument is bound to the constant 1:

std::function<int(int)> increaser = std::bind(&add, _1, 1);
int increased = increaser(5); // same as add(5, 1)

For more detailed information, consult a standard library documentation such as
www.cppreference.com. Coming back to our game, the Command structure's member
variable action contains the function that implements the order issued to an object.
The first parameter is a reference to a scene node, which is affected by the command.
The second parameter denotes the delta time of the current frame. For example, we
can instantiate a command as follows:

void moveLeft(SceneNode& node, sf::Time dt)
{
 node.move(-30.f * dt.asSeconds(), 0.f);
}

Command c;
c.action = &moveLeft;

Using the lambda expressions, the equivalent functionality can be written as follows:

c.action = [] (SceneNode& node, sf::Time dt)
{
 node.move(-30.f * dt.asSeconds(), 0.f);
};

In short, we can now define any operation on a scene node inside a Command object.
The advantage of a command over a direct function call is abstraction: We do not
need to know on which scene node to invoke the function; we only specify the action
that is performed on it. The message passing system is responsible to deliver the
commands to the correct recipients.

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[98]

Receiver categories
In order to ensure the correct delivery, we divide our game objects into different
categories. Each category is a group of one or multiple game objects, which are likely
to receive similar commands. For example, the player's aircraft is an own category,
the enemies are one, the projectiles launched by the enemies are one, and so on.

We define an enum to refer to the different categories. Each category except None is
initialized with an integer that has one bit set to 1, and the rest are set to 0:

namespace Category
{
 enum Type
 {
 None = 0,
 Scene = 1 << 0,
 PlayerAircraft = 1 << 1,
 AlliedAircraft = 1 << 2,
 EnemyAircraft = 1 << 3,
 };
}

This makes it possible to combine different categories with the bitwise OR operator.
When we want to send a command to all available airplanes, we can create a
combined category as follows:

unsigned int anyAircraft = Category::PlayerAircraft
 | Category::AlliedAircraft
 | Category::EnemyAircraft;

The SceneNode class gets a new virtual method that returns the category of the game
object. In the base class, we return Category::Scene by default:

unsigned int SceneNode::getCategory() const
{
 return Category::Scene;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

In a derived class, we can override getCategory() to return a specific category. For
example, we can say that an aircraft belongs to the player if it is of type Eagle, and
that it is an enemy otherwise:

unsigned int Aircraft::getCategory() const
{
 switch (mType)
 {
 case Eagle:
 return Category::PlayerAircraft;

 default:
 return Category::EnemyAircraft;
 }
}

Of course, this is just a simple demonstration of how categories work. You can
implement a much more complex logic to determine a game object's category. An
object may also be part of multiple categories, where operator| is used to combine
categories. This is the reason why the return type of getCategory() is unsigned
int and not Category::Type.

In our game, categories are stored as unsigned int variables. This implies a small
issue that you should be aware of: Integer flags are not type-safe. Meaningless
numbers can be assigned to category variables, not only enumerators in the
Category namespace. A bigger problem is however the confusion between different
enum types:

Command command;
command.category = Aircraft::Eagle; // only Eagles receive command

Accidentally, the enums Category::Type and Aircraft::Type were mistaken,
but the code still compiles, leading to nasty bugs. Type safety could be achieved by
overloading bitwise operators for the enum, a dedicated class template Flags<Enum>
could store flag combinations.

Getting back to commands, we give our Command class another member variable that
stores the recipients of the command in a category:

struct Command
{ Command();

 std::function<void(SceneNode&, sf::Time)> action;
 unsigned int category;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[100]

The default constructor initializes the category to Category::None. By assigning a
different value to it, we can specify exactly who receives the command. If we want a
command to be executed for all airplanes except the player's one, the category can be
set accordingly:

Command command;
command.action = ...;
command.category = Category::AlliedAircraft
 | Category::EnemyAircraft;

Command execution
We have discussed how to construct commands with a function and a receiver
category. In order to execute them, the function must be invoked on the receivers.

In our world, commands are passed to the scene graph, inside which they are
distributed to all scene nodes with the corresponding game objects. Each scene node
is responsible for forwarding a command to its children.

We write a non-virtual method SceneNode::onCommand() which is called every
time a command is passed to the scene graph. First, we check if the current scene
node is a receiver of the command, that is, if it is listed in the command's receiver
category. The check is performed using the bitwise AND operator. If a bit is set in both
the command's and the current node's category, then we know that the node receives
the command. In this case, we can execute the command by invoking the action
member of type std::function on the current node, and with the current frame
time. The second part of onCommand() forwards the command to all the child nodes:

void SceneNode::onCommand(const Command& command, sf::Time dt)
{
 if (command.category & getCategory())
 command.action(*this, dt);

 FOREACH(Ptr& child, mChildren)
 child->onCommand(command, dt);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

Command queues
Now that the interface to distribute a command inside the scene graph is ready,
we need a way to transport commands to the world and the scene graph. For this
purpose, we write a new class CommandQueue. This class is a very thin wrapper
around a queue of commands. A queue is a FIFO (first in, first out) data structure
that ensures that elements, which are inserted first, are also removed first. Only the
front element can be accessed. The standard library already provides the container
adapter std::queue, which implements a queue interface on top of a full-featured
STL container such as std::deque.

Our class looks similar to the following:

class CommandQueue
{
 public:
 void push(const Command& command);
 Command pop();
 bool isEmpty() const;

 private:
 std::queue<Command> mQueue;
};

It only provides three methods, which directly forward their calls to the underlying
std::queue. Their definitions are straightforward, and hence they are omitted here.

The World class holds an instance of CommandQueue. In the World::update()
function, all commands that have been triggered since the last frame are forwarded
to the scene graph:

void World::update(sf::Time dt)
{
 ...

 // Forward commands to the scene graph
 while (!mCommandQueue.isEmpty())
 mSceneGraph.onCommand(mCommandQueue.pop(), dt);

 // Regular update step
 mSceneGraph.update(dt);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[102]

As explained earlier, SceneNode::onCommand() distributes a command across all
scene nodes. We also provide a getter function to access the command queue from
outside the world:

CommandQueue& World::getCommandQueue()
{
 return mCommandQueue;
}

Handling player input
Since this chapter is about input, it would be interesting to see how the commands
can be exploited to react to the SFML events and real-time input. Up to now, player
input has been handled in the Game class. But it deserves an own class, we call it
Player.

The Player class contains two methods to react to the SFML events and real-time
input, respectively:

class Player
{
 public:
 void handleEvent(const sf::Event& event,
 CommandQueue& commands);
 void handleRealtimeInput(CommandQueue& commands);
};

These methods are invoked from the Game class, inside the processInput() member
function. Only the sf::Event::Closed event is still handled inside Game, all other
events are delegated to the Player class:

void Game::processInput()
{
 CommandQueue& commands = mWorld.getCommandQueue();

 sf::Event event;
 while (mWindow.pollEvent(event))
 {
 mPlayer.handleEvent(event, commands);

 if (event.type == sf::Event::Closed)
 mWindow.close();
 }

 mPlayer.handleRealtimeInput(commands);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

Now let's see how input is handled inside the Player class. We treat the example
of the arrow keys and real-time input with sf::Keyboard. What we want to do is
change the aircraft's velocity if an arrow key is pressed. For our command, we need
an action function, we design it as a function object (functor) similar to the following:

struct AircraftMover
{
 AircraftMover(float vx, float vy)
 : velocity(vx, vy)
 {
 }

 void operator() (SceneNode& node, sf::Time) const
 {
 Aircraft& aircraft = static_cast<Aircraft&>(node);
 aircraft.accelerate(velocity);
 }

 sf::Vector2f velocity;
};

When the functor is invoked, operator() is called, which adds (vx, vy) to the
current aircraft velocity. aircraft.accelerate(velocity) is a utility function
that acts equivalently to aircraft.setVelocity(aircraft.getVelocity() +
velocity). In other words, the variable velocity is added to the aircraft's current
velocity. The downcast is required because the command stores a function which is
invoked on SceneNode&, but we need Aircraft&. It is safe as long as we guarantee
with the receiver category that only correct types receive the command. We can now
construct a command as follows:

Command moveLeft;
moveLeft.category = Category::PlayerAircraft;
moveLeft.action = AircraftMover(-playerSpeed, 0.f);

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[104]

Since we often work on entities that are classes derived from SceneNode, the constant
need for downcasts is annoying. It would be much more user friendly if we could
directly create a function with the signature void(Aircraft& aircraft, sf::Time
dt) instead. This is possible, if we provide a small adapter derivedAction() that
takes a function on a derived class such as Aircraft and converts it to a function on
the SceneNode base class. We create a lambda expression, inside which we invoke
the original function fn on the derived class, passing a downcast argument to it. An
additional assertion checks in the debug mode that the conversion is safe, which
is extremely helpful to avoid bugs. The lambda expression uses a [=] capture list,
meaning that variables referenced from its body (such as the variable fn) are copied
from the surrounding scope:

template <typename GameObject, typename Function>
std::function<void(SceneNode&, sf::Time)>
 derivedAction(Function fn)
{
 return [=] (SceneNode& node, sf::Time dt)
 {
 // Check if cast is safe
 assert(dynamic_cast<GameObject*>(&node) != nullptr);

 // Downcast node and invoke function on it
 fn(static_cast<GameObject&>(node), dt);
 };
}

Given this adapter, we can change our AircraftMover to take Aircraft& instead of
SceneNode&:

struct AircraftMover
{
 ...

 void operator() (Aircraft& aircraft, sf::Time) const
 {
 aircraft.accelerate(velocity);
 }
};

A command would then be constructed as follows:

Command moveLeft;
moveLeft.category = Category::PlayerAircraft;
moveLeft.action
 = derivedAction<Aircraft>(AircraftMover(-playerSpeed, 0));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

To be honest, our adapter does not have the simplest implementation, but it should
be worth the advantage that after writing it once, we can create actions in a much
cleaner way, without the need to downcast again and again.

Let's get back to the interesting part. Let's finally define
Player::handleRealtimeInput(), which creates a command every frame an arrow
key is held down:

void Player::handleRealtimeInput(CommandQueue& commands)
{
 const float playerSpeed = 30.f;

 if (sf::Keyboard::isKeyPressed(sf::Keyboard::Up))
 {
 Command moveLeft;
 moveLeft.category = Category::PlayerAircraft;
 moveLeft.action = derivedAction<Aircraft>(
 AircraftMover(-playerSpeed, 0.f));
 commands.push(moveLeft);
 }
}

For one-time events, the handling is quite similar. As a simple example, we write a
lambda expression that outputs the position of the player's aircraft every time the
user presses the P key:

void Player::handleEvent(const sf::Event& event,
 CommandQueue& commands)
{
 if (event.type == sf::Event::KeyPressed
 && event.key.code == sf::Keyboard::P)
 {
 Command output;
 output.category = Category::PlayerAircraft;
 output.action = [] (SceneNode& s, sf::Time)
 {
 std::cout << s.getPosition().x << ","
 << s.getPosition().y << "\n";
 };
 commands.push(output);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[106]

Simple, isn't it? Once you have understood the concepts of functions and lambda
expressions, you can quickly build complex functionalities. Note that you don't have
to use lambda expressions, you can still stick to functors such as AircraftMover. But
in some situations, lambdas allow you to express semantics far more compactly.

Now that was it, our command system is complete!

Commands in a nutshell
We have discussed many components in our command-based system; easy for
someone to get lost. The following diagram should give you an overview about
the whole functionality. Basically, the system is split into an input handling and
a game logic side. SFML events are polled in Game and forwarded to Player, which
transforms the events to commands and feeds CommandQueue with them. The same
process is followed for the real-time input, Player checks the current input state
and pushes corresponding commands to the queue. The CommandQueue class stores
a queue of commands and acts as the bridge between input handling and game
logic. On the game logic side, the World class pops commands from the
CommandQueue class and sends them to the root of the scene graph, inside which
the commands are distributed depending on their receiver categories. Eventually,
the functions stored in each command are applied to the correct game objects.
The following diagram gives an overview of the command system and the way it
is integrated into our game architecture:

Player

Ev
en

t

R
ea

l-t
im

e
in

pu
t

Game

Command
CommandQueue World

Scene graph

Input handling Game logic

Command Command

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

Implementing the game logic
You certainly remember the basic example of the aircraft floating from left to right
and back from Chapter 3, Forge of the Gods – Shaping Our World. As we now use player
input, we do not need that code any more. However, we write some new code; for
example we want to ensure that the player's plane remains inside the view, now that
it can move freely.

All this is done in the function World::update(). In the following paragraphs,
we advance through it step by step, explaining each piece of code. We begin with
scrolling the view and setting the player's velocity to zero. Note that we really use
zero, not the scrolling speed, so that the player falls behind relative to the moving
view. The scrolling speed is addressed later in this function:

void World::update(sf::Time dt)
{
 mWorldView.move(0.f, mScrollSpeed * dt.asSeconds());
 mPlayerAircraft->setVelocity(0.f, 0.f);

Next, all commands from the queue are forwarded to the scene graph. This makes
our plane react to the user input. When an arrow key is held down, the plane's
velocity will be changed:

 while (!mCommandQueue.isEmpty())
 mSceneGraph.onCommand(mCommandQueue.pop(), dt);

Now, the basic velocity has been set. If right and top arrow keys are both held down,
the plane will fly diagonally to the upper-right corner, but the velocity will be faster
than the velocity when either the right or top key is pressed. To correct diagonal
velocities, we divide the velocity by the square root of two. We also add the scroll
speed. Now it is evident why we have not done this before; we could not have
checked for diagonal movements if the velocity had not been zero:

 sf::Vector2f velocity = mPlayerAircraft->getVelocity();

 if (velocity.x != 0.f && velocity.y != 0.f)
 mPlayerAircraft->setVelocity(velocity / std::sqrt(2.f));

 mPlayerAircraft->accelerate(0.f, mScrollSpeed);

In the next step, the regular update step of the scene is performed:

 mSceneGraph.update(dt);

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[108]

The only thing left to do is to handle the case where the plane leaves the visible area
of the screen. First, we compute the rectangle of the current view, and then we keep
all X and Y coordinates inside the boundaries, given some distance to the screen's
border. Last, we call Aircraft::setPosition() to apply the corrected position:

 sf::FloatRect viewBounds(
 mWorldView.getCenter() - mWorldView.getSize() / 2.f,
 mWorldView.getSize());
 const float borderDistance = 40.f;

 sf::Vector2f position = mPlayerAircraft->getPosition();
 position.x = std::max(position.x,
 viewBounds.left + borderDistance);
 position.x = std::min(position.x,
 viewBounds.left + viewBounds.width - borderDistance);
 position.y = std::max(position.y,
 viewBounds.top + borderDistance);
 position.y = std::min(position.y,
 viewBounds.top + viewBounds.height - borderDistance);
 mPlayerAircraft->setPosition(position);
}

A general-purpose communication
mechanism
What you have seen in the previous sections are commands—how they are used for
input. Note that during the design process of our message-passing system, we have
paid attention to encapsulate input handling and to make the other components
generic and reusable. Only the Player class is directly coupled to the input; the
classes Command and CommandQueue can deal with any functions that affect scene
nodes for a given amount of time.

This genericity will be a great advantage, as it makes it possible to use our
command system for other sources of control, like the network or artificial
intelligence. We can even use the command system for in-game events, to
notify entities about happenings in the world. All we need to do is to set up the
corresponding command, push it to the queue, and it will be automatically
delivered to the related scene nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

Customizing key bindings
A big part with input management in a game is allowing the user to customize how
he interacts with it, like the keys. Most of the time, you can find the most popular key
bindings and see them written directly in the code. But there will always be people
that want to do stuff their way.

We have to provide tools in order to dynamically bind the keys to specific actions.
With the command queue introduced in the previous sections, this becomes a much
easier task to accomplish.

With the command queue, we already define specific actions for a specific key. The
difference is that right now, we have it hardcoded as follows:

if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left))
 commands.push(moveLeft);
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Right))
 commands.push(moveRight);

The problem with this code is that it is very inflexible. We have to change a lot in
order to allow any key to respond to any action. We have two clearly separate sets
of data that we want to link together. We have the actual action that we want to
perform, such as moving left or right. Then, we have the input key, the key that is to
trigger the action.

Now the keys in sf::Keyboard are just part of an enum. So on top of this, we
create an enum in our Player class that represents the different kinds of actions we
associate with the pressed keys:

class Player
{
 public:
 enum Action
 {
 MoveLeft,
 MoveRight,
 ...
 };

 void assignKey(Action action,
 sf::Keyboard::Key key);
 sf::Keyboard::Key getAssignedKey(Action action) const;
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[110]

 private:
 static bool isRealtimeAction(Action action);

 private:
 std::map<sf::Keyboard::Key, Action> mKeyBinding;
 std::map<Action, Command> mActionBinding;
};

Here, we have divided the input into two abstractions. We have the key binding to a
specific action, and we have the binding of an action to a specific command. This is
all we need to remove any hardcoded segments of input.

Next step is actually using this to translate an input to a command, which will
essentially be our key bindings. We do this best by iterating through our key
bindings map and just performing a simple check if the key is being pressed. If it is,
we tell the command queue to insert our command we provide it with. The function
Player::isRealtimeAction() returns if the specified action is triggered by the
real-time input (as opposed to events).

void Player::handleRealtimeInput(CommandQueue& commands)
{
 FOREACH(auto pair, mKeyBinding)
 {
 if (sf::Keyboard::isKeyPressed(pair.first)
 && isRealtimeAction(pair.second))
 commands.push(mActionBinding[pair.second]);
 }
}

Just remember that this function has to be called once every frame, otherwise
nothing will happen.

The two functions assignKey() and getAssignedKey() set and get the key
mapped to a specific action. Their implementations perform map operations as
expected, the only notable thing is that assignKey() checks that no two keys map
to the same action.

The command stored under an action in mActionBinding knows exactly what it
is supposed to do, so you don't have to provide any extra code to handle the key
press, since it has been abstracted out into its own entity. You have already done this
previously in the chapter. The difference now is that we store the commands in the
map together instead of unique variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

The following is the constructor, where we set the default settings that you expect
and prepare everything to work:

Player::Player()
{
 mKeyBinding[sf::Keyboard::Left] = MoveLeft;
 mKeyBinding[sf::Keyboard::Right] = MoveRight;

 mActionBinding[MoveLeft].action =
 [] (SceneNode& node, sf::Time dt)
 {
 node.move(-playerSpeed * dt.asSeconds(), 0.f);
 };

 mActionBinding[MoveRight].action =
 [] (SceneNode& node, sf::Time dt)
 {
 node.move(playerSpeed * dt.asSeconds(), 0.f);
 };

 FOREACH(auto& pair, mActionBinding)
 pair.second.category = Category::PlayerAircraft;
}

We assign the actions to the keys and achieve our initial key binding. After that we
create the commands and implement the lambda function to be executed. The last
iteration is just to ensure that the commands are only applied on the player aircraft.
It should all look familiar.
Now this itself is not really dynamic. All we have provided is the possibility to make
it dynamic. We don't have a setting screen where you can manipulate the bindings or
a way to parse the data from a config file. We will actually create a settings screen
later in the book in the GUI chapter. This would have been a way too big topic to
cover in this chapter as well.

Why a player is not an entity
Well, the Player class can very much be considered as an entity, but in our case it is
just a controller of entities. The class represents the player's input in the world of the
game. In our gameplay, this entails only to manipulating a node in our scene graph.

Take this with a grain of salt. This is something that people do differently, we
could have created a player entity and a player controller or have everything in
the player entity.

Our opinion while writing was that this is a much cleaner way to do it and gives a
nice separation of the external input signals from the player and the game logic. We
felt much more comfortable working like this, instead of potentially having a giant
blob inside the hierarchy of entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Command and Control – Input Handling

[112]

Summary
Reading through this chapter, you learned a whole new mechanism to handle input
and deliver it correctly to the game's entities. It may not be the simplest concept you
will come across, but it certainly pays off later, when you see it under heavier action.
Not only have we played with event delivering systems, but we also paid a lot of
attention on how to capture input and handle every detail about it. This is essential
for every game, after all, who would like to play a game that plays itself?

After having a basic world scene with robust behaviors and features, it is now
time to start looking at other phases of a game's development. In other words, the
next chapter will cover mechanisms which are not directly related to the game's
mechanics and systems, but that instead allow a coherent flow between multiple
parts of a game, such as the pause and main menu, the game itself and others that
you will encounter. Therefore, expect a lot of interesting information on handling
this kind of management that you see in games so often.

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game
Flow – State Stack

In the earlier chapters of this book, you have learned how to make an efficient
program structure for a game, modern game loops, and data structures to contain a
world with rich graphics. You also learned how to deal with user input, making it an
interactive simulation. With the combination of all those pieces of knowledge, we can
already make an interesting game experience. However, a game is usually more than
that. A full blown product doesn't just open and let you play without an explanation,
a menu, or a title screen. That is what is going to be covered in this chapter, the
ability to make the game richer by adding different states and screens to it.

The main bits of knowledge to acquire throughout the chapter are as follows:

•	 The state and the stack
•	 Navigating between states
•	 Moving our game into a state
•	 The title screen as the entry point of the game
•	 Our old friend, the main menu
•	 Implementing an overlay pause screen
•	 A simple example of a concurrent loading state

Defining a state
While it is a bit difficult to define correctly what a state actually is, and because that
also depends on the implementation we choose to go with, we will try to pass our
own idea of what states are and how they should behave.

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[114]

We can look at a state as an independent screen in the gaming software, an object
that encapsulates the logic and graphics of a determined group of functionality
and information.

Nothing stops us from creating a state that behaves in any way we'd like; however,
there are some usual guidelines into what belongs to the same state. Let's try to
prove this shallowly by looking at the commercial games of our time. We will
often see most games showing introduction videos, from the trailer of the game to
company brand logos. We can look at each of these screens as states. In fact, having a
VideoState that would simply playback a video and proceed to the next state would
fit this model perfectly!

Then, we usually see a title screen, which is all about fancy artwork and minor
information. That would be another state. Usually, by pressing a key, we would
enter into the main menu, which itself is another effective state. If we look closely at
any game, we can more or less define what belongs to each state, and that is the exact
point so you can understand the concept better. There are countless ways you can
separate your game into multiple states, but practicing always makes you achieve
cleaner and more efficient designs!

Using such a system is of extreme importance. The combination of all these screens
working together as one final product always makes a game feel more professional
and rich in features.

However, not all the states are the same. While some states take over the whole
screen and are running individually, others will work together, in parallel, rendering
to the same screen, to achieve a variety of effects such as the very common pause
screen, which still shows the game in background without motion.

To manage states efficiently and in an easy way, we create the stack!

The state stack
One way to visualize the flow of the game screens would be to picture a finite state
machine of all the screens and how they trigger each other's appearance. However,
while that works and is logically accurate, we broaden the concept of the active state
into a stack.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

Finite State Machine (FSM): While this is a well known concept
across the world of computation, we will shortly describe the state
machine as a collection of states that ensures that only one state is
active at any given time. The transition of the current state into a
new one is always triggered by a condition or a timer. So, for any
state of the FSM, there will be a determined set of triggers that will
activate new states when appropriate.

Now, turning the active state into a stack essentially means that the current state
is not an individual piece anymore, but rather a stacked group of pieces, when
necessary. Usually, the state mechanism will only have one state active at a time,
and while this is true, we effectively have a finite state machine as it is known by the
computer science community. In other situations, however, such as the infamous
pause screen, we will break the concept of FSM a little and have states on top of
states, representing the active state all together.

As you can see in the following figure, a usual game flow can be represented
like this:

Begin Title Screen Pause Screen

Game Screen

Main Menu Screen

End

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[116]

To manage all these screens and transitions, we create the StateStack class:

class StateStack : private sf::NonCopyable
{
 public:
 enum Action
 {
 Push,
 Pop,
 Clear,
 };

 public:
 explicit StateStack(State::Context context);

 template <typename T>
 void registerState(States::ID stateID);

 void update(sf::Time dt);
 void draw();
 void handleEvent(const sf::Event& event);

 void pushState(States::ID stateID);
 void popState();
 void clearStates();

 bool isEmpty() const;

 private:
 State::Ptr createState(States::ID stateID);
 void applyPendingChanges();

 private:
 struct PendingChange
 {
 ...
 Action action;
 States::ID stateID;
 };

 private:
 std::vector<State::Ptr> mStack;
 std::vector<PendingChange> mPendingList;
 State::Context mContext;
 std::map<States::ID,
 std::function<State::Ptr()>> mFactories;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

We also create the so called State class:

class State
{
 public:
 typedef std::unique_ptr<State> Ptr;
 struct Context { ... };

 public:
 State(StateStack& stack, Context context);
 virtual ~State();

 virtual void draw() = 0;
 virtual bool update(sf::Time dt) = 0;
 virtual bool handleEvent(const sf::Event& event) = 0;

 protected:
 void requestStackPush(States::ID stateID);
 void requestStackPop();
 void requestStateClear();

 Context getContext() const;

 private:
 StateStack* mStack;
 Context mContext;
};

Adding states to StateStack
All states in the game have a unique identifier declared in an enum States, located
in the StateIdentifiers.hpp file. For example, ID States::Game refers to the
GameState class.

Initially, we register inside the stack all the states we may use. We do not create all
the state objects from the beginning, since some of them may never exist, therefore
we avoid loading resources of never-used states. Instead, we have factory functions
that create a new state on-demand, represented by std::function. The member
variable StateStack::mFactories maps state IDs to those factory functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[118]

A member function StateStack::registerState() inserts such mappings. The
template parameter T is the derived state class we want to register. A lambda
expression acts as a factory for the state: It creates an object of the derived class T by
passing the stack and context to its constructor. This object is wrapped into a unique
pointer and returned as a base class pointer. The lambda expression is assigned to
the corresponding state ID in the map:

template <typename T>
void StateStack::registerState(States::ID stateID)
{
 mFactories[stateID] = [this] ()
 {
 return State::Ptr(new T(*this, mContext));
 };
}

This approach has the advantage that the StateStack class need not know the
concrete state classes, we thus keep dependencies low. For state classes that take
more than two parameters, we can write an overload to pass an additional argument
(which will be done in later chapters). If your compiler supports variadic templates,
a single function template will handle all these cases.

The createState() method takes an ID of a state, and returns a smart pointer to a
newly created object of the corresponding state class. It does so by looking up the
ID in the map and invoking the stored std::function factory, which returns the
std::unique_ptr to the State base class:

State::Ptr StateStack::createState(States::ID stateID)
{
 auto found = mFactories.find(stateID);
 assert(found != mFactories.end());

 return found->second();
}

Handling updates, input, and drawing
Until this point, we taught the concept of the stack and the states it holds. Now it is
time to feed our StateStack and consequently our active State objects with events,
update, and drawing orders.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

Input
Every polled event is fed to the state stack. Then, internally, the stack will deliver
that event to the active states:

void StateStack::handleEvent(const sf::Event& event)
{
 for (auto itr = mStack.rbegin(); itr != mStack.rend(); ++itr)
 {
 if (!(*itr)->handleEvent(event))
 return;
 }

 applyPendingChanges();
}

In this for loop, you can verify that we iterate the active stack from the end to the
beginning, in other words, from the highest state to the lowest. And, if any of the
states returns false in its handleEvent() method, the loop is immediately ended.
This gives the control to the states that may not want to let input flow to other states
than itself!

Update
The updating happens under the same guidelines of event handling, both the
delivery order and the stopping of update propagation to lower states, if desired.

Draw
Drawing is straightforward; the StateStack class will order every active state to
render itself.

The first state to be drawn is the lowest and oldest on the stack, and only then come
the others, in order. This grants that the states are transparent, and you will be able
to see the underlying screens. Anyway, if you don't desire to see pixels from the
lower states, you can use sf::RectangleShape to draw a colored rectangle over the
whole screen, blocking the undesired graphics, as you will see later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[120]

Delayed pop/push operations
As you can see in the source, the StateStack class provides the pushState()
and popState() functions to let us add and remove states from the active stack.

However, in the middle of an event or update iteration by the stack, it is not possible
to alter the active state stack because it would generate a conflict when adding/
removing objects to a container that is being iterated.

Because of this, those functions don't immediately push or pop states into the stack,
but rather register these actions in a pending action list, so they can be processed
later, when it's safe.

Then, inside your own state logic code, you call requestStackPush() and
requestStackPop(), allowing the states to alter the stack from within their own
code, without risking the safety of the program, thanks to the delayed processing of
push and pop operations.

A special kind of pop operation is also provided, allowing a state to call
requestStackClear(), which will completely empty the active stack.

These delayed processing operations are done in the following function:

void StateStack::applyPendingChanges()
{
 FOREACH(PendingChange change, mPendingList)
 {
 switch (change.action)
 {
 case Push:
 mStack.push_back(createState(change.stateID));
 break;

 case Pop:
 mStack.pop_back();
 break;

 case Clear:
 mStack.clear();
 break;
 }
 }

 mPendingList.clear();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

The state context
In general, every screen will need to display some text or sprites, draw to the screen,
among other common things. Due to this fact, and to avoid unnecessary memory
wasting by loading the same texture or font to memory in multiple places, we
introduced the State::Context structure. It works as a holder of shared objects
between all states of our game.

Essentially, every state will now have access to the getContext() method, which
itself contains the pointer to the window used to draw its objects and resource
holders such as font and texture managers. Here's the declaration of the structure:

struct Context
{
 Context(sf::RenderWindow& window,
 TextureHolder& textures,
 FontHolder& fonts,
 Player& player);

 sf::RenderWindow* window;
 TextureHolder* textures;
 FontHolder* fonts;
 Player* player;
};

The usefulness of the state context is undeniable. It will save system memory by
reusing the same fonts and textures for every state. It will also provide access to the
window's view at all times, which is a necessity when positioning and resizing our
objects relatively to the view's dimensions.

Integrating the stack in the
Application class
Since we have now more states than the game itself, we create a new class
Application that controls input, logic updates, and rendering. Having a ready
StateStack implementation waiting to be used, it is time to promote it into the
Application class. We will plug our new state architecture into our Application
class and then start using it!

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[122]

First, we add the mStateStack member variable to Application. We register all the
states in an own method:

void Application::registerStates()
{
 mStateStack.registerState<TitleState>(States::Title);
 mStateStack.registerState<MenuState>(States::Menu);
 mStateStack.registerState<GameState>(States::Game);
 mStateStack.registerState<PauseState>(States::Pause);
}

Now there are a few more things we must care about for a full integration of our
state architecture:

•	 Feeding it with events in the Application::processInput() function:
while (mWindow.pollEvent(event))
{
 mStateStack.handleEvent(event);
}

•	 Updating with the elapsed time:
void Application::update(sf::Time dt)
{
 mStateStack.update(dt);
}

•	 Rendering of the stack, in the middle of the frame draw:
mStateStack.draw();

•	 Closing the game when no more states are left:
if (mStateStack.isEmpty())
 mWindow.close();

And now that everything is plugged in and ready to go, in the end of our constructor
we make the machine start with the title screen!

mStateStack.pushState(States::Title);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

Navigating between states
So far we have our state machine in place and running smoothly, the title screen
starts up the program, but how to make the title screen call another state to its place
when someone hits a key?

That is exactly what the StateStack class's delayed push and pop mechanism is for.
Inside a state handleEvent() and update(), you are given three methods to control
the execution and transitions of states: requestStackPush(), requestStackPop(),
and requestStackClear().

It is appropriate to use these methods to request new states to be pushed, or to show
and replace the current one, as you will verify that our example states do throughout
this chapter.

Creating the game state
So far we have covered the theory and practice for inserting the state stack into our
sample game. It is fully functional but yet empty, so, it is finally time to create our
first state, the game state.

For this, we create a class named GameState and we proceed to relocate the code
that could be found in the Game class related to the actual aircraft gameplay to its
new home:

class GameState : public State
{
 public:
 GameState(StateStack& stack,
 Context context);

 virtual void draw();
 virtual bool update(sf::Time dt);
 virtual bool handleEvent(const sf::Event& event);

 private:
 World mWorld;
 Player& mPlayer;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[124]

The title screen
Because a good place to start is always the beginning, we are about to create the title
screen; that initial screen you sometimes see in games. Before you enter the main
menu of the game, it asks you to press any key.

We decided to go with the name TitleState, and define it as follows:

class TitleState : public State
{
 public:
 TitleState(StateStack& stack,
 Context context);

 virtual void draw();
 virtual bool update(sf::Time dt);
 virtual bool handleEvent(const sf::Event& event);

 private:
 sf::Sprite mBackgroundSprite;
 sf::Text mText;

 bool mShowText;
 sf::Time mTextEffectTime;
};

Our implementation of this screen is not very different from what you are used to
see. It shows a background with a little information about the game, besides its title
and then blinks a big old Press any key to continue message.

Here's how we detect the key stroke and use our state system to trigger a new state:

bool TitleState::handleEvent(const sf::Event& event)
{
 if (event.type == sf::Event::KeyPressed)
 {
 requestStackPop();
 requestStackPush(States::Menu);
 }

 return true;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

The background is merely an image covering the whole window and the blinking
effect on the sf::Text object is achieved through this little trick:

bool TitleState::update(sf::Time dt)
{
 mTextEffectTime += dt;

 if (mTextEffectTime >= sf::seconds(0.5f))
 {
 mShowText = !mShowText;
 mTextEffectTime = sf::Time::Zero;
 }

 return true;
}

The magic happening here is simple. The variable mShowText determines the
visibility of the sf::Text object, so we toggle it every half second, achieving the
blinking effect.

Every time the state updates, we have a time counter mTextEffectTime that
increments with the elapsed time. Then, when that elapsed time is greater than half a
second, we just toggle the mShowText variable and restart the counter.

Main menu
Okay, our title screen just finished, the user pressed a key and it is time to launch
another screen, the famous main menu!

This is probably the most common state you will find in virtually every game, it is
responsible for presenting the user its options and what can be done with the game.
This is usually the point where you change settings, start or continue your game,
watch videos and artwork, or simply exit the game.

For simplicity, we created the most basic main menu possible. It only presents two
options: play and exit. Then, you can select which one you want by pressing the
return key or alternate between the options with the up and down arrow keys.

Please notice this is a basic form of graphical user interface, which is the topic in
the next chapter, therefore you can expect interesting improvements to it when we
introduce the user interfaces in more depth!

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[126]

This state is not so different from the title screen but it does implement the option
selection, and here is how we did it:

enum OptionNames
{
 Play,
 Exit,
};

std::vector<sf::Text> mOptions;
std::size_t mOptionIndex;

First we declare the containers of our options in the MenuState class, as well as the
enumerator of the available options.

Then, we setup and push to the mOptions array the sf::Text objects, in the
constructor, as follows:

sf::Text playOption;
playOption.setFont(font);
playOption.setString("Play");
centerOrigin(playOption);
playOption.setPosition(context.window->getView().getSize() / 2.f);
mOptions.push_back(playOption);

The mOptionIndex integer variable is present so that we can track which is the
currently selected option between all those in the mOptions array; it will have a
value between 0 and n-1, n being the number of options in the menu, which is two in
our example.

Finally, we define the most important function that helps controlling this menu:

void MenuState::updateOptionText()
{
 if (mOptions.empty())
 return;

 // White all texts
 FOREACH(sf::Text& text, mOptions)
 text.setColor(sf::Color::White);

 // Red the selected text
 mOptions[mOptionIndex].setColor(sf::Color::Red);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

This function is called once after constructing mOptions and again every time the
mOptionIndex value changes. It ensures that only the selected option is highlighted
in red, and the remaining is in white.

About what makes the mOptionIndex value actually change, it is merely simple
handling of key presses in the handleEvent() function:

if (event.key.code == sf::Keyboard::Up)
{
 if (mOptionIndex > 0)
 mOptionIndex--;
 else
 mOptionIndex = mOptions.size() - 1;

 updateOptionText();
}

else if (event.key.code == sf::Keyboard::Down)
{
 if (mOptionIndex < mOptions.size() - 1)
 mOptionIndex++;
 else
 mOptionIndex = 0;

 updateOptionText();
}

Now that we handled the selection of an action between multiple options, it is time
to actually make them push their own states and give the game continuity:

if (event.key.code == sf::Keyboard::Return)
{
 if (mOptionIndex == Play)
 {
 requestStackPop();
 requestStackPush(States::Game);
 }
 else if (mOptionIndex == Exit)
 {
 requestStackPop();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[128]

We have seen how to push states before so it is not a big deal anymore. However, the
Exit option applies something new; it only requests to pop itself without pushing
anything else in its place.

In consequence, after the MenuState class is popped, the state stack is left empty.
This is exactly the condition that is checked in the Application class in order to exit
its loop, so the game closes naturally when the user selects this option.

Of course, if there would be another state present in the stack at this moment, it would
not really be empty, and the game could not close. A good way to prevent this would
be to request a clearing of the whole stack, instead of just popping the menu state.
However, by doing it this way we can detect possible programming errors faster by
not concealing the presence of a state that shouldn't be there in the first place.

Pausing the game
After having a cute menu that allows the game to start playing, we find ourselves
locked again inside GameState. Indeed, we can play, but what about when we get
tired of it or just want to take a break? That's when the pause screen comes into
the scene!

We make use of the PauseState class not only as a way to rest and go have a coffee,
but also as a gateway for going back to the main menu.

The implementation of this screen follows the line of the previous ones although it
has some remarks and little things that make it special. To begin with, it is a state
that is not meant to work by itself, but rather on the top of the state stack, living
simultaneously with GameState, at least.

Because of this, we apply directly the concepts we implemented in the StateStack
mechanism. The screen of PauseState is transparent and we can see the game in
the background:

void PauseState::draw()
{
 sf::RenderWindow& window = *getContext().window;
 window.setView(window.getDefaultView());

 sf::RectangleShape backgroundShape;
 backgroundShape.setFillColor(sf::Color(0, 0, 0, 150));
 backgroundShape.setSize(sf::Vector2f(window.getSize()));

 window.draw(backgroundShape);
 window.draw(mPausedText);
 window.draw(mInstructionText);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

When we are drawing this screen, we can assume that the game has been already
drawn. The backgroundShape rectangle fits the whole screen as a way to darken
what we see on the background. If we wanted an opaque screen and cease to see the
game we could simply set the fill color of backgroundShape with full alpha (255).

On the event handling topic, we simply define PauseState to pop it again and
return to game if Escape is pressed again. Besides that, we also return to the main
menu when Backspace is pressed:

if (event.key.code == sf::Keyboard::BackSpace)
{
 requestStateClear();
 requestStackPush(States::Menu);
}

So, why call requestStateClear() instead of requestStatePop()? Easy! The
PauseState class has no idea how many states are lying underneath it in the stack.

Even though usually there will be only GameState living under it, this may not be a
truth quite easily. GameState might have pushed other game play states on its top,
like tutorial states or information displayers.

Therefore, to be safe, we request a complete clearing of the stack and only then a
push of the main menu.

The last thing that is very important to notice about PauseState is the return
false; statement in the end of handleEvent() and update() functions.

If you were paying close attention earlier this chapter, it will be obvious to you what
those mean in this context; nevertheless, returning false in those functions works as a
smooth trick to automatically pause our GameState. Because PauseState is the top
screen and it doesn't let any underlying states update or handle events, all those are
inherently paused by absence of input or discrete time updates.

For convenience, we could have a pause method in the GameState class but we don't
even need it thanks to the state system!

The loading screen – sample
While our example game does not use a loading screen up to this point, we have
decided to provide a possible implementation of such a state. You can find its source
code together with the sources of this chapter, as well as guide yourself through the
following paragraphs into understanding it.

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[130]

A loading screen is a state like any other, except for one thing; it performs a
task in the background, using a parallel thread of execution. Using threads and
understanding them in full is out of the scope of this book; however, SFML does
provide sf::Thread, a cross-platform implementation for launching and managing
multiple branches of execution in a program. Because of this, we will briefly
introduce the use of sf::Thread and apply it directly into our loading screen.

But why do we need to use threads? Simply because a loading screen will most often
be passing a number of resources from the hard drive into memory and this will be a
lengthy process, and even worse, a blocking process.

We need to ensure that our state remains fluid in its execution, that all calls are
finished as fast as they can, and the game has a solid frame rate. Having our loading
screen stuck in a method loading a huge list of resources would defeat this purpose,
as while a resource loading operation is being executed, the state couldn't display
a smooth progress bar. Due to this issue, we let the loading operation happen in a
parallel thread, while the loading state keeps running without interruption!

In order to implement such a state we create two classes, LoadingState and
ParallelTask. LoadingState is responsible for displaying information of what is
being loaded and a progress bar so the user has some perception of how much time
is left to begin playing. The ParallelTask class will manage the actual loading
operation and give some feedback to the LoadingState class.

Please note that while these two classes are not integrated in the chapter's sample
application, you can find their sources in LoadingState.hpp, LoadingState.cpp,
ParallelTask.hpp, and ParallelTask.cpp in the source directory of the chapter.

Progress bar
To better understand the implementation of LoadingState which is not that
different from the other screens, lets take a look at its members:

sf::Text mLoadingText;
sf::RectangleShape mProgressBarBackground;
sf::RectangleShape mProgressBar;
ParallelTask mLoadingTask;

We have sf::Text to display our Loading Resources string, two
sf::RectangleShape objects for the progress bar background and fill, and a
ParallelTask object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

First things first, constructing the objects happens as follows:

mLoadingText.setFont(font);
mLoadingText.setString("Loading Resources");
centerOrigin(mLoadingText);
mLoadingText.setPosition(window.getSize().x / 2u, window.getSize().y /
2u + 50);

mProgressBarBackground.setFillColor(sf::Color::White);
mProgressBarBackground.setSize(sf::Vector2f(window.getSize().x - 20,
10));
mProgressBarBackground.setPosition(10, mLoadingText.getPosition().y +
40);

mProgressBar.setFillColor(sf::Color(100,100,100));
mProgressBar.setSize(sf::Vector2f(200, 10));
mProgressBar.setPosition(10, mLoadingText.getPosition().y + 40);

setCompletion(0.f);

mLoadingTask.execute();

The mLoadingText function is configured with position, font, and string. Then, the
background of the progress bar is initialized with a white color and a size that fits the
window horizontally except for a 20 pixel wide margin, split between each side.

Both mProgressBar and mProgressBarBackground are at the exact same position, so
that mProgressBar can grow inside the background correctly. The progress bar is set
with a grey color, so it can be seen over its background.

To finalize, we simply ensure the progress bar is at 0 percent completion, with a
width of 100 pixels and then launch the parallel task.

The setCompletion() method is nothing more than the following:

void LoadingState::setCompletion(float percent)
{
 if (percent > 1.f)
 percent = 1.f; // clamp

 mProgressBar.setSize(sf::Vector2f(
 mProgressBarBackground.getSize().x * percent,
 mProgressBar.getSize().y));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[132]

It merely resets the width of the progress bar fill color to a percent of the background
width, as you can see.

This is enough to provide us a static progress bar, while a parallel task is already
executing in the background; now it is important to go fetch data from the task to
update the state:

bool LoadingState::update(sf::Time)
{
 // Update the progress bar from the remote task or finish it
 if (mLoadingTask.isFinished())
 {
 requestStackPop();
 requestStackPush(States::Game);
 }
 else
 {
 setCompletion(mLoadingTask.getCompletion());
 }
 return true;
}

This method's body is just as simple as it looks, if the parallel task has finished
already, it is time to spawn the game state, because in theory it already has the
needed resources to run. Otherwise, if the task is still executing, we will only
update the progress bar.

ParallelTask
So far we have been able to see that a ParallelTask object runs in the background
and allows querying some information about the task's progress.

To remain as simple as possible explaining the concept of a task executed in a
parallel thread, we decided to implement the sample class as a dummy operation
that does not do any actual loading, but rather just waits ten seconds for a timer to
expire and finalize the task.

But, before explaining our implementation, let's approach a couple of
concepts rapidly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

Thread
A thread is essentially a function that runs in another branch of execution. You know
the mandatory main() function, right? That is the entry point of every application,
when it is called by the operating system, it creates one thread: the main one. You
can visualize it as a sequential stream of commands that flows until the main()
function is over and exits the program.

We can conclude from this that one thread is one function call. The same way main()
is a thread function, there can be others. So, if inside the main function, we spawn a
new thread by "calling" its function, the only difference between that and a normal
call is that the program doesn't wait until that function ends, but rather continues
execution while another stream of commands starts running in parallel.

This is the essence of multi-threading and there isn't a lot to add to it. To do
this branching in execution, SFML provides sf::Thread. This class implies that
you have to link a sf::Thread object to a function on its constructor, such as
sf::Thread(&myFunc) for a global function or sf::Thread(&MyClass::myFunc,
myClassObject) for a member function of a class.

When you call sf::Thread::launch(), all it does is to call the linked function in a
separate thread.

Once that function returns, the thread is also shut down automatically. Destroying
the sf::Thread object while its thread is still running results in an abrupt
termination of the thread.

Seems easy, right? Well, there are some more things to have in consideration. Using
threads is very straightforward but there are concerns we must always have in mind
when working with them.

Concurrency
When two threads are running in parallel, everything will go smoothly if they don't
touch the same data at the same time. Anyway, it is very normal that two or more
threads want to read/write to the same variables, if not for more, to communicate
between them.

It probably goes without saying that if the processor is reading and writing to the
same memory address at the same time, we are going to have a nice crash or an
undefined behavior in our program, which can be troublesome to debug and correct.

But then, how to guarantee that multiple threads operate on shared data at turns,
with proper synchronization? This is a very delicate topic that must not be taken
lightly; however, there are mechanisms in SFML that help us achieve this!

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[134]

Here, we introduce you to sf::Mutex and sf::Lock. These are incredible tools to
protect shared data when working with multi-threading. We won't be explaining in
depth how they work internally, but rather try to apply it directly and understand it
by example, by looking at the ParallelTask class implementation.

Task implementation
The code for this implementation is as follows:

class ParallelTask
{
 public:
 ParallelTask();
 void execute();
 bool isFinished();
 float getCompletion();

 private:
 void runTask();

 private:
 sf::Thread mThread;
 bool mFinished;
 sf::Clock mElapsedTime;
 sf::Mutex mMutex;
};

By taking a look at the ParallelTask declaration, you can see that the API used by
LoadingState exposed. Besides that, you can see the runTask() function, which is
the actual thread function that is launched in parallel execution.

Then, in its members, we can see the expected sf::Thread, the sf::Clock to count
the elapsed time, and a Boolean variable to check if the task is done yet or not. The
sf::Mutex object is meant to protect both the mClock and mFinished variables from
concurrent access, as you will see in the following sample:

bool ParallelTask::isFinished()
{
 sf::Lock lock(mMutex);
 return mFinished;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

The first line in the function's body is what we call locking variables. If you noticed,
isFinished() is called by LoadingState::update(), which is the main thread
while mFinished can be changed by the task thread as well, immediately when it
finishes. This could randomly cause a simultaneous read and write by two threads,
which would result in bad luck for us as programmers. We say randomly because
there is nothing controlling the synchronization of the two threads, the simultaneous
access can either happen or not.

By locking the sf::Mutex object before touching sensitive data, we ensure that if
a thread tries to lock an already locked resource, it will wait until the other thread
unlocks it. This creates synchronization between threads because they will wait in
line to access shared data one at a time.

Because sf::Lock is a RAII compliant class, as soon as it goes out of scope and is
destructed, the sf::Mutex object automatically unlocks.

To finalize, here is the actual thread function of our task:

void ParallelTask::runTask()
{
 // Dummy task - stall 10 seconds
 bool ended = false;
 while (!ended)
 {
 sf::Lock lock(mMutex); // Protect the clock
 if (mElapsedTime.getElapsedTime().asSeconds() >= 10.f)
 ended = true;
 }

 { // mFinished may be accessed from multiple threads, protect
 sf::Lock lock(mMutex);
 mFinished = true;
 }
}

You may have noticed that there is a lock in every read or write of the shared
variables. The extra brackets are just a way of releasing that same lock as soon as
possible, so the variable is then available for other threads to access.

All this function does is it remains in a while loop until the clock has ticked for ten
seconds and then lets the thread finish after setting mFinished to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Diverting the Game Flow – State Stack

[136]

Summary
Here we conclude the fifth chapter of the book. Through its pages, we tried to pass
on a lot of useful information about state managing and game flow. We talked
about states and stacks of states, both in concept and in implementation. Also, we
saw how to implement a handful of screens that we usually see in games, using our
StateStack system to our advantage. Navigation between states was also covered
and we even talked about functionality we don't use in the game, but that will
certainly come handy in the future! Better to know and not need it, than to need it
and not know about it!

As you noticed, this chapter is of extreme importance not only to this game, but
every game you might make. All the code written from this chapter and on will be
compliant with the state architecture which makes it a good reason to grasp these
concepts the best you can!

The next chapter will concern the graphical user interface of the game. We will
discuss how to implement a basic version of a widget hierarchy containing buttons
and labels.

www.it-ebooks.info

http://www.it-ebooks.info/

Waiting and Maintenance
Area – Menus

Most games have menus and it's something the player expects when opening up a
new game. Even in its simplest form, there is a user interface that responds to the
user, and gives him the information he needs to enjoy the game. You might have
noticed that we implemented a simple menu in the previous chapter, but it's a prime
example where you should refactor and extract into its own class. This is what we
will do in this chapter:

•	 Design a user interface components hierarchy
•	 Implement the base component class
•	 Implement containers, labels, and buttons
•	 Create a proper title screen
•	 Create a settings screen

What we aim in this chapter is to give you a fundamental understanding of creating
a graphical user interface (GUI). GUI design is a huge topic that deserves its own
book, but we will do a crash course together.

Normally, in a GUI you use the mouse as an input source; you click on a button and
something happens. But for our examples we keep it simple by having you navigate
by the keyboard. The difference lies in complexity of the methods: one does not
exclude the other. But the focus of this chapter is the components of the hierarchy.

www.it-ebooks.info

http://www.it-ebooks.info/

Waiting and Maintenance Area – Menus

[138]

The GUI hierarchy, the Java way
The architecture for the GUI framework will resemble a lot of other toolkits such as
Java's Swing/AWT library as it's a well working concept. Note that it is not exactly
reproduced, rather is used as a source of inspiration. In the end, what we aim to
achieve is a working menu state based on this design, but without pumping the state
full of boilerplate GUI code.

We create a namespace GUI in order to make the distinction clear to other parts
of our game, since a lot of the names such as "component" are generic, and can be
misinterpreted easily. We start with one core base class, which the entire hierarchy
rests on. We call it Component and in our case it is quite small. It defines the interface
that we will be using regularly besides setting up the objects. The class defines a
couple of virtual functions, one of which is the handleEvent() function. We let the
Component class inherit from sf::Drawable for the same reason as the scene nodes.
To have an interface for drawing to an SFML window:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[139]

namespace GUI
{
class Component : public sf::Drawable
 , public sf::Transformable
 , private sf::NonCopyable
{
 public:
 typedef std::shared_ptr<Component> Ptr;
 public:
 Component();
 virtual ~Component();
 virtual bool isSelectable() const = 0;
 bool isSelected() const;
 virtual void select();
 virtual void deselect();
 virtual bool isActive() const;
 virtual void activate();
 virtual void deactivate();
 virtual void handleEvent(const sf::Event& event) = 0;
 private:
 bool mIsSelected;
 bool mIsActive;
};
}

You might be wondering about the pure virtual isSelectable() function and
the other virtual ones. They exist for buttons and containers. For the moment,
you can just assume that isSelectable() returns false, and that the virtual ones
are based on the two variables with similar names. The core for the GUI is the
Component::handleEvent() function because this is where the magic happens.
The typedef of a shared pointer of Component to the name Component::Ptr is
for convenience purposes. You don't need it, but it makes code more readable, by
simplifying the name we use.

www.it-ebooks.info

http://www.it-ebooks.info/

Waiting and Maintenance Area – Menus

[140]

The class template std::shared_ptr is a C++11 smart pointer. In
contrast to std::unique_ptr, multiple pointers share an object.
Reference counting ensures that the object remains alive as long as any
shared_ptr points to it. If an object is not referenced anymore, it will be
destroyed.
While unique pointers result in zero performance and memory overhead,
shared pointers are rather expensive because of reference counting
semantics and thread safety. Therefore, they should be used with care—
shared ownership is rarely required.
The function template std::make_shared() allows construction
of shared pointer objects. Instead of the first statement with the new
operator, you can use the second. This enables an internal optimization
(object and reference counter are stored together).

std::shared_ptr<T> s(new T(a, b));
auto s = std::make_shared<T>(a, b);

The reason for using a shared pointer, instead of the unique pointer we have been
so diligent in using before, is because it is more flexible. We want to give you a
bare-bones setup for developing GUI on which you can extend upon. On one hand,
std::shared_ptr allows users of GUI components to hold a std::weak_ptr which
becomes invalid as soon as the Component is destroyed. But more importantly, a
component can be shared in different places. If two different containers (maybe
in different application states) use exactly the same component with the same
attributes, they can share it.

The function for handling events is virtual because its implementation is
different for every class inheriting from Component. Further classes we define
are GUI::Container, GUI::Button, and GUI::Label. These are the most basic
components that you will need, and it will be easy to expand the system with more
components later.

So we start with containers. What is the purpose of a container? Well, obviously
to bind other components together logically. But remember, since we are using a
shared pointer, it doesn't mean that the container owns the components. It is also
responsible for selecting one of the components inside its list, in order to highlight
it. This is to know when you try to activate a button, which button should it activate.
So let's look at the implementation of the Container class. We start with the public
interface which consists of the following functions:

Container::Container()
: mChildren()
, mSelectedChild(-1)
{
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

void Container::pack(Component::Ptr component)
{
 mChildren.push_back(component);
 if (!hasSelection() && component->isSelectable())
 select(mChildren.size() - 1);
}
bool Container::isSelectable() const
{
 return false;
}

Nothing is really exciting here. We have our list with children, and we can pack a
new component into this list. The only special thing is that we check if we have a
currently selected child. If not, we check if the incoming child is selectable, and if it
is, we select it. Lastly, a container is not a selectable component.

Now to the exciting part:

void Container::handleEvent(const sf::Event& event)
{
 if (hasSelection() && mChildren[mSelectedChild]->isActive())
 {
 mChildren[mSelectedChild]->handleEvent(event);
 }
 else if (event.type == sf::Event::KeyReleased)
 {
 if (event.key.code == sf::Keyboard::W
 || event.key.code == sf::Keyboard::Up)
 {
 selectPrevious();
 }
 else if (event.key.code == sf::Keyboard::S
 || event.key.code == sf::Keyboard::Down)
 {
 selectNext();
 }
 else if (event.key.code == sf::Keyboard::Return
 || event.key.code == sf::Keyboard::Space)
 {
 if (hasSelection())
 mChildren[mSelectedChild]->activate();
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Waiting and Maintenance Area – Menus

[142]

Now this is, as said before, where the magic happens. Depending on the current state
of the container and what input we get from the events, the action that is performed
is different. Let's go through the function.

First we check if we have a valid selection through the helper function
hasSelection(), and whether the component is active. All the helper function
does is; check if the mSelectedChild variable is a valid index, zero, or more. If
both conditions are true, then the active component is the one that should receive
the events instead of the container managing it. This gives a possibility to have a
composite hierarchy in the GUI. In our simple example, this feature is not used,
but it would be extremely useful when you implement an input box, or any kind of
component that needs to capture input.

So, what if the container is the one in focus for the input? Then we provide ways for
the user to simply navigate the container and activate any selected component. In
order to make the code easier to read, we use helper functions instead of having a
large function with a lot of logic in it.

void Container::select(std::size_t index)
{
 if (mChildren[index]->isSelectable())
 {
 if (hasSelection())
 mChildren[mSelectedChild]->deselect();
 mChildren[index]->select();
 mSelectedChild = index;
 }
}

void Container::selectNext()
{
 if (!hasSelection())
 return;
 // Search next component that is selectable
 int next = mSelectedChild;
 do
 next = (next + 1) % mChildren.size();
 while (!mChildren[next]->isSelectable());
 // Select that component
 select(next);
}
void Container::selectPrevious()
{
 if (!hasSelection())
 return;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

 // Search previous component that is selectable
 int prev = mSelectedChild;
 do
 prev = (prev + mChildren.size() - 1) % mChildren.size();
 while (!mChildren[prev]->isSelectable());
 // Select that component
 select(prev);
}

The helper functions don't have too much logic in it, and thus aren't so complex. The
first one takes care of the book-keeping needed with the selection, to make sure only
one component is marked as selected. The selectPrevious() and selectNext()
functions only implement the stepping to find the next selectable component and the
looping of the menu selection.

The Container acts as the root for the GUI we want to show. You create a GUI
object at the top in your state, and then you pack other components into it. Here is a
demonstration using labels:

auto demoLabel = std::make_shared<GUI::Label>(
 "This is a demonstration!", *getContext().fonts);
mGUIContainer.pack(demoLabel);

// Later in code...
mWindow.draw(mGUIContainer);
while(mWindow.pollEvent(event))

mGUIContainer.handleEvent(event);

You see in the states code how this simplifies a lot of problems, and makes the code a
lot cleaner and nicer to read. Label is a very small class, as all it does is simply show
some text on the screen.

Label::Label(const std::string& text, const FontHolder& fonts)
: mText(text, fonts.get(Fonts::Label), 16)
{
}

bool Label::isSelectable() const
{
 return false;
}
void Label::draw(sf::RenderTarget& target, sf::RenderStates states)
const
{

www.it-ebooks.info

http://www.it-ebooks.info/

Waiting and Maintenance Area – Menus

[144]

 states.transform *= getTransform();
 target.draw(mText, states);
}
void Label::setText(const std::string& text)
{
 mText.setString(text);
}

The only thing to note is that labels are not selectable. They are just a bunch of text,
so there is no reason to be able to select them.

Let's get to the interesting part that we want in the GUI buttons. Fortunately,
together with the logic already implemented in containers and components, buttons
themselves don't need a lot of logic, other than the data they require for rendering
and execution on activation.

So what do buttons add to their class? First we have the sprite and the text that a
button renders. But most often, we want a button to execute something when it is
pressed. Instead of querying the button if it has been pressed, we go with callbacks
using the handy std::function class. When the button is activated by the GUI
container, we execute the callback.

However, the callback functionality is not favorable in every scenario, so we also
support the poll method where you ask the button if it is held down. In our system,
we call it toggle, that is, the button remains in a pressed state until explicitly told to
change. Normally, the button deactivates itself after the callback has been fired. If the
button can be toggled on the other hand, it will not deactivate; this must be explicitly
done by the user.

In the context of a button, the terms "activate" and "deactivate" refer to the two states
pressed and released. We call them "activate" and "deactivate" because these are
generalized terms for GUI design. Another case when we would like to activate but
are not pressing the actual object could be, for instance, a selected item in a list box.

Button::Button(const FontHolder& fonts, const TextureHolder& textures)
// ...
{
 mSprite.setTexture(mNormalTexture);
 mText.setPosition(sf::Vector2f(mNormalTexture.getSize() / 2u));
}

bool Button::isSelectable() const
{
 return true;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

void Button::select()
{
 Component::select();
 mSprite.setTexture(mSelectedTexture);
}

void Button::deselect()
{
 Component::deselect();
 mSprite.setTexture(mNormalTexture);
}

void Button::activate()
{
 Component::activate();
 if (mIsToggle)
 mSprite.setTexture(mPressedTexture);
 if (mCallback)
 mCallback();
 if (!mIsToggle)
 deactivate();
}

void Button::deactivate()
{
 Component::deactivate();
 if (mIsToggle)
 {
 if (isSelected())
 mSprite.setTexture(mSelectedTexture);
 else
 mSprite.setTexture(mNormalTexture);
 }
}

We only have to book-keep the current texture of the sprite and its activation/
deactivation scheme, thanks to the code we have written in the previous classes.
And the callback makes it very easy to hook in your own code to be run.

www.it-ebooks.info

http://www.it-ebooks.info/

Waiting and Maintenance Area – Menus

[146]

Updating the menu
So, let's see our code in actual use. Do you remember MenuState from the
previous chapter? There we implemented some menu logic, so you could choose
between two options. Now this can be cleaned up a lot; as a result the menu state
shrinks drastically.

MenuState::MenuState(StateStack& stack, Context context)
: State(stack, context)
, mGUIContainer()
{
 ...
 auto playButton = std::make_shared<GUI::Button>(
 *context.fonts, *context.textures);
 playButton->setPosition(100, 250);
 playButton->setText("Play");
 playButton->setCallback([this] ()
 {
 requestStackPop();
 requestStackPush(States::Game);
 });
 mGUIContainer.pack(playButton);
}

The constructor initializes the buttons and packs them into the Container. As you
can see, the lambda expression we give to the Button is the place where we actually
describe the action we want the button to do. The rest of the functions are changed to
use the GUI container to render and handle events.

void MenuState::draw()
{
 sf::RenderWindow& window = *getContext().window;
 window.setView(window.getDefaultView());
 window.draw(mBackgroundSprite);
 window.draw(mGUIContainer);
}
bool MenuState::update(sf::Time)
{
 return true;
}
bool MenuState::handleEvent(const sf::Event& event)
{
 mGUIContainer.handleEvent(event);
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[147]

This gives us much cleaner code than what we had in the previous chapter. Now
we also don't have any risk of code duplication if we would like to have a menu in
another place, such as the pause state. The pause menu looks very similar to this
code, so we won't go through that as well.

The promised key bindings
We implement a new state; the SettingsState which you access through a
button on the menu. What is the purpose for the SettingsState in our example?
Currentlywe have the key bindings inside there. Everything we need has already
been implemented with the GUI, so we only have to define the actual state.

The constructor of the SettingsState class one is pretty big so we snip it.

SettingsState::SettingsState(StateStack& stack, Context context)
: State(stack, context)
, mGUIContainer()
{
 mBackgroundSprite.setTexture(
 context.textures->get(Textures::TitleScreen));
 mBindingButtons[Player::MoveLeft] =
 std::make_shared<GUI::Button>(...);
 mBindingLabels[Player::MoveLeft] =
 std::make_shared<GUI::Label>(...);
 ... // More buttons and labels
 updateLabels();
 auto backButton = std::make_shared<GUI::Button>(...);
 backButton->setPosition(100, 375);
 backButton->setText("Back");
 backButton->setCallback([this] ()
 {
 requestStackPop();
 });
 mGUIContainer.pack(mBindingButtons[Player::MoveLeft]);
 mGUIContainer.pack(mBindingLabels[Player::MoveLeft]);
 ...
 mGUIContainer.pack(backButton);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Waiting and Maintenance Area – Menus

[148]

We have put all the binding buttons and the associated labels in a static array, and
associate to them the action they bind for. This means we don't have to duplicate a
lot of callbacks, which you may have notice are missing. Instead, we have marked
the button as one that toggles. We also have an updateLabels() function call. It's a
helper function to make sure the labels are writing out the correct name for the key.

void SettingsState::updateLabels()
{
 Player& player = *getContext().player;
 for (std::size_t i = 0; i < Player::ActionCount; ++i)
 {
 sf::Keyboard::Key key =
 player.getAssignedKey(static_cast<Player::Action>(i));
 mBindingLabels[i]->setText(toString(key));
 }
}

Thanks to having it in an array, it's easy to loop through the labels and update them.
Now moving on to the handleEvent() function, where we actually do something
with the buttons.

bool SettingsState::handleEvent(const sf::Event& event)
{
 bool isKeyBinding = false;
 for (std::size_t action = 0; action < Player::ActionCount;
++action)
 {
 if (mBindingButtons[action]->isActive())
 {
 isKeyBinding = true;
 if (event.type == sf::Event::KeyReleased)
 {
 getContext().player->assignKey
(static_cast<Player::Action>(action), event.key.code);
 mBindingButtons[action]->deactivate();
 }
 break;
 }
 }

 if (isKeyBinding)
 updateLabels();
 else
 mGUIContainer.handleEvent(event);
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

So how do we do this? If a button is pressed, then it will be activated, and since it's a
button that toggles, it will stay active until we tell it to deactivate. So we loop through
the array of buttons and check if anyone of them is active. If they are, then we are
currently binding a key. When we get a key released event, then we change that
binding on the player to the new key with the specified action before we deactivate
the button again. After the loop, we update the labels, such that they have the correct
name for everything. If no button is active, then we are not currently trying to bind a
key, and should pass the event to the GUI container instead.

When we are done, the result should look like, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Waiting and Maintenance Area – Menus

[150]

Summary
So, in this chapter we implemented the foundation for a GUI library that can
easily be extended upon. Even without extending the classes, it provided a
functional user interface.

Implementing a nice and simple composite GUI library, along with handling its
events and rendering were some of the skills attained in the chapter. Also, we have
shown how to integrate such a system into what we already had, making the menu
and the settings state richer than ever.

Now it is time to keep going into the next chapter, where we will handle gameplay
mechanics. This means adding a fun factor to the game we are making, by adding
enemies, projectiles, and other gameplay rules, which define a game's quality more
prominently than other systems do. After all, who would want to play the best
graphically accurate game if it weren't fun?

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed –
Implementing Gameplay

In Chapter 5, Diverting the Game Flow – State Stack and Chapter 6, Waiting and
Maintenance Area – Menus, you have seen how to handle menus and states, now
it is time to return to the actual game. Up till now, we have built a world that can
contain various entities, and implemented the basic interaction mechanisms through
updates, drawing, and commands. However, this is not particularly interesting as
long as the world is empty.

In this chapter, we are going to populate the world, and implement the core part of
the game; the actual gameplay with enemies, weapons, battles, and goodies. We are
going to cover the following topics:

•	 Enemy aircraft controlled by a simple artificial intelligence
•	 Projectiles such as a machine gun or missiles
•	 Pickups that improve the player's equipment
•	 Collision detection and response between entities in the scene graph
•	 The world's update cycle and automatic removal of entities

Equipping the entities
You have heard about entities for the first time in Chapter 3, Forge of the Gods –
Shaping Our World, where we built the World class and the scene graph. As a quick
reminder, the SceneNode base class was inherited by the Entity class. Entities
are the central part of this chapter. It's all about the interaction between entities of
different kinds. Before starting to implement all those interactions, it is reasonable to
think about crucial properties our entities need to have.

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[152]

Introducing hitpoints
Since, we are preparing our airplanes for the battlefield, we need to provide them
with new specific attributes. To our class definition of Entity, we add a new
member variable that memorizes the current hitpoints. Hitpoints (HP) are a measure
for the hull integrity of an entity; the entity is destroyed as soon as the hitpoints
reach or fall below zero.

In addition to the member variable, we provide member functions that allow the
modification of the hitpoints. We do not provide direct write access, however,
the hitpoints can be decreased (the plane is damaged) or increased (the plane is
repaired). Also, a destroy() function instantly destroys the entity.

class Entity : public SceneNode
{
 public:
 explicit Entity(int hitpoints);
 void repair(int points);
 void damage(int points);
 void destroy();

 int getHitpoints() const;
 bool isDestroyed() const;

 ...
 private:
 int mHitpoints;
 ...
};

The implementation is as expected: repair() adds the specified hitpoints, damage()
subtracts them, and destroy() sets them to zero.

Storing entity attributes in data tables
In our game, there are already two different airplanes with different attributes. For
this chapter, we introduce a third one to make the game more interesting. With an
increasing amount of new aircraft types, attributes such as speed, hitpoints, used
texture, or fire rate may vary strongly among them. We need to think of a way to
store those properties in a central place, allowing easy access to them.

What we clearly want to avoid are case differentiations in every Aircraft method,
since this makes the local logic code less readable, and spreads the attributes across
different functions. Instead of if/else cascades or switch statements, we can store the
attributes in a central table, and just access the table every time we need an attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[153]

Let's define the type of such a table entry in the case of an airplane. We choose the
simplest way, and have a structure AircraftData with all members public. This
type is defined in the file DataTables.hpp.

struct AircraftData
{
 int hitpoints;
 float speed;
 Textures::ID texture;
};

While AircraftData is a single table entry, the whole table is represented as a
sequence of entries, namely std::vector<AircraftData>.
Next, we write a function that initializes the table for different aircraft types.
We begin to define a vector of the correct size (Aircraft::TypeCount is the last
enumerator of the enum Aircraft::Type, it contains the number of different aircraft
types). Since the enumerators are consecutive and begin at zero, we can use them
as indices in our STL container. We thus initialize all the attributes for different
airplanes, and eventually return the filled table.

std::vector<AircraftData> initializeAircraftData()
{
 std::vector<AircraftData> data(Aircraft::TypeCount);

 data[Aircraft::Eagle].hitpoints = 100;
 data[Aircraft::Eagle].speed = 200.f;
 data[Aircraft::Eagle].texture = Textures::Eagle;

 data[Aircraft::Raptor].hitpoints = 20;
 data[Aircraft::Raptor].speed = 80.f;
 data[Aircraft::Raptor].texture = Textures::Raptor;
 ...

 return data;
}

The global function initializeAircraftData() is declared in DataTables.hpp
and defined in DataTables.cpp. It is used inside Aircraft.cpp, to initialize a
global constant Table. This constant is declared locally in the .cpp file, so only the
Aircraft internals can access it. In order to avoid name collisions in other files, we
use an anonymous namespace.

namespace
{
const std::vector<AircraftData> Table = initializeAircraftData();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[154]

Inside the Aircraft methods, we can access a constant attribute of the own plane
type using the member variable mType as index. For example, Table[mType].
hitpoints denotes the maximal hitpoints of the current aircraft.

Data tables are only the first step of storing gameplay constants. For more flexibility,
and to avoid recompiling the application, you can also store these constants externally,
for example, in a simple text file or using a specific file format. The application initially
loads these files, parses the values, and fills the data tables accordingly.

Nowadays, it is very common to load gameplay information from
external resources. There are text-based formats such as YAML or XML,
as well as, many application-specific text and binary formats. There are
also well-known C++ libraries such as Boost.Serialize (www.boost.
org) that help with loading and saving data structures from C++.
One possibility that has recently gained popularity consists of using
script languages, most notably Lua (www.lua.org), in addition to
C++. This has the advantage that not only constant data, but dynamic
functionality can be outsourced and loaded during runtime.

Displaying text
We would like to add some text on the display, for example, to show the hitpoints or
ammunition of different entities. Since this text information is supposed to be shown
next to the entity, it stands to reason to attach it to the corresponding scene node.
We therefore, create a TextNode class which inherits SceneNode as shown in the
following code:

class TextNode : public SceneNode
{
 public:
 explicit TextNode(const FontHolder& fonts,
 const std::string& text);
 void setString(const std::string& text);

 private:
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 sf::Text mText;
};

The implementation of the functions is not complicated. The SFML class sf::Text
provides most of what we need. In the TextNode constructor, we retrieve the font
from the resource holder and assign it to the text.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[155]

TextNode::TextNode(const FontHolder& fonts, const std::string& text)
{
 mText.setFont(fonts.get(Fonts::Main));
 mText.setCharacterSize(20);
 setString(text);
}

The function to draw the text nodes just forwards the call to the SFML render target,
as you know it from sprites.

void TextNode::drawCurrent(sf::RenderTarget& target, sf::RenderStates
states) const
{
 target.draw(mText, states);
}

For the interface, mainly the following method is interesting. It assigns a new string
to the text node, and automatically adapts to its size. centerOrigin() is a utility
function we wrote; it sets the object's origin to its center, which simplifies positioning
a lot.

void TextNode::setString(const std::string& text)
{
 mText.setString(text);
 centerOrigin(mText);
}

In the Aircraft constructor, we create a text node and attach it to the aircraft itself.
We keep a pointer mHealthDisplay as a member variable and let it point to the
attached node.

std::unique_ptr<TextNode> healthDisplay(new TextNode(fonts, ""));
mHealthDisplay = healthDisplay.get();
attachChild(std::move(healthDisplay));

In the method Aircraft::update(), we check for the current hitpoints, and convert
them to a string, using our custom toString() function. The text node's string and
relative position are set. Additionally, we set the text node's rotation to the negative
aircraft rotation, which compensates the rotation in total. We do this in order to have
the text always upright, independent of the aircraft's orientation.

mHealthDisplay->setString(toString(getHitpoints()) + " HP");
mHealthDisplay->setPosition(0.f, 50.f);
mHealthDisplay->setRotation(-getRotation());

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[156]

Creating enemies
Enemies are other instances of the Aircraft class. They appear at the top of the
screen and move downwards, until they fly past the bottom of the screen. Most
properties are the same for the player and enemies, so we only explain the new
aircraft functionality.

Movement patterns
By default, enemies fly downwards in a straight line. But it would be nice if different
enemies moved differently, giving the feeling of a very basic artificial intelligence
(AI). Thus, we introduce specific movement patterns. Such a pattern can be
described as a sequence of directions to which the enemy airplane heads. A direction
consists of an angle and a distance.

struct Direction
{
 Direction(float angle, float distance);
 float angle;
 float distance;
};

Our data table for aircraft gets a new entry for the sequence of directions as shown in
following code:

struct AircraftData
{
 int hitpoints;
 float speed;
 Textures::ID texture;
 std::vector<Direction> directions;
};

Let's implement a zigzag movement pattern for the Raptor plane. First, it steers for
80 units in 45 degrees direction. Then, the angle changes to -45 degrees, and the
plane traverses 160 units back. Last, it moves again 80 units in +45 degrees direction,
until it arrives at its original x position.

data[Aircraft::Raptor].directions.push_back(Direction(45, 80));
data[Aircraft::Raptor].directions.push_back(Direction(-45, 160));
data[Aircraft::Raptor].directions.push_back(Direction(45, 80));

For the Avenger plane, we use a slightly more complex pattern: it is essentially a zigzag,
but between the two diagonal movements, the plane moves straight for 50 units.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[157]

data[Aircraft::Avenger].directions.push_back(Direction(+45, 50));
data[Aircraft::Avenger].directions.push_back(Direction(0, 50));
data[Aircraft::Avenger].directions.push_back(Direction(-45, 100));
data[Aircraft::Avenger].directions.push_back(Direction(0, 50));
data[Aircraft::Avenger].directions.push_back(Direction(+45, 50));

The following figure shows the sequence of directions for both planes; the Raptor
plane is located on the left, Avenger on the right:

This way of defining movement is very simple, yet it enables a lot of possibilities.
You can let the planes fly in any direction (also sideward or backwards); you can
even approximate curves when using small intervals.

Now, we look at the logic we have to implement to follow these movement patterns.
To the Aircraft class, we add two member variables: mTravelledDistance, which
denotes the distance already travelled for each direction, and mDirectionIndex, to
know which direction the plane is currently taking.

First, we retrieve the aircraft's movement pattern and store it as a reference to const
named directions. We only proceed if there are movement patterns for the current
type (otherwise the plane flies straight down).

void Aircraft::updateMovementPattern(sf::Time dt)
{
 const std::vector<Direction>& directions
 = Table[mType].directions;
 if (!directions.empty())
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[158]

Second, we check if the current direction has already been passed by the plane (that
is, the travelled distance is higher than the direction's distance). If so, the index is
advanced to the next direction. The modulo operator allows a cycle; after finishing
the last direction, the plane begins again with the first one.

 float distanceToTravel
 = directions[mDirectionIndex].distance;
 if (mTravelledDistance > distanceToTravel)
 {
 mDirectionIndex
 = (mDirectionIndex + 1) % directions.size();
 mTravelledDistance = 0.f;
 }

Now, we have to get a velocity vector out of the angle. First, we turn the angle
by 90 degrees (by default, 0 degrees points to the right), but since our planes fly
downwards, we work in a rotated coordinate system, such that we can use a minus
to toggle between left/right. We also have to convert degrees to radians, using our
function toRadian().

The velocity's x component is computed using the cosine of the angle multiplied
with the maximal speed; analogue for the y component, where the sine is used.
Eventually, the travelled distance is updated:

 float radians
 = toRadian(directions[mDirectionIndex].angle + 90.f);
 float vx = getMaxSpeed() * std::cos(radians);
 float vy = getMaxSpeed() * std::sin(radians);
 setVelocity(vx, vy);
 mTravelledDistance += getMaxSpeed() * dt.asSeconds();
 }
}

Note that if the distance to travel is no multiple of the aircraft
speed, the plane will fly further than intended. This error is usually
small, because there are many logic frames per second, and hardly
noticeable, since each enemy will only be in the view for a short time.

Spawning enemies
It would be good if enemies were initially inactive, and the world created them
as soon as they come closer to the player. By doing so, we do not need to process
enemies that are relevant in the distant future; the scene graph can concentrate on
updating and drawing active enemies.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[159]

We create a structure nested inside the World class that represents a spawn point for
an enemy.

struct SpawnPoint
{
 SpawnPoint(Aircraft::Type type, float x, float y);

 Aircraft::Type type;
 float x;
 float y;
};

A member variable World::mEnemySpawnPoints of type
std::vector<SpawnPoint> holds all future spawn points. As soon as an enemy
position enters the battlefield, the corresponding enemy is created and inserted to the
scene graph, and the spawn point is removed.

The World class member function getBattlefieldBounds(), returns
sf::FloatRect to the battlefield area, similar to getViewBounds(). The battlefield
area extends the view area by a small rectangle at the top, inside which new
enemies spawn before they enter the view. If an enemy's y coordinate lies below the
battlefield's top member, the enemy will be created at its spawn point. Since enemies
face downwards, they are rotated by 180 degrees.

void World::spawnEnemies()
{
 while (!mEnemySpawnPoints.empty()
 && mEnemySpawnPoints.back().y
 > getBattlefieldBounds().top)
 {
 SpawnPoint spawn = mEnemySpawnPoints.back();

 std::unique_ptr<Aircraft> enemy(
 new Aircraft(spawn.type, mTextures, mFonts));
 enemy->setPosition(spawn.x, spawn.y);
 enemy->setRotation(180.f);

 mSceneLayers[Air]->attachChild(std::move(enemy));

 mEnemySpawnPoints.pop_back();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[160]

Now, let's insert the spawn points. addEnemy() effectively calls
mEnemySpawnPoints.push_back(), and interprets the passed coordinates relative to
the player's spawn position. After inserting all spawn points, we sort them by their
y coordinates. By doing so, spawnEnemies() needs to check only the elements at the
end of the sequence instead of iterating through it every time.

void World::addEnemies()
{
 addEnemy(Aircraft::Raptor, 0.f, 500.f);
 addEnemy(Aircraft::Avenger, -70.f, 1400.f);
 ...

 std::sort(mEnemySpawnPoints.begin(), mEnemySpawnPoints.end(),
 [] (SpawnPoint lhs, SpawnPoint rhs)
 {
 return lhs.y < rhs.y;
 });
}

Here is an example of the player facing four Avenger enemies. Above each, you see
how many hitpoints it has left.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[161]

Adding projectiles
Finally, time to add what makes a game fun. Shooting down stuff is essential for
our game. The code to interact with the World class is already defined, thanks to the
actions in Player and to the existing Entity base class. All that's left is to define the
projectiles themselves.

We start with the Projectile class. We have normal machine gun bullets and
homing missiles represented by the same class. This class inherits from the Entity
class and is quite small, since it doesn't have anything special that differentiates it
from other entities apart from collision tests, which we will talk about later.

class Projectile : public Entity
{
 public:
 enum Type
 {
 AlliedBullet,
 EnemyBullet,
 Missile,
 TypeCount
 };

 public:
 Projectile(Type type,
 const TextureHolder& textures);

 void guideTowards(sf::Vector2f position);
 bool isGuided() const;

 virtual unsigned int getCategory() const;
 virtual sf::FloatRect getBoundingRect() const;
 float getMaxSpeed() const;
 int getDamage() const;

 private:
 virtual void updateCurrent(sf::Time dt,
 CommandQueue& commands);
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[162]

 private:
 Type mType;
 sf::Sprite mSprite;
 sf::Vector2f mTargetDirection;
};

Nothing fun or exciting here; we add some new helper functions such as the one to
guide the missile towards a target. So let's have a quick look at the implementation.
You might notice, we use the same data tables that we used in the Aircraft class to
store data.

Projectile::Projectile(Type type, const TextureHolder& textures)
: Entity(1)
, mType(type)
, mSprite(textures.get(Table[type].texture))
{
 centerOrigin(mSprite);
}

The constructor simply creates a sprite with the texture we want for the projectile.
We will check out the guide function when we actually implement the behavior of
missiles. The rest of the functions don't hold anything particularly interesting. Draw
the sprite and return a category for the commands and other data needed.

To get an overview of the class hierarchy in the scene graph, here is an inheritance
diagram of the current scene node types. The data table structures which are
directly related to their corresponding entities are shown at the bottom of the
following diagram:

SceneNode

TextNodeEntitySpriteNode

PickupAircraftProjectile

PickupDataAircraftDataProjectileData

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[163]

Firing bullets and missiles
So let's try and shoot some bullets in the game. We start with adding two new
actions in the Player class: Fire and LaunchMissile. We define the default key
bindings for these to be the Space bar and M keys.

Player::Player()
{
 // Set initial key bindings
 mKeyBinding[sf::Keyboard::Left] = MoveLeft;
 mKeyBinding[sf::Keyboard::Right] = MoveRight;
 mKeyBinding[sf::Keyboard::Up] = MoveUp;
 mKeyBinding[sf::Keyboard::Down] = MoveDown;
 mKeyBinding[sf::Keyboard::Space] = Fire;
 mKeyBinding[sf::Keyboard::M] = LaunchMissile;

 // ...
}

void Player::initializeActions()
{
 // ...
 mActionBinding[Fire].action = derivedAction<Aircraft>(
 std::bind(&Aircraft::fire, _1));
 mActionBinding[LaunchMissile].action =derivedAction<Aircraft>(
 std::bind(&Aircraft::launchMissile, _1));
}

So when we press the keys bound to those two actions, a command will be fired
which calls the aircraft's fire() and launchMissile() functions. However, we
cannot put the actual code that fires the bullet or missile in those two functions. The
reason is, because if we could, we would have no concept of how much time has
elapsed. We don't want to fire a projectile for every frame. We want there to be some
cool down until the next time we fire a bullet, to accomplish that we need to use the
delta time passed in the aircraft's update() function.

Instead, we mark what we want to fire by setting the Boolean flags mIsFiring
or mIsLaunchingMissile to true in the Aircraft::fire() and the
Aircraft::launchMissile() functions, respectively. Then we perform the actual
logic in the update() function using commands. In order to make the code clearer to
read, we have extracted it to its own function.

void Aircraft::checkProjectileLaunch(sf::Time dt, CommandQueue&
commands)
{
 if (mIsFiring && mFireCountdown <= sf::Time::Zero)

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[164]

 {
 commands.push(mFireCommand);
 mFireCountdown += sf::seconds(1.f / (mFireRateLevel+1));
 mIsFiring = false;
 }
 else if (mFireCountdown > sf::Time::Zero)
 {
 mFireCountdown -= dt;
 }

 if (mIsLaunchingMissile)
 {
 commands.push(mMissileCommand);
 mIsLaunchingMissile = false;
 }
}

We have a cool down for the bullets. When enough time has elapsed since the
last bullet was fired, we can fire another bullet. The actual creation of the bullet is
done using a command which we will look at later. After we spawn the bullet, we
reset the countdown. Here, we use += instead of =; with a simple assignment, we
would discard a little time remainder in each frame, generating a bigger error as
time goes by. The time of the countdown is calculated using a member variable
mFireCountdown in Aircraft. Like that, we can improve the aircraft's fire rate easily.
So if the fire rate level is one, then we can fire a bullet every half a second, increase
it to level two, and we get every third of a second. We also have to remember to
keep ticking down the countdown member, even if the user is not trying to fire.
Otherwise, the countdown would get stuck when the user released the Space bar.

Next is the missile launch. We don't need a countdown here, because in the Player
class, we made the input an event-based (not real-time based) input.

bool Player::isRealtimeAction(Action action)
{
 switch (action)
 {
 case MoveLeft:
 case MoveRight:
 case MoveDown:
 case MoveUp:
 case Fire:
 return true;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[165]

 default:
 return false;
 }
}

Since the switch statement does not identify LaunchMissile as a real-time input,
the user has to release the M key before he can shoot another missile. The user wants
to save his missiles for the moment he needs them.

So, let's look at the commands that we perform, in order to actually shoot the
projectiles. We define them in the constructor in order to have access to the texture
holder. This shows one of the strengths of lambda expressions in C++11.

Aircraft::Aircraft(Type type, const TextureHolder& textures)
{
 mFireCommand.category = Category::SceneAirLayer;
 mFireCommand.action =
 [this, &textures] (SceneNode& node, sf::Time)
 {
 createBullets(node, textures);
 };

 mMissileCommand.category = Category::SceneAirLayer;
 mMissileCommand.action =
 [this, &textures] (SceneNode& node, sf::Time)
 {
 createProjectile(node, Projectile::Missile, 0.f, 0.5f,
 textures);
 };
}

Now, we can pass the texture holder to the projectiles without any extra difficulty,
and we don't even have to keep an explicit reference to the resources. This makes the
Aircraft class and our code a lot simpler, since the reference does not need to exist
in the update() function.

The commands are sent to the air layer in the scene graph. This is the node where we
want to create our projectiles. The missile is a bit simpler to create than bullets, that's
why we call directly Aircraft::createProjectile(). So how do we create bullets
then?

void Aircraft::createBullets(SceneNode& node, const TextureHolder&
textures) const
{
 Projectile::Type type = isAllied()
 ? Projectile::AlliedBullet : Projectile::EnemyBullet;

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[166]

 switch (mSpreadLevel)
 {
 case 1:
 createProjectile(node, type, 0.0f, 0.5f, textures);
 break;

 case 2:
 createProjectile(node, type, -0.33f, 0.33f, textures);
 createProjectile(node, type, +0.33f, 0.33f, textures);
 break;

 case 3:
 createProjectile(node, type, -0.5f, 0.33f, textures);
 createProjectile(node, type, 0.0f, 0.5f, textures);
 createProjectile(node, type, +0.5f, 0.33f, textures);
 break;
 }
}

For projectiles, we provide different levels of fire spread in order to make the game
more interesting. The player can feel that progress is made, and that his aircraft
becomes more powerful as he is playing. The function calls createProjectile()
just as it was done for the missile.

So how do we actually create the projectile and attach it to the scene graph?

void Aircraft::createProjectile(SceneNode& node,
Projectile::Type type, float xOffset, float yOffset,
const TextureHolder& textures) const
{
 std::unique_ptr<Projectile> projectile(
 new Projectile(type, textures));

 sf::Vector2f offset(
 xOffset * mSprite.getGlobalBounds().width,
 yOffset * mSprite.getGlobalBounds().height);
 sf::Vector2f velocity(0, projectile->getMaxSpeed());

 float sign = isAllied() ? -1.f : +1.f;
 projectile->setPosition(getWorldPosition() + offset * sign);
 projectile->setVelocity(velocity * sign);
 node.attachChild(std::move(projectile));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[167]

We create the projectile with an offset from the player and a velocity required by
the projectile type. Also, depending on if this projectile is shot by an enemy or the
player, we will have different directions. We do not want the enemy bullets to go
upwards like the player's bullets or the other way around.

Implementing gunfire for enemies is now a tiny step; instead of calling fire() when
keys are pressed, we just call it always. We do this by adding the following code to
the beginning of the checkProjectileLaunch() function:

if (!isAllied())
 fire();

Now we have bullets that fly and split the sky.

Homing missiles
What would a modern aircraft be if it hadn't got an arsenal of homing missiles?
This is where we start to add intelligence to our missiles; they should be capable of
seeking enemies autonomously.

Let's first look at what we need to implement on the projectile site. For homing
missiles, the functions guideTowards() and isGuided(), as well as the variable
mTargetDirection are important. Their implementation looks as follows:

bool Projectile::isGuided() const
{
 return mType == Missile;
}

void Projectile::guideTowards(sf::Vector2f position)
{
 assert(isGuided());
 mTargetDirection = unitVector(position - getWorldPosition());
}

The function unitVector() is a helper we have written. It divides a vector by its
length, thus, always returns a vector of length one. The target direction is therefore a
unit vector headed towards the target.

In the function updateCurrent(), we steer our missile. We change the current
missile's velocity by adding small contributions of the target direction vector to it. By
doing so, the velocity vector continuously approaches the target direction, having the
effect that the missile flies along a curve towards the target.

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[168]

approachRate is a constant that determines, to what extent the target direction
contributes to the velocity. newVelocity, which is the weighted sum of the two
vectors, is scaled to the maximum speed of the missile. It is assigned to the missile's
velocity, and its angle is assigned to the missile's rotation. We use +90 here, because
the missile texture points upwards (instead of right).

void Projectile::updateCurrent(sf::Time dt,
CommandQueue& commands)
{
 if (isGuided())
 {
 const float approachRate = 200.f;

 sf::Vector2f newVelocity = unitVector(approachRate
 * dt.asSeconds() * mTargetDirection + getVelocity());

 newVelocity *= getMaxSpeed();
 float angle = std::atan2(newVelocity.y, newVelocity.x);

 setRotation(toDegree(angle) + 90.f);
 setVelocity(newVelocity);
 }

 Entity::updateCurrent(dt, commands);
}

Note that there are many possibilities to guide a missile. Steering
behaviors define a whole field of AI; they incorporate advanced
mechanisms such as evasion, interception, and group behavior.
Don't hesitate to search on the internet if you're interested.

Now, we have guided the missile to a certain position, but how to retrieve that position?
We want our missile to pursuit the closest enemy. For this, we switch from Projectile
to the World class, where we write a new function. First, we store all currently active
(that is, already spawned and not yet destroyed) enemies in the member variable
mActiveEnemies. With the command facility, this task is almost trivial:

void World::guideMissiles()
{
 Command enemyCollector;
 enemyCollector.category = Category::EnemyAircraft;
 enemyCollector.action = derivedAction<Aircraft>(
 [this] (Aircraft& enemy, sf::Time)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[169]

 {
 if (!enemy.isDestroyed())
 mActiveEnemies.push_back(&enemy);
 });

Next, we have to find the nearest enemy for each missile. We set up another
command, now for projectiles, that iterates through the active enemies to find the
closest one. Here, distance() is a helper function that returns the distance between
the centers of two scene nodes.

 Command missileGuider;
 missileGuider.category = Category::AlliedProjectile;
 missileGuider.action = derivedAction<Projectile>(
 [this] (Projectile& missile, sf::Time)
 {
 // Ignore unguided bullets
 if (!missile.isGuided())
 return;

 float minDistance = std::numeric_limits<float>::max();
 Aircraft* closestEnemy = nullptr;

 FOREACH(Aircraft* enemy, mActiveEnemies)
 {
 float enemyDistance = distance(missile, *enemy);

 if (enemyDistance < minDistance)
 {
 closestEnemy = enemy;
 minDistance = enemyDistance;
 }
 }

In case we found a closest enemy, we let the missile chase it.

 if (closestEnemy)
 missile.guideTowards(
 closestEnemy->getWorldPosition());
 });

After defining the second command, we push both to our queue, and reset the
container of active enemies. Remember that the commands are not yet executed, they
wait in the queue until they are invoked on the scene graph in World::update().

 mCommandQueue.push(enemyCollector);
 mCommandQueue.push(missileGuider);

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[170]

 mActiveEnemies.clear();
}

That's it, now we are able to fire and forget!

The result looks as follows:

Picking up some goodies
Now we have implemented enemies and projectiles. But even if the player shot
enemy airplanes down, and had exciting battles, he wouldn't remark that his success
changes anything. You want to give the player the feeling that he is progressing in
the game. Usual for this game genre are power-ups that the enemies drop when they
are killed. So let's go ahead and implement that in our game.

Now this is the same story as with the projectile. Most of the things we need have
already been implemented; therefore, this will be quite easy to add. What we want
is only an entity that, when the player touches it, applies an effect to the player and
disappears. Not much work with our current framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[171]

class Pickup : public Entity
{
 public:
 enum Type
 {
 HealthRefill,
 MissileRefill,
 FireSpread,
 FireRate,
 TypeCount
 };

 public:
 Pickup(Type type,
 const TextureHolder& textures);

 virtual unsigned int getCategory() const;
 virtual sf::FloatRect getBoundingRect() const;

 void apply(Aircraft& player) const;

 protected:
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 Type mType;
 sf::Sprite mSprite;
};

So, let's start looking at a few interesting parts. As usual, we have a data table,
create a sprite and center it, so the constructor looks just as you would expect
it. Let's investigate the apply() function, and how the data table is created. In
apply(), a function object stored in the table is invoked with player as argument.
The initializePickupData() function initializes the function objects, using
std::bind() that redirects to the Aircraft member functions.

void Pickup::apply(Aircraft& player) const
{
 Table[mType].action(player);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[172]

std::vector<PickupData> initializePickupData()
{
 std::vector<PickupData> data(Pickup::TypeCount);

 data[Pickup::HealthRefill].texture = Textures::HealthRefill;
 data[Pickup::HealthRefill].action
 = std::bind(&Aircraft::repair, _1, 25);

 data[Pickup::MissileRefill].texture = Textures::MissileRefill;
 data[Pickup::MissileRefill].action
 = std::bind(&Aircraft::collectMissiles, _1, 3);

 data[Pickup::FireSpread].texture = Textures::FireSpread;
 data[Pickup::FireSpread].action
 = std::bind(&Aircraft::increaseSpread, _1);

 data[Pickup::FireRate].texture = Textures::FireRate;
 data[Pickup::FireRate].action
 = std::bind(&Aircraft::increaseFireRate, _1);

 return data;
}

The pickups call already defined functions on the player aircraft that let us modify its
state. These functions may repair it, refill it with missiles, or improve its firepower.
It's nice when things just work out of the box.

That's how the scene looks when two pickups (health and fire rate) are floating in the
air. You may notice that the player's Eagle plane shoots two bullets at once, which is
the result of a previously collected fire spread pickup.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[173]

Collision detection and response
Now that our world is full of entities, let's implement interactions between them.
Most interactions occur in the form of a collision; two airplanes collide and explode,
projectiles of the player's Gatling gun perforate an enemy, and a pickup is collected
by the player, and so on.

First, we write a function that computes the bounding rectangle of an entity.
This is the smallest possible rectangle that completely contains the entity.
As such, it represents an approximation of the entity's shape, which makes
computations simpler. Here is an example implementation: getWorldTransform()
multiplies the sf::Transform objects from the scene root to the leaf.
sf::Transform::transformRect() transforms a rectangle, and may enlarge
it if there is a rotation (since the rectangle has to remain axis-aligned).
sf::Sprite::getGlobalBounds() returns the sprite's bounding rectangle relative
to the aircraft.

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[174]

sf::FloatRect Aircraft::getBoundingRect() const
{
 return getWorldTransform()
 .transformRect(mSprite.getGlobalBounds());
}

To get a better imagination of the bounding rectangle, take a look at SceneNode.cpp
in the online code base. You can uncomment the call to drawBoundingRect() inside
SceneNode::draw().

For our collision, we write a function that checks whether a collision between two
entities occurs. Here, we simply check bounding rectangles of the entities for an
overlap. This approach is not extremely accurate, but easily implemented, and good
enough for many purposes.

There is a wide range of more elaborated collision detection
algorithms. A popular algorithm is the Separating Axis
Theorem, which checks for collisions between two
convex polygons. You can read more about it at www.
metanetsoftware.com/technique/tutorialA.html.

Our function is implemented using the SFML method
sf::FloatRect::intersects() which checks for rectangle intersection.

bool collision(const SceneNode& lhs, const SceneNode& rhs)
{
 return lhs.getBoundingRect()
 .intersects(rhs.getBoundingRect());
}

Note that we wrote the function for SceneNode and not
Entity. This is because collision occurs inside the scene
graph, so we avoid the downcasts. Scene nodes that do not
have a physical representation have an empty bounding
rectangle, which does not intersect with others.

Finding the collision pairs
Given the collision() function, we can determine in each frame, which pairs of
entities collide. We store the pointers to the entities in std::pair<SceneNode*,
SceneNode*>, for which we have created the SceneNode::Pair typedef. All collision
pairs are stored in a std::set instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[175]

Basically, we need to compare every scene node with every other scene node to
determine if a collision between the two occurs. To do this in a recursive way, we use
two methods. The first one, checkNodeCollision(), evaluates a collision between
*this with its children, and the function argument node.

The first three lines check if a collision occurs, and if the nodes are not identical
(we do not want an entity to collide with itself). By calling isDestroyed(), we
exclude entities that have already been destroyed, and that are no longer part of
the gameplay. If the four conditions are true, we insert the pair to our set. The STL
algorithm std::minmax() takes two arguments and returns a pair with first being
the smaller, and second being the greater of the two arguments (where smaller
means lower address in this case). Thus, std::minmax(a,b) and std::minmax(b,a)
return always the same pair. This comes in very handy in our case—together with
the sorted set, we automatically ensure that a collision between entities A and B is
inserted only once (and not twice as A-B and B-A pairs).

void SceneNode::checkNodeCollision(SceneNode& node, std::set<Pair>&
collisionPairs)
{
 if (this != &node && collision(*this, node)
 && !isDestroyed() && !node.isDestroyed())
 collisionPairs.insert(std::minmax(this, &node));

 FOREACH(Ptr& child, mChildren)
 child->checkNodeCollision(node, collisionPairs);
}

The second part invokes the function recursively for all children of *this.

Now, we have checked the whole scene graph against one node, but we want to
check the whole scene graph against all nodes. This is where our second function
checkSceneCollision() comes into play. For the argument and all its children,
a collision between the current node *this and the argument node sceneGraph is
evaluated.

void SceneNode::checkSceneCollision(SceneNode& sceneGraph,
std::set<Pair>& collisionPairs)
{
 checkNodeCollision(sceneGraph, collisionPairs);

 FOREACH(Ptr& child, sceneGraph.mChildren)
 checkSceneCollision(*child, collisionPairs);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[176]

Reacting to collisions
What we have seen now is how collision detection works. The other part is collision
response, where collisions result in gameplay actions.

For every frame, we store all collided scene nodes in a set. Now we can iterate
through this set of SceneNode* pairs, and dispatch on the categories of each collision
partner. First, we write a helper function that returns true if a given pair matches two
assumed categories. For example, we want to check if a pair represents a collision
between the player aircraft and a dropped pickup. We do not want the order of the
parameters type1 and type2 to influence the result, that's why we check if the first
node matches the first category and the second node the second category, as well as
vice versa. In the vice versa case, we swap the node pointers so that their order is the
same as the arguments' order. Because the first parameter colliders is passed by
reference, the caller will then have a consistent ordering (colliders.first matches
type1 and colliders.second matches type2).

bool matchesCategories(SceneNode::Pair& colliders,
 Category::Type type1, Category::Type type2)
{
 unsigned int category1 = colliders.first->getCategory();
 unsigned int category2 = colliders.second->getCategory();

 if (type1 & category1 && type2 & category2)
 {
 return true;
 }
 else if (type1 & category2 && type2 & category1)
 {
 std::swap(colliders.first, colliders.second);
 return true;
 }
 else
 {
 return false;
 }
}

Our actual dispatch function is now rather simple. We check the whole scene graph
for collisions, and fill the set with collision pairs. Then, we iterate through the set and
differentiate between the collisions categories.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[177]

void World::handleCollisions()
{
 std::set<SceneNode::Pair> collisionPairs;
 mSceneGraph.checkSceneCollision(mSceneGraph, collisionPairs);

 FOREACH(SceneNode::Pair pair, collisionPairs)
 {
 if (matchesCategories(pair,
 Category::PlayerAircraft, Category::EnemyAircraft))
 {
 ... // React to player-enemy collision
 }
 }
}

We have four combinations of categories which trigger a collision, as shown in the
following diagram:

Correspondingly, we need four calls to matchesCategories() in order to react to all
possible combinations. Note that the argument pair is passed by reference—possibly
its members are swapped to match the category order. Therefore, we can be sure about
the pointer's categories, and safely downcast from SceneNode* to the concrete entity.

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[178]

We begin with the collision between the two airplanes. In this case, we always
destroy the enemy, and deal damage to the player, depending on the enemy's
current hitpoints.

if (matchesCategories(pair,
 Category::PlayerAircraft, Category::EnemyAircraft))
{
 auto& player = static_cast<Aircraft&>(*pair.first);
 auto& enemy = static_cast<Aircraft&>(*pair.second);

 player.damage(enemy.getHitpoints());
 enemy.destroy();
}

Next, we handle the case where the player's aircraft collects a pickup by touching it.
We apply the effect to the player and destroy the pickup.

else if (matchesCategories(pair,
 Category::PlayerAircraft, Category::Pickup))
{
 auto& player = static_cast<Aircraft&>(*pair.first);
 auto& pickup = static_cast<Pickup&>(*pair.second);

 pickup.apply(player);
 pickup.destroy();
}

Last, we react to the collision between projectiles and aircraft. We only consider
player projectiles that hit the enemy airplanes, and enemy projectiles that hit the
player's airplane. Since the reaction is the same for both cases, we can unify them.
We destroy the projectile, and deal the corresponding damage to the aircraft.

else if (matchesCategories(pair,
 Category::EnemyAircraft, Category::AlliedProjectile)
 || matchesCategories(pair,
 Category::PlayerAircraft, Category::EnemyProjectile))
{
 auto& aircraft = static_cast<Aircraft&>(*pair.first);
 auto& projectile = static_cast<Projectile&>(*pair.second);

 aircraft.damage(projectile.getDamage());
 projectile.destroy();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[179]

Very straightforward, isn't it? You can easily implement new interactions by adding
another if clause. Want to intercept enemy missiles? No problem; add a case for
Category::AlliedProjectile and Category::EnemyProjectile. Allow friendly
fire, and see enemy planes taking each other down? Just write a collision for two
entities of category Category::EnemyAircraft.

An outlook on optimizations
Since we test all possible scene node combinations, the number of collision checks
increases quadratically (by a power of two) with the number of scene nodes. This can
become a performance bottleneck if we have very many entities. There are several
ways to cope with this issue.

First, needless comparisons can be reduced. Recursion can be replaced with iteration;
one possible solution is to write an iterator class that traverses scene graphs. This
would avoid checking each combination twice, and checking a scene node for
collision with itself.

for (SceneNode::iterator left = mSceneGraph.begin();
 left != mSceneGraph.end(); ++left)
{
 for (SceneNode::iterator right = std::next(left);
 right != mSceneGraph.end(); ++right)
 {
 ... // Collision detection
 }
}

By storing pointers to entities that are interesting for collisions (instead of all
scene nodes) in a separate container, we would reduce unnecessary checks too.
We could even go further and directly store the entities with their full type.
For example, we might have std::vector<Aircraft*> for the enemies and
std::vector<Projectile*> for the allied bullets, so there would be no need for
category dispatching.

Those approaches are a good start, but the time complexity is still quadratic. In a big
world, it is clearly meaningless to check every possible pair of entities for collisions,
since most of them are too far away. An optimization would base on locality. We
only check entities that are close to each other. In order to achieve this, the world
could be divided into a grid of equally sized cells. Each entity is assigned to a cell.
For collision detection, only entities inside the same cell and the neighbor cells are
checked, which drastically reduces the amount of required comparisons. Going this
way further would lead to data structures such as quadtrees.

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[180]

Concerning collision response, if there are many cases to consider, the dispatching
could be done using a two-dimensional lookup table. The categories of both partners
would serve as indices, and the table entries are function objects that implement the
collision response for a concrete collider pair.

As nice as these optimizations sound, there is a price to pay—the implementation
becomes more complicated. A decent amount of book keeping is required to keep
everything synchronous, for example, the grid. Each time an entity moves, it might
move to another cell, so we have to keep track of it. Newly created entities must be
inserted, and destroyed entities must be removed from the right cell.

In conclusion, such optimizations are not only nice to have, but a bare necessity when
the world and the number of entities grow. However, the implied book-keeping
overhead does not pay off for smaller scenarios, which is a reason why we kept things
simple in our game.

An interacting world
A lot of game logic has been implemented in the different entities, now we look at
functionality that is defined in the World class. You have already seen the collision in
the last section.

Cleaning everything up
During the game, entities are destroyed in battle, and have to be removed from the
scene graph. We do not remove them instantly. Once in a frame, we iterate through
the scene graph, check which nodes have been destroyed, and detach them from
their parents. To find out whether a node has been destroyed, we write the virtual
function SceneNode::isDestroyed(). By default, it returns false. A derived entity
may specify a condition under which it returns true. Usually, this will be the case
when the hitpoints are zero or less (that is, the entity is destroyed).

bool Entity::isDestroyed() const
{
 return mHitpoints <= 0;
}

In addition, we add a virtual function that checks if a scene node should be removed
from the scene graph. By default, this is true as soon as the node is destroyed.

bool SceneNode::isMarkedForRemoval() const
{
 return isDestroyed();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[181]

However, this need not always be the case. Imagine an entity that has been
destroyed, but still needs to reside for some time in the world, in order to drop
a pickup, show an explosion animation, or similar. While isDestroyed() tells
whether entities are logically dead and therefore, don't interact with the world
anymore, isMarkedForRemoval() tells whether the scene node can be removed
from the scene graph. The Aircraft class itself delays removal after destruction,
to let enemies drop their pickups in the update() function. There, a special flag
determines the return value.

bool Aircraft::isMarkedForRemoval() const
{
 return mIsMarkedForRemoval;
}

The removal is performed by the following method. In the first part, std::remove_
if() rearranges the children container, so that all active nodes are at the beginning,
and the ones to remove at the end. The call to erase() actually destroys these
SceneNode::Ptr objects. In the second part, the function is recursively called for all
child nodes. std::mem_fn() creates a function object which returns true, if and only
if, the member function passed as argument returns true.

void SceneNode::removeWrecks()
{
 auto wreckfieldBegin = std::remove_if(mChildren.begin(),
 mChildren.end(), std::mem_fn(&SceneNode::isMarkedForRemoval));
 mChildren.erase(wreckfieldBegin, mChildren.end());

 std::for_each(mChildren.begin(), mChildren.end(),
 std::mem_fn(&SceneNode::removeWrecks));
}

This function can now be called in World::update(), and we automatically get rid
of all nodes that request their removal.

Out of view, out of the world
Most entities that leave the current view become meaningless. Launched projectiles
that have missed their enemy unwaveringly follow their path in the endless void.
Enemies that fly past the screen continue to fly, although the player will never see
them again, which can be costly performance-wise.

www.it-ebooks.info

http://www.it-ebooks.info/

Warfare Unleashed – Implementing Gameplay

[182]

In order to reduce the amount of unnecessary entities, especially having our collision
algorithm in mind, we want to remove entities that are located outside the view.
Remember that getBattlefieldBounds() returns sf::FloatRect, which is slightly
bigger than getViewBounds(). It also contains the area beyond the view, inside
which the enemies spawn. We create a command that destroys all entities, of which
the bounding rectangle doesn't intersect with the battlefield's bounding rectangle
(that is, they are outside).

void World::destroyEntitiesOutsideView()
{
 Command command;
 command.category = Category::Projectile
 | Category::EnemyAircraft;
 command.action = derivedAction<Entity>(
 [this] (Entity& e, sf::Time)
 {
 if (!getBattlefieldBounds()
 .intersects(e.getBoundingRect()))
 e.destroy();
 });

 mCommandQueue.push(command);
}

The final update
A lot of new logic code has found its way into the World class; the different functions
are invoked from World::update(), which currently looks as follows. The function
names are self-explanatory.

void World::update(sf::Time dt)
{
 mWorldView.move(0.f, mScrollSpeed * dt.asSeconds());
 mPlayerAircraft->setVelocity(0.f, 0.f);

 destroyEntitiesOutsideView();
 guideMissiles();

 while (!mCommandQueue.isEmpty())
 mSceneGraph.onCommand(mCommandQueue.pop(), dt);
 adaptPlayerVelocity();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[183]

 handleCollisions();
 mSceneGraph.removeWrecks();
 spawnEnemies();

 mSceneGraph.update(dt, mCommandQueue);
 adaptPlayerPosition();
}

Victory and defeat
Equipped with the Eagle aircraft, you can accept the challenge to maneuver through
a mission. Depending on your skill, you may reach the end of the level and become a
pilot legend. Or you fall victim to the enemy fleet and die in a horrible plane crash.

Anyway, the player should be informed by the game about his fate. In most games,
there are victory and defeat conditions. In our airplane game, a mission is complete if
you cross the level's border at the end. A mission is failed if your plane is destroyed.
To display this information, we have written GameOverState that displays an
appropriate message. Of course, this can be extended to show high scores, statistics,
or save the game between multiple missions. But the basic principle remains
the same. We reuse the states and GUI from the previous chapters. Since their
implementation should be clear, we do not paste their code here. However, you are
free to look at the original code base at any time.

Summary
This was probably the most difficult chapter up to now, as it combines all the game-
related features we have developed in earlier chapters: resources, world, entities,
input, and commands. Despite all the things to consider, it became apparent that the
existing framework made a lot of new tasks simple to achieve.

In this chapter, you learned about essential gameplay mechanics and their
interaction. We added projectiles to represent bullets and homing missiles. We let
enemies spawn, follow certain movement patterns, fire in regular intervals, and
drop pickups upon destruction. Collision detection and response was implemented,
and we discussed performance considerations. Eventually, we managed the world's
update cycle, and cleaned up destroyed entities.

Now that the game foundation has been built, we are ready to add more graphical
content. In the next chapter, we are going to add a variety of visual effects to improve
the appearance of our game.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding
Visual Effects

Throughout the previous chapters, we have constantly been adding functionality.
We finally reached a point where our game is playable, where all the game
mechanisms are implemented. With a bit of creativity, you should already be able
to write your own small game. Nevertheless, we are not going to quit now—a game
is more than just gameplay. A very important part of games are the graphics. Be
it cutting-edge 3D scenes in the newest real-time strategy game or the nostalgic
atmosphere of a pixel-art indie title, graphics determine to a big extent how the
player feels.

In this chapter, we are going to look behind the scenes of rendering. We are going to
cover various techniques that are used in modern games to create graphical effects of
different kinds. To mention a few:

•	 Texture atlases and how different objects can be stored in one texture
•	 Texture mapping and vertex arrays
•	 Particle systems to create effects such as fire or smoke
•	 Animations that show an object in motion
•	 Render textures as an alternative to render windows
•	 Shaders to give the whole scene a distinct look

While the previous chapter concerned gameplay and therefore didn't work a lot with
SFML, this one will introduce many new features of its Graphics module.

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[186]

Defining texture atlases
A texture atlas describes the concept of a single texture that contains multiple
objects. You may also encounter other terms, such as sprite sheet, or tile set in the
case of squared tiles put together. Texture atlases allow having fewer image files,
which decreases the amount of switches between different textures at runtime. Since
texture switching is a rather slow operation on the graphics card, using texture
atlases may result in notable speedups. Till now, we used separate textures for each
object: one for each aircraft, pick-up, projectile, button, and background. Every
texture was stored in its own PNG file. The code design looked as follows:

•	 Textures were stored inside TextureHolder, our container storing
sf::Texture objects.

•	 We had an enum Textures::ID to identify the different textures in a
TextureHolder. By that, we could easily refer to different textures without
knowing the actual sf::Texture object or the filename.

•	 The textures used in the scene were loaded in World::loadTextures().
•	 They were bound to sprites in the specific entity classes such as Aircraft.

For a given entity, data tables stored the texture ID it used.

The SFML sprite class sf::Sprite offers the possibility to set a texture rectangle
(or texture rect for short), containing the pixel coordinates of a specific object inside
the texture. You already came across this functionality when we implemented the
tiling background for our world in Chapter 3, Forge of the Gods – Shaping Our World.
The rectangle is of type sf::IntRect and stores four integral values: the x and
y coordinates of the left-upper pixel (members left and top) as well as the size
(members width and height).

For example, the following texture rectangle rect begins at (0, 15) and has a width
of 30 and height of 20. The size excludes the last pixel; the pixel with coordinates
(30, 35) is outside the rectangle.

sf::IntRect rect(0, 15, 30, 20);

Given a texture and a rectangle, you can initialize a sprite using the constructor, or
you can set the attributes later with the corresponding methods.

sf::Texture texture = ...;
sf::IntRect rect = ...;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[187]

sf::Sprite sprite(texture, rect);

sf::Sprite sprite2;
sprite2.setTexture(texture);
sprite2.setTextureRect(rect);

If no rectangle is specified, the sprite will assume that the whole texture is used. This
is what we have always done so far.

Adapting the game code
We need to extend a few parts of our code to work with texture rects instead of
whole textures. First, we must remove many of our resource identifiers. All the
aircraft, projectile and pickup textures will be merged to one texture, with an ID
of Entities. The texture containing the three buttons is accessible via Buttons.
Eventually, we only have the following identifiers:

namespace Textures
{
 enum ID
 {
 Entities,
 Jungle,
 TitleScreen,
 Buttons,
 Explosion,
 Particle,
 FinishLine,
 };
}

In case you wonder, Jungle is the new background we will paint. It is much bigger
and far more interesting than the desert we had before. FinishLine is a texture used
to mark the end of the level, instead of the black void. It is embedded to the scene
graph using SpriteNode. Explosion and Particle are going to be introduced soon.

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[188]

With the new image files in our Media folder, the method World::loadTextures()
can be adapted accordingly. We also modify our data tables to store a texture
rectangle in addition to the texture ID. The rectangle coordinates are hardcoded in
the initialization functions.

struct AircraftData
{
 Textures::ID texture;
 sf::IntRect textureRect;
 ...
};

std::vector<AircraftData> initializeAircraftData()
{
 std::vector<AircraftData> data(Aircraft::TypeCount);

 data[Aircraft::Eagle].texture = Textures::Entities;
 data[Aircraft::Eagle].textureRect = sf::IntRect(0, 0, 48, 64);
 ...

 return data;
}

The last part to extend is the entities that use the textures. Now, we initialize the
sprite with both texture and texture rect:

namespace
{
const std::vector<AircraftData> Table = initializeAircraftData();
}

Aircraft::Aircraft(Type type, const TextureHolder& textures,
 const FontHolder& fonts)
: mSprite(
 textures.get(Table[type].texture), // sf::Texture
 Table[type].textureRect) // sf::IntRect
, ...
{
 centerOrigin(mSprite);
 ...
}

Analogous steps have been applied for textures other than the one for the Eagle
aircraft. That's pretty much it; the new code should now directly work with texture
atlases! Visually, there will be no difference to what we had before.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[189]

Low-level rendering
Besides the high-level convenience classes sf::Sprite, sf::Text and sf::Shape,
SFML provides a low-level graphics API which is more complicated to use, but
allows more flexibility. In the next section, we are going to look behind the scenes of
rendering and discuss corresponding techniques as they are implemented in SFML.

OpenGL and graphics cards
The graphics card architecture consists of many components. Notable are the
graphics processing unit (GPU), which performs computations on the graphics
card, and the video memory, which stores data such as textures. In contrast to their
counterparts CPU and RAM, graphics cards' components are highly optimized to
process 2D and 3D graphics.

SFML is built on top of the Open Graphics Library (OpenGL). OpenGL is, like
DirectX, a specification of an interface to the graphics card. Operating systems
provide an API written in C that allows applications to access graphic card
functionality. Newer graphics cards support higher OpenGL versions and thus have
the benefit of more modern features.

The way SFML is designed is heavily influenced by the underlying OpenGL
functionality. SFML itself uses an object-oriented approach and abstracts low-level
accesses away; therefore users can work with the library without even knowing
OpenGL. It is, however, advantageous to be aware of basic underlying techniques,
in order to see the whole picture. For specific requirements, it is also possible to mix
SFML and OpenGL.

Understanding render targets
A render target defines the place where 2D objects such as sprites, texts, or shapes
are rendered. In SFML, this boils down to the abstract base class sf::RenderTarget.
Apart from clear() and draw() methods, the class provides functionality to
manipulate the current view.

A render window is a concrete implementation of a render target. Render windows
represent application windows to which you can render graphical objects. In
addition, they provide facilities for input handling and configurations such as
V-Sync. The class sf::RenderWindow, which we have been using all the time,
inherits sf::RenderTarget and sf::Window.

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[190]

A render texture is another realization of the render target concept. Here, you do not
draw objects to a window, but to a texture. Render textures can be used to render a
scene that is not immediately displayed, but can be further processed—for example,
saved to a file or edited as a whole. SFML provides the class sf::RenderTexture
which derives from sf::RenderTarget. Notable is the method getTexture() which
returns const sf::Texture& with the render texture's current contents. As with
render windows, you must call display() before you can actually use that texture.
This step is often forgotten.

Texture mapping
We have worked a lot with textures in the game, but not explained how they are
actually displayed on the screen. Texel (texture element) is the term used for pixels
in texture space. The case where every texel in the texture corresponds to a pixel on
the window is an exception. In general, transforms of the graphical object and the
view affect the way how pixels are displayed on the screen.

Every graphical object on the screen consists of vertices. A vertex is a point that
defines the geometry of the object. Multiple vertices are grouped to geometric
primitives such as lines, triangles, rectangles, and so on. In most cases, we have
rectangular objects (such as sf::Sprite) that have four vertices, namely the four
corners of the rectangle. Polygons (modeled by sf::Shape) allow a different number
of vertices.

Each vertex consists of target coordinates (the position of the point on the render
target, in world units) and texture coordinates (the position in the source texture, in
texels). Texture coordinates are sometimes also called UV coordinates, because the
variables u and v are often used instead of x and y. The process of texture mapping
specifies how target coordinates are mapped onto texture coordinates, in order
to know which pixels have to be drawn where. This mapping is clarified in the
following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[191]

This figure only shows an aligned rectangle in the texture, the proportions of which
are evenly maintained in the render target. In fact, you have a lot of freedom to
place your vertices. This may result in distorted textures, but, you should just
experiment yourself.

SFML provides the class sf::Vertex that represents a vertex of the geometric object.
It has the following public member variables:

•	 sf::Vector2f position: the target coordinates (x, y)
•	 sf::Vector2f texCoords: the texture coordinates (u, v)
•	 sf::Color color: used to colorize the vertex

Vertex arrays
All geometric primitives except points consist of more than one vertex. A vertex array
is a collection of vertices that are drawn together. A vertex array need not necessarily
represent a single geometric object; it may also store the vertices of many objects.

In SFML, the class sf::VertexArray is used to model vertex arrays. It is a thin
wrapper around std::vector<sf::Vertex> and derives from sf::Drawable. We
can add new vertices to the end of the array, and access existing vertices using the
index operator.

The primitive type determines how the vertices are interpreted to form a geometric
primitive. For example, the primitive type sf::Triangles interprets three
subsequent vertices as one triangle, the next three vertices as another triangle, and so
on. sf::Quads interprets four subsequent vertices as a quadrilateral. When we work
with rectangles, we will be using the sf::Quads primitive type.

A small, incomplete example should give you a rough idea how vertices, vertex
arrays and render targets interact:

sf::Vertex v;
v.position = sf::Vector2f(x, y);
v.texCoords = sf::Vector2f(u, v);
v.color = sf::Color::Blue;

sf::VertexArray vertices;
vertices.setPrimitiveType(sf::Quads);
vertices.append(v);
...

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[192]

sf::RenderTarget& target = ...;
target.draw(vertices);

The main reason to use sf::VertexArray instead of high-level classes such as
sf::Sprite is performance. The rendering performance primarily depends on the
number of draw calls, that is, the number of times the CPU invokes a draw routine
on the graphics card. While sprites are easier to use and good enough for many
cases, there are situations where we need to exploit the possibilities of vertex arrays.

Particle systems
Visual effects such as fire, rain, or smoke have one thing in common: they have a
continuously changing nature and cannot be meaningfully described using a single
sprite. Even an animated sprite is too limited for many cases, because such effects
should come with certain randomness. Fire may have sparks flying in arbitrary
directions; smoke may be blown away by the wind.

This is why we need another model to visualize these sorts of effects: particles. A
particle is a tiny object that makes up a part of the whole effect; you can imagine it as
a small sprite. Each particle by itself looks boring, only in combination do they lead
to an emergent visual pattern such as fire.

A particle system is a component that manages the behavior of many particles to
form the desired effect. Emitters continuously create new particles and add them
to the system. Affectors affect existing particles with respect to motion, fade-out,
scaling, and many other properties.

Given a particle texture, we could model each particle as a sprite; the particle
system could contain std::vector<sf::Sprite>. The problem with this approach
is that we have to draw each sprite separately. Since particle systems may easily
consist of many thousands of particles, thousands of draw calls on the GPU are not
unrealistic—per frame. Now consider that not only one effect must be rendered;
depending on the game, the screen may contain dozens of particle systems. Clearly,
we need a technique to reduce the amount of draw calls.

This is where vertex arrays come into play. We model each particle as an object with
four vertices. The vertices of all particles are inserted into a single vertex array. This
gives us a method to draw everything with only one draw call.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[193]

Particles and particle types
In our game, we want to create an effect for the burned propellant and the emitted
smoke of homing missiles. Both can be handled in a similar way, the main difference
is the color. Of course, it would also be possible to use different textures. The final
result is shown in the following screenshot. You don't recognize the single particles
anymore, the trace of the missiles looks like a continuous stream.

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[194]

We define a class for particles that stores the position, color, and the time until the
particle disappears. The Particle::Type data type is used to differ between smoke
and propellant effects.

struct Particle
{
 enum Type
 {
 Propellant,
 Smoke,
 ParticleCount
 };

 sf::Vector2f position;
 sf::Color color;
 sf::Time lifetime;
};

We also create data tables for particles, in order to easily change their attributes in a
central place. The required structure is shown here, the rest is as you know it, from
the entity data tables:

struct ParticleData
{
 sf::Color color;
 sf::Time lifetime;
};

Particle nodes
To render the particles on screen, they need to be part of the scene graph. We will to
create a class ParticleNode, which can be inserted into the scene and which acts as a
particle system. The class definition looks as follows:

class ParticleNode : public SceneNode
{
 public:
 ParticleNode(
 Particle::Type type,
 const TextureHolder& textures);
 void addParticle(
 sf::Vector2f position);
 Particle::Type getParticleType() const;
 virtual unsigned int getCategory() const;
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[195]

 private:
 std::deque<Particle> mParticles;
 const sf::Texture& mTexture;
 Particle::Type mType;

 mutable sf::VertexArray mVertexArray;
 mutable bool mNeedsVertexUpdate;
};

Many methods for drawing and updating are already known from other
SceneNode definitions, thus not listed here. getCategory() returns
Category::ParticleSystem, a separate category. getParticleType() returns the
particle type (smoke or propellant) which is stored in mType.
A new addition is addParticle(), which looks up the data table and inserts a
particle into the system:

void ParticleNode::addParticle(sf::Vector2f position)
{
 Particle particle;
 particle.position = position;
 particle.color = Table[mType].color;
 particle.lifetime = Table[mType].lifetime;

 mParticles.push_back(particle);
}

In the update method, we first remove all particles of which the lifetime has
expired. Since all particles have the same initial lifetime, older particles are stored
at the beginning of the container. Therefore, it is enough to remove the front element
of mParticles as long as its lifetime is smaller or equal to zero (this is also the reason
why we employed std::deque). In the middle part of the function, we decrease
the lifetime of each particle by the current frame time. Finally, every time the
particle container is modified, we enable a flag to express that the render geometry
must be recomputed:

void ParticleNode::updateCurrent(sf::Time dt, CommandQueue&)
{
 while (!mParticles.empty()
 && mParticles.front().lifetime <= sf::Time::Zero)
 mParticles.pop_front();

 FOREACH(Particle& particle, mParticles)
 particle.lifetime -= dt;

 mNeedsVertexUpdate = true;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[196]

The rendering part is shown next. The mVertexArray member is declared
mutable, since it is not a part of the object's logical state. This allows optimizations:
we only rebuild the vertex array if something has changed, and directly before
drawing (instead of after each update). This way, if the particle system is updated
multiple times in a row before being drawn, we do not needlessly compute the
vertices each time.

After checking whether we need to recompute the vertices, we set the
sf::RenderStates texture to our particle texture and draw the vertex array:

void ParticleNode::drawCurrent(sf::RenderTarget& target,
sf::RenderStates states) const
{
 if (mNeedsVertexUpdate)
 {
 computeVertices();
 mNeedsVertexUpdate = false;
 }

 states.texture = &mTexture;
 target.draw(mVertexArray, states);
}

The rebuild of the vertex array is shown in the following code snippet. First, we save
the texture's full and half sizes in variables, to determine the vertex positions more
easily. For size, the constructor syntax is used rather than =, because a sf::Vector2i
(vector of integers) is converted to sf::Vector2f (vector of floats). We clear the vertex
array, removing all vertices in it, but keeping the memory allocated:

void ParticleNode::computeVertices() const
{
 sf::Vector2f size(mTexture.getSize());
 sf::Vector2f half = size / 2.f;

 mVertexArray.clear();

For each particle, we compute the ratio between the remaining and total lifetime—
this ratio in [0, 1] is used to set the particle's alpha value in [0, 255]. The alpha value
determines the transparency; therefore our particles fade out continuously until they
are completely invisible:

FOREACH(const Particle& particle, mParticles)
{
 sf::Vector2f pos = particle.position;
 sf::Color c = particle.color;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[197]

 float ratio = particle.lifetime.asSeconds()
 / Table[mType].lifetime.asSeconds();
 c.a = static_cast<sf::Uint8>(255 * std::max(ratio, 0.f));

Now the interesting part: we add four vertices for each particle, one in every corner
of our rectangle. The first two arguments denote the target coordinates; the next two
denote the texture coordinates. The fifth argument is the vertex color. Since we need
no gradient inside a particle, the color is uniform for all four vertices.

 addVertex(pos.x - half.x, pos.y - half.y, 0.f, 0.f, c);
 addVertex(pos.x + half.x, pos.y - half.y, size.x, 0.f, c);
 addVertex(pos.x + half.x, pos.y + half.y, size.x, size.y, c);
 addVertex(pos.x - half.x, pos.y + half.y, 0.f, size.y, c);
}

The function to add vertices itself is not very interesting—it builds sf::Vertex and
adds it to sf::VertexArray:

void ParticleNode::addVertex(float worldX, float worldY,
 float texCoordX, float texCoordY,
 const sf::Color& color) const
{
 sf::Vertex vertex;
 vertex.position = sf::Vector2f(worldX, worldY);
 vertex.texCoords = sf::Vector2f(texCoordX, texCoordY);
 vertex.color = color;

 mVertexArray.append(vertex);
}

Emitter nodes
Because particles should be emitted in the places where the missiles are located, it
stands to reason that emitters should be attached to missiles. Once more, our scene
graph comes in very handy: we can create a new scene node EmitterNode for
emitters and attach it to the Projectile node of the missile.

EmitterNode is rather simple, its class definition is shown in the following code
snippet:

class EmitterNode : public SceneNode
{
 public:
 explicit EmitterNode(Particle::Type type);
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[198]

 private:
 sf::Time mAccumulatedTime;
 Particle::Type mType;
 ParticleNode* mParticleSystem;
};

The pointer mParticleSystem points to the ParticleNode into which the
EmitterNode emits particles. Initially, it is nullptr. In the update function, we
emit particles if the particle system has already been initialized. Otherwise, we
need to find the system corresponding to the emitter. "Corresponding" means both
use the same particle type, for example, Particle::Smoke. We send a command
through the scene graph to find the right particle system. It sets the member variable
mParticleSystem to the found ParticleNode:

void EmitterNode::updateCurrent(sf::Time dt,
 CommandQueue& commands)
{
 if (mParticleSystem)
 {
 emitParticles(dt);
 }
 else
 {
 auto finder = [this] (ParticleNode& container, sf::Time)
 {
 if (container.getParticleType() == mType)
 mParticleSystem = &container;
 };

 Command command;
 command.category = Category::ParticleSystem;
 command.action = derivedAction<ParticleNode>(finder);

 commands.push(command);
 }
}

After the emitter has been linked to a particle system, the method to emit particles
becomes interesting. We set an emission rate and try to achieve it as closely as
possible. Since this is not usually equal to our logic frame rate, the amount of emitted
particles per frame differs. To cope with that problem, we again use accumulators,
as we did for the logic game loop in Chapter 1, Making a Game Tick. We emit particles
as long as the emission interval still fits into the current frame. The remaining time is
stored in mAccumulatedTime and is carried over to the next frame.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[199]

void EmitterNode::emitParticles(sf::Time dt)
{
 const float emissionRate = 30.f;
 const sf::Time interval = sf::seconds(1.f) / emissionRate;

 mAccumulatedTime += dt;

 while (mAccumulatedTime > interval)
 {
 mAccumulatedTime -= interval;
 mParticleSystem->addParticle(getWorldPosition());
 }
}

Why do we separate EmitterNode and ParticleNode? Emitters can be considered
purely logical scene nodes that emit particles into particle systems. They are not
directly related to rendering. A particle system, however, manages the update and
rendering of particles. With our current design, we can have multiple emitters
that emit into a single particle system. We only need one ParticleNode instance
per effect, even with dozens of emitters. Furthermore, both scene nodes can have
different transforms. An EmitterNode is attached to a missile, emitting particles that
take the missile's transform into account. As soon as particles have been emitted,
they are managed by the ParticleNode, which uses the global coordinate system. It
is reasonable that particles, once created, are no longer influenced by the orientation
of the object that created them.

Affectors
As a counterpart to emitters, we also mentioned affectors that affect particles during
their lifetime. Affectors can be modeled as functions that are applied to each particle
every frame—a meaningful abstraction might therefore be:

std::function<void(Particle&, sf::Time)>

This function takes the particle to affect and the frame time as parameters. The
ParticleNode would store a list of affectors and apply them to the particles during
its update. We have not implemented affectors in our code since we don't need their
functionality at the moment, but you are free to extend the system however you like!

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[200]

Embedding particles in the world
That was it for the definition of emitters and particle systems. We now add these
nodes to the scene graph. First the emitter in the Projectile constructor; we set its
position to the tail of the missile (which is half the height away from the center):

if (isGuided()) // if this projectile is a missile
{
 std::unique_ptr<EmitterNode> smoke(
 new EmitterNode(Particle::Smoke));
 smoke->setPosition(0.f, getBoundingRect().height / 2.f);
 attachChild(std::move(smoke));
}

The particle system is attached to a layer node directly under the scene graph's root.
Because we want particles and projectiles to appear below the airplanes, we split the
existing scene layer Air into two layers LowerAir and UpperAir. In the following,
you see an excerpt of World::buildScene():

std::unique_ptr<ParticleNode> smokeNode(
 new ParticleNode(Particle::Smoke, mTextures));
mSceneLayers[LowerAir]->attachChild(std::move(smokeNode));

So far we have only considered the smoke effect, but the propellant fire works
in exactly the sameway. By adding the fire particle system after the smoke, it is
rendered later, so the burning propellant is still visible and not covered by smoke.

Animated sprites
Alright, now we have got particles, let's accompany them with an animated
explosion. So far our aircraft have just disappeared when you shot them down.
That's not satisfying. When you destroy something like an aircraft, you expect a huge
explosion, don't you?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[201]

We already had a look at texture rectangles and sprite sheets. This knowledge will
be used to build our animation. An animation consists of several frames, and we
represent these frames as separate rectangles inside one larger texture, similar to
what we now do with entities. Do not confuse animation frames with the game loop
frames—the former represents just a state of an animation, which usually lasts for
many game loop iterations.

This is the sprite sheet we use for the animation. How does it work? As time elapses,
we move the texture rect from one frame to the other, until the animation is finished.
We do not define the animation class as a scene node but only as a drawable and a
transformable object. It can then be used by whatever scene node we want, which
gives a little more flexibility when and where we can use it.

class Animation : public sf::Drawable, public sf::Transformable
{
 public:
 ...

 private:
 ...

 sf::Sprite mSprite;
 sf::Vector2i mFrameSize;
 std::size_t mNumFrames;
 std::size_t mCurrentFrame;
 sf::Time mDuration;
 sf::Time mElapsedTime;
 bool mRepeat;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[202]

We will have a look at the functions later. As you can see we use internally a sprite.
We could do without a sprite if we so desired, but it defines a lot of functions that
we want to use, making our lives easier. After that comes the frame size, this vector
defines the size of one frame for us. We have the values concerning frames, how
many frames and what frame we are currently drawing. Lastly we have the time for
the animation, the total duration, and the elapsed time since the last frame change.

So let us start looking at the actual implementation. Most of our logic is performed
in the Animation::update() function, so it grows quite big. Because of that the
function is explained in the following sections.

void Animation::update(sf::Time dt)
{
 sf::Time timePerFrame = mDuration /
static_cast<float>(mNumFrames);
 mElapsedTime += dt;

 sf::Vector2i textureBounds(mSprite.getTexture()->getSize());
 sf::IntRect textureRect = mSprite.getTextureRect();

 if (mCurrentFrame == 0)
 textureRect = sf::IntRect(0, 0, mFrameSize.x,
mFrameSize.y);

In the previous code, we already have the sprite sheet divided per frame and we
know how big one frame is. We have to calculate how much time needs to elapse
before we progress to the next frame. If we are on the first frame, then our texture
rect should start at the beginning of the animation sprite sheet:

 while (mElapsedTime >= timePerFrame && (mCurrentFrame <=
mNumFrames || mRepeat))
 {

So while time has elapsed since we last updated, and is enough to count as a new
frame, and we haven't reached the end of the animation, we perform an iteration:

 textureRect.left += textureRect.width;

 if (textureRect.left + textureRect.width > textureBounds.x)
 {
 textureRect.left = 0;
 textureRect.top += textureRect.height;
 }

 mElapsedTime -= timePerFrame;
 if (mRepeat)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[203]

 {
 mCurrentFrame = (mCurrentFrame + 1) % mNumFrames;

 if (mCurrentFrame == 0)
 textureRect = sf::IntRect(0, 0, mFrameSize.x,
mFrameSize.y);
 }
 else
 {
 mCurrentFrame++;
 }
 }

 mSprite.setTextureRect(textureRect);
}

In each iteration, we move the resulting texture rect quite easily. We move it a step
to the right, all the way until we reach the end, if that occurs we move the rect down
one line and start again from the start. Lastly is just some book-keeping for what
frame we are on, so we know if we have reached the end of the animation.

This is the core of the animation and covers everything we need. It's very much
packed together in the update function, but it is all required.

So we add it now to the aircraft such that it explodes when destroyed. Let's start with
the Aircraft constructor.

mExplosion.setFrameSize(sf::Vector2i(256, 256));
mExplosion.setNumFrames(16);
mExplosion.setDuration(sf::seconds(1));

centerOrigin(mExplosion);

Here we set up our explosion. We define the size of one frame of the animation,
the number of frames and the duration we want it to run for. We also center the
animation sprite's origin, so that it is easier to position.

We will have to branch in our code to render either the normal aircraft or the
explosion. It's not much but we still have to do it:

if (isDestroyed() && mShowExplosion)
 target.draw(mExplosion, states);
else
 target.draw(mSprite, states);

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[204]

We cannot simply check for isDestroyed(), because we have no way of
distinguishing between airplanes that are shot down or that leave the screen. We
only want the former to explode—hence the Boolean variable mShowExplosion.

Also we have to remember that the animation must be updated or else it
won't progress. The return statement prevents destroyed aircraft from further
logic processing:

if (isDestroyed())
{
 checkPickupDrop(commands);
 mExplosion.update(dt);
 return;
}

This would run perfectly, except that right now the aircraft would be removed
before the explosion would even be shown. We have to make sure the entity stays
alive until the animation is over. We mark an aircraft for removal, as soon as it
is destroyed, and either no explosion is shown (when it leaves the screen) or the
explosion is finished:

bool Aircraft::isMarkedForRemoval() const
{
 return isDestroyed()
 && (mExplosion.isFinished() || !mShowExplosion);
}

And now we finally have our properly exploding planes, which give much more
immersion to the game.

The Eagle has rolled!
It would be nice if the player's aircraft, the Eagle, turned around its roll axis (from
nose to tail) when moving sideways. If the player moves left or right, the plane's
inclination will change. Here, we don't need a full-fledged animation. It is enough to
check whether the X velocity is negative (flying left) or positive (flying right), and to
set the texture rect accordingly.

In the aircraft data table, we store for each plane a Boolean denoting whether it
supports a roll animation. We assume that if it does, there are two texture rectangles
located to right of the original rect, with the same size.

void Aircraft::updateRollAnimation()
{
 if (Table[mType].hasRollAnimation)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[205]

 {
 sf::IntRect textureRect = Table[mType].textureRect;

 // Roll left: Texture rect offset once
 if (getVelocity().x < 0.f)
 textureRect.left += textureRect.width;

 // Roll right: Texture rect offset twice
 else if (getVelocity().x > 0.f)
 textureRect.left += 2 * textureRect.width;

 mSprite.setTextureRect(textureRect);
 }
}

Post effects and shaders
You know those big budget games with dedicated graphics programmers on them?
One of the techniques they use is something called post rendering or post effects. It's
an effect that is applied after the scene has already been rendered. Using that data,
we perform whatever visual effect we want on it. One way to create effects is using
shaders, which we will delve into later.

The first thing to cover is how to perform a post effect, how it works, and then we
will actually create an effect called bloom using shaders.

Fullscreen post effects
Well, the effect has to be applied to the whole screen, otherwise it is pretty useless.
That is why we define a specific PostEffect class in order to make this a bit easier.

class PostEffect
{
 public:
 virtual ~PostEffect();
 virtual void apply(const sf::RenderTexture& input,
 sf::RenderTarget& output) = 0;

 static bool isSupported();

 protected:
 static void applyShader(const sf::Shader& shader,
 sf::RenderTarget& output);
};

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[206]

This is an abstract class with some helper functions. apply() is the virtual
function we have to define our effect code in. The isSupported() function
checks if the graphics card supports post effects. This is only an alias for
sf::Shader::isAvailable(); unless your GPU is ancient, it should be supported.
The last function is applyShader(), and it is just a simple helper used internally by
the derived class, so you don't have to bother with making sure you render over the
entire output.

Now you might notice that the input argument to the post effect is a render texture.
But up until now we have rendered everything to a render window. As you might
remember, the post effect is applied on the resulting scene of the game. So we have
to render the game graphics to an immediate buffer.

So in our World class, we create a render texture that we can use as this scene buffer:

mSceneTexture.create(mTarget.getSize().x, mTarget.getSize().y);

Not so very different than from creating a window, simpler even. We'll have to
change our rendering code in the world, but thanks to the sf::RenderTarget
interface this is an easy task. In this code, we also apply the check to see if post
effects work on this computer:

void World::draw()
{
 if (PostEffect::isSupported())
 {
 mSceneTexture.clear();
 mSceneTexture.setView(mWorldView);
 mSceneTexture.draw(mSceneGraph);
 mSceneTexture.display();
 mBloomEffect.apply(mSceneTexture, mTarget);
 }
 else
 {
 mTarget.setView(mWorldView);
 mTarget.draw(mSceneGraph);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[207]

We will get to the bloom effect later. We still have the PostEffect::applyShader()
function left. This is where we perform the actual rendering, using a shader we will
explain shortly:

void PostEffect::applyShader(const sf::Shader& shader,
sf::RenderTarget& output)
{
 sf::Vector2f outputSize = static_cast<sf::Vector2f>(output.
getSize());

 sf::VertexArray vertices(sf::TrianglesStrip, 4);
 vertices[0] = sf::Vertex(sf::Vector2f(0, 0),
sf::Vector2f(0, 1));
 vertices[1] = sf::Vertex(sf::Vector2f(outputSize.x, 0),
sf::Vector2f(1, 1));
 vertices[2] = sf::Vertex(sf::Vector2f(0, outputSize.y),
sf::Vector2f(0, 0));
 vertices[3] = sf::Vertex(sf::Vector2f(outputSize),
sf::Vector2f(1, 0));

 sf::RenderStates states;
 states.shader = &shader;
 states.blendMode = sf::BlendNone;

 output.draw(vertices, states);
}

What we perform here is that we setup a quad using two triangles. This quad covers
the entire target output. Here you see us define an instance of the sf::RenderStates
class. The purpose of this class is to convey settings to the draw() call: the shader
member sets the shader we want to use, while blendMode specifies the way how
colors of the object and the render target are blended. With sf::BlendNone, we choose
not to blend the colors, but to override all previous pixels in the render target.

You might notice that we are using sf::TriangleStrip, but
still create a quad from it. Triangles are most often in favor as the
primitive type quad has been declared obsolete in later versions of
OpenGL. Luckily it is still backwards compatible, so you can use it
in SFML if you want to get something up and running fast. For the
difference between sf::Triangle and sf::TriangleStrip
please look at the SFML documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[208]

Shaders
So what is this word we have mentioned, but not really explained? Shaders
themselves deserve their own book in order to be explained fully.
Previously the graphics pipeline has always been fixed. You put in vertices and you
got out a fixed result based on that, you could only manipulate a very limited set of
data and operations on the vertices.
Eventually came the programmable pipeline, for which there are a lot of details we
unfortunately cannot cover. A shader in this pipeline is a program that is executed
on the data you provide to the pipeline: vertices, textures, and much more. The
key with shaders that makes them so desirable to use is that these operations are
performed on the GPU, which is highly optimized. The CPU can then be used for
other computations at the same time.
There are several different shader types, each with different purposes; however,
SFML provides support for only vertex and fragment shaders. Since the API uses
OpenGL as its backend, it also uses OpenGL shaders so the language used for
writing the shaders is GL Shading Language (GLSL). We are afraid that this book
won't be able to cover this language, but the resources on OpenGL's own webpage
www.opengl.org are very helpful for this endeavor.

The bloom effect
Bloom is an effect which tries to mimic a defect in our eyes and cameras.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[209]

The effect has been a bit exaggerated in this demonstration picture, but this is what
we are going for. When really strong light enters our eyes, it bleeds out over other
parts that are not actually lit by the light. This is a visual artifact that actually does
not exist in reality.

So how will we do this by using shaders? We are achieving the bloom effect in
multiple shader passes. The output of a shader program can only be used as input in
the next pass, which limits the possible operations per pass. Our bloom shader will
consist of multiple steps; each step is implemented in its own GLSL program.

Let us start by defining a source image that we have as input to our bloom effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[210]

The first shader is the brightness pass; we filter out what is bright and what is not
bright in the image by a simple threshold. The resulting image is mostly black:

Here we can see the different bright colors that should receive the bloom effect.
Mostly, it is the bullets that we have made white just for this purpose.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[211]

If we simply added these colors to the scene colors, we wouldn't get the bloom effect.
We would just get a very bright screen. That's not enough. We have to smooth out
the texture. This is done by scaling down the texture and performing a Gaussian
blur on it. This is done twice, so we end up with a result that is a quarter size of the
original texture.

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[212]

Now it's starting to look like something. What we do next is to add the blurred
textures together, and add those to the original scene that we received at the start.
For demonstration purposes, we cranked up the effect to make it impossible to miss.
Normally you would want this effect to be more subtle.

Even the fire exhaust particles on the missile get some love from the post effect. After
some further tweaking, you have a game that can really stand out.

So let's finally look at the code that is used to implement this effect. We are sorry that
we will not be able to cover the shaders for you. But each one of them does one thing,
so it's easy to get a grasp about what is happening in those files if you read them.

We define a class called BloomEffect that inherits and implements the abstract
PostEffect class. We override the virtual function apply():

void BloomEffect::apply(const sf::RenderTexture& input,
sf::RenderTarget& output)
{
 prepareTextures(input.getSize());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[213]

 filterBright(input, mBrightnessTexture);

 downsample(mBrightnessTexture, mFirstPassTextures[0]);
 blurMultipass(mFirstPassTextures);

 downsample(mFirstPassTextures[0], mSecondPassTextures[0]);
 blurMultipass(mSecondPassTextures);

 add(mFirstPassTextures[0], mSecondPassTextures[0],
 mFirstPassTextures[1]);
 mFirstPassTextures[1].display();
 add(input, mFirstPassTextures[1], output);
}

Here is the whole effect in its glory, well simplified. It goes through each step
we talked about before. The only thing out of the ordinary here is the
prepareTextures() function. This function sets up and creates the render textures
we will need internally to create the effect. Of course, this could have been moved to
the constructor, but this way the effect will always adapt to the size of the input.

void BloomEffect::prepareTextures(sf::Vector2u size)
{
 if (mBrightnessTexture.getSize() != size)
 {
 mBrightnessTexture.create(size.x, size.y);
 mBrightnessTexture.setSmooth(true);

 mFirstPassTextures[0].create(size.x / 2, size.y / 2);
 mFirstPassTextures[0].setSmooth(true);
 mFirstPassTextures[1].create(size.x / 2, size.y / 2);
 mFirstPassTextures[1].setSmooth(true);

 mSecondPassTextures[0].create(size.x / 4, size.y / 4);
 mSecondPassTextures[0].setSmooth(true);
 mSecondPassTextures[1].create(size.x / 4, size.y / 4);
 mSecondPassTextures[1].setSmooth(true);
 }
}

We have different texture sizes because the down sample process is the scaling down
of the texture. So the texture itself has to be smaller as well. The rest of the functions
perform the steps we explained before.

www.it-ebooks.info

http://www.it-ebooks.info/

Every Pixel Counts – Adding Visual Effects

[214]

Here, you see the sf::Shader class in action. A reference to it is retrieved from a
resource holder dedicated to shaders. The method sf::Shader::setParameter()
passes values from C++ to the GLSL program. In the shader, you can access these
values. applyShader() eventually performs the rendering and display() updates
the render target.

void BloomEffect::filterBright(const sf::RenderTexture& input,
sf::RenderTexture& output)
{
 sf::Shader& brightness = mShaders.get(Shaders::BrightnessPass);

 brightness.setParameter("source", input.getTexture());
 applyShader(brightness, output);
 output.display();
}

void BloomEffect::blurMultipass(RenderTextureArray& renderTextures)
{
 sf::Vector2u textureSize = renderTextures[0].getSize();

 for (std::size_t count = 0; count < 2; ++count)
 {
 blur(renderTextures[0], renderTextures[1], sf::Vector2f(0.f, 1.f /
textureSize.y));
 blur(renderTextures[1], renderTextures[0], sf::Vector2f(1.f /
textureSize.x, 0.f));
 }
}

void BloomEffect::blur(const sf::RenderTexture& input,
sf::RenderTexture& output, sf::Vector2f offsetFactor)
{
 sf::Shader& gaussianBlur = mShaders.get(Shaders::GaussianBlurPass);

 gaussianBlur.setParameter("source", input.getTexture());
 gaussianBlur.setParameter("offsetFactor", offsetFactor);
 applyShader(gaussianBlur, output);
 output.display();
}

void BloomEffect::downsample(const sf::RenderTexture& input,
sf::RenderTexture& output)
{
 sf::Shader& downSampler = mShaders.get(Shaders::DownSamplePass);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[215]

 downSampler.setParameter("source", input.getTexture());
 downSampler.setParameter("sourceSize", sf::Vector2f(input.
getSize()));
 applyShader(downSampler, output);
 output.display();
}

void BloomEffect::add(const sf::RenderTexture& source, const
sf::RenderTexture& bloom, sf::RenderTarget& output)
{
 sf::Shader& adder = mShaders.get(Shaders::AddPass);

 adder.setParameter("source", source.getTexture());
 adder.setParameter("bloom", bloom.getTexture());
 applyShader(adder, output);
}

If you find shaders interesting we recommend you read up on them. There is a lot of
good information available on the subject, and it's a great tool to have to hand. Also
definitely have a look at the shaders we have written.

Here's an example of a good and popular tutorial on GLSL:

http://www.lighthouse3d.com/tutorials/glsl-tutorial

Summary
Meanwhile, our aircraft shooter now deserves the name "game", as it is no longer
some half-hearted sprites put together. We have seen a lot of modern graphical and
rendering techniques and how they fit in our game. After an in-depth look at the
rendering process (render targets, textures, vertices), we integrated a particle system
for the missile, an animation for the explosion, and a shader for the bloom effect on
the whole scene.

Note that there exist already implementations for many of the techniques shown in
this chapter. In case you don't want to reinvent the wheel, you could have a look at
the Thor library, which is developed by one of the authors of this book. Thor extends
SFML by providing fully configurable particle systems and animations. Other
features include color gradients, input and resource handlers, timer utilities, and
much more. The library is available at www.bromeon.ch/libraries/thor.

In the next chapter we will cover how to play audio using SFML's Audio module.
We will go through both streaming music and sound effects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Cranking Up the
Bass – Music and

Sound Effects
Since the beginning of video games, sound has been a central media in games.
Many games can be recognized only by listening to them. In the last few years,
game industries have chosen to neglect audio in favor of better graphics; yet audio
takes a very important part in a wide range of games. Independent studios in
particular often put a huge effort in making games unique in their art style, which
includes audio, graphics, and story. If used appropriately, music themes and sounds
can have a tremendous impact on the atmosphere conveyed by a game.

In this chapter, we are going to cover the technical background of embedding audio
into a game, taking the opportunity to have a closer look at SFML's Audio module.
We are going to do the following:

•	 Play different music themes in the background
•	 Play sound effects that correspond to game events such as explosions
•	 Position sound effects in the 2D world to convey a feeling of spatial sound

www.it-ebooks.info

http://www.it-ebooks.info/

Cranking Up the Bass – Music and Sound Effects

[218]

Music themes
First, we want to play background music depending on the state we are currently in.
We have prepared two themes: One for the menu, and one for the game itself. We'll
define a corresponding enum:

namespace Music
{
 enum ID
 {
 MenuTheme,
 MissionTheme,
 };
}

We'll then create a class that has an interface dedicated to music playing:

class MusicPlayer : private sf::NonCopyable
{
 public:
 MusicPlayer();

 void play(Music::ID theme);
 void stop();

 void setPaused(bool paused);
 void setVolume(float volume);

 private:
 sf::Music mMusic;
 std::map<Music::ID, std::string> mFilenames;
 float mVolume;
};

The method names should be self-explanatory. We have a single sf::Music instance
that represents the currently-played music. The mFilenames variable maps music
IDs to filenames and is initialized in the constructor. The volume takes a value
between 0 and 100; we'll initialize it to full volume. As SFML does not support
the MP3 format, we'll use OGG for our files. If you are wondering how to convert
between different formats, one possibility is the Audacity software (http://
audacity.sourceforge.net).

MusicPlayer::MusicPlayer()
: mMusic()
, mFilenames()
, mVolume(100.f)
{
 mFilenames[Music::MenuTheme] = "Media/Music/MenuTheme.ogg";
 mFilenames[Music::MissionTheme] = "Media/Music/MissionTheme.ogg";
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[219]

Loading and playing
SFML uses the sf::Music class to deal with music themes. As already mentioned
in Chapter 2, Keeping Track of Your Textures – Resource Management, this class behaves
differently from other resource classes. Since music themes are usually long and may
require a lot of memory, they are not loaded at once into RAM. Instead, sf::Music
streams them from the source media, usually the hard disk. This means that only
a short chunk is kept in memory at one time, with new ones loaded as the theme
progresses. As a result, the source media must be available for as long as the music
is played. For files, this means that you should not unplug an external storage device
with the music on it. You can also load resources from different sources such as the
RAM; in the case of music, you are responsible for their constant availability.

In the MusicPlayer::play() method, the path of the desired music is looked up in
the map. The theme is loaded and possible loading errors are checked. The streaming
nature is also the reason why the method of sf::Music to open a theme from the
hard disk is named openFromFile() and not loadFromFile().

void MusicPlayer::play(Music::ID theme)
{
 std::string filename = mFilenames[theme];

 if (!mMusic.openFromFile(filename))
 throw std::runtime_error("Music " + filename + " could not be
loaded.");

 mMusic.setVolume(mVolume);
 mMusic.setLoop(true);
 mMusic.play();
}

At the end, you can see some new statements. The setVolume() method sets the
music's volume to a value in the range [0, 100], with 0 being mute and 100 being
the maximum volume. The setLoop() method specifies whether the theme is played
again as soon as its end is reached; background themes are usually looped. The
play() method eventually starts the music. Since music and sound effects use their
own threads in SFML, you don't have to update them continuously. However, you
have to keep the sf::Music object alive as long as the music is being played.

www.it-ebooks.info

http://www.it-ebooks.info/

Cranking Up the Bass – Music and Sound Effects

[220]

Music themes can be stopped or paused; for this purpose, sf::Music provides the
stop() and pause() methods. If a theme is paused, you can resume it from the time
where it was paused. A stopped music, in contrast, is replayed from the beginning. If
we call openFromFile(), the music will automatically be stopped. The getStatus()
method can be used to check which state the music is in. It returns one of the three
enumerators in the sf::Music scope: Playing, Paused, or Stopped.

void MusicPlayer::stop()
{
 mMusic.stop();
}

void MusicPlayer::setPaused(bool paused)
{
 if (paused)
 mMusic.pause();
 else
 mMusic.play();
}

Use case – In-game themes
We have seen that using music themes with SFML is very simple. We are now going
to invoke the MusicPlayer routines in the different states of our game. First, the
Application class gets a MusicPlayer instance and the State::Context class gets
a new pointer, named music, to the music player.

In the menu state's constructor, we play the menu theme:

MenuState::MenuState(StateStack& stack, Context context)
: State(stack, context)
, ...
{
 ...
 context.music->play(Music::MenuTheme);
}

We proceed analogously towards the game state, where we play the mission theme:

GameState::GameState(StateStack& stack, Context context)
: State(stack, context)
, ...
{
 ...
 context.music->play(Music::MissionTheme);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[221]

If the application switches to one of these two states, the MusicPlayer::play()
function will be called. This stops the current theme and results in a new theme
being played.

When the user pauses the game, we would like the music to be paused as well.
This can be handled in the PauseState constructor. We also define the PauseState
destructor which resumes the music. As soon as the pause state is over, the music
shall no longer pause.

PauseState::PauseState(StateStack& stack, Context context)
: State(stack, context)
, ...
{
 getContext().music->setPaused(true);
}

PauseState::~PauseState()
{
 getContext().music->setPaused(false);
}

At this point, playing different music themes in our game is completely
operational. There are many ways to extend the current functionality: Playlists
that play a sequence of themes in order; or smooth theme transitions implemented
by continuous adaption of the music volume. Some modern games play different
channels of a theme depending on the situation: In a passage where you have to pay
attention, the music builds up tension; during an action scenario, the bass kicks in.

Sound effects
We have many gameplay events that can be represented by sounds: Fired machine
guns, launched missiles, explosions, collection of pickups, and so on. Unlike
music, sound effects are mostly very short. As a consequence, they can be loaded
completely into memory, and we can also use the raw WAV format for these files
without wasting too much memory. We are going to use the sf::SoundBuffer
resource class to store the audio samples for our sound effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Cranking Up the Bass – Music and Sound Effects

[222]

The following enumeration of sound effects is used in our game. We'll also create a
typedef for the resource holder of sf::SoundBuffer.

namespace SoundEffect
{
 enum ID
 {
 AlliedGunfire,
 EnemyGunfire,
 Explosion1,
 Explosion2,
 LaunchMissile,
 CollectPickup,
 Button,
 };
}

typedef ResourceHolder<sf::SoundBuffer, SoundEffect::ID>
SoundBufferHolder;

We implement a class for the sound effects, one similar to the MusicPlayer class:

class SoundPlayer : private sf::NonCopyable
{
 public:
 SoundPlayer();

 void play(SoundEffect::ID effect);
 void play(SoundEffect::ID effect,
 sf::Vector2f position);

 void removeStoppedSounds();
 void setListenerPosition(sf::Vector2f position);
 sf::Vector2f getListenerPosition() const;

 private:
 SoundBufferHolder mSoundBuffers;
 std::list<sf::Sound> mSounds;
};

The class contains a resource holder for the sound buffers and a list of currently
active sound effects. Since more than one sound effect may be active at the same
time, we need a container.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[223]

Loading, inserting, and playing
In the constructor, we load all of the sound effects. We do this by calling the
SoundBufferHolder::load() function, in a similar fashion to the textures and fonts
we loaded in earlier chapters. The first argument we pass is a SoundEffect::ID
enumerator, the second is the filename:

SoundPlayer::SoundPlayer()
: mSoundBuffers()
, mSounds()
{
 mSoundBuffers.load(SoundEffect::AlliedGunfire,
 "Media/Sound/AlliedGunfire.wav");
 mSoundBuffers.load(SoundEffect::EnemyGunfire,
 "Media/Sound/EnemyGunfire.wav");
 ...
}

How do we play a sound? First, we have to look up the correct sound buffer by
calling SoundBufferHolder::get(). We add a new sf::Sound instance that uses
this sound buffer to the list of sounds. Then, we obtain a reference to the sound and
call sf::Sound::play() to play the sound:

void SoundPlayer::play(SoundEffect::ID effect)
{
 mSounds.push_back(sf::Sound(mSoundBuffers.get(effect)));
 mSounds.back().play();
}

Instead of the sf::Sound constructor, you can also use the setBuffer() method to
initialize the sound buffer.

You might wonder why we took the std::list STL container. The problem with
std::vector is that it may relocate existing sounds as we add new ones, thus
invalidating them mid-play. Also, we cannot efficiently remove random elements from
a std::vector container without changing the element order. It is also important that
we first insert the sound and then play it. Otherwise, a copy would be inserted, and the
local sound object would stop playing as soon as it left scope.

www.it-ebooks.info

http://www.it-ebooks.info/

Cranking Up the Bass – Music and Sound Effects

[224]

Removing sounds
As soon as a sound effect has finished playing, there is no point of keeping it in the
list any longer. We therefore provide a removeStoppedSounds() method which
removes all sounds that have stopped. As soon as sf::Sound finishes playing, it
automatically switches to the Stopped state. The method is written in a simple way,
thanks to the std::list::remove_if() method and lambda expressions:

void SoundPlayer::removeStoppedSounds()
{
 mSounds.remove_if([] (const sf::Sound& s)
 {
 return s.getStatus() == sf::Sound::Stopped;
 });
}

Use case – GUI sounds
Our SoundPlayer object is instantiated as a member of the Application class,
similar to MusicPlayer. It is also added to the State::Context structure:

class State
{
 public:
 struct Context
 {
 ...
 MusicPlayer* music;
 SoundPlayer* sounds;
 };
};

If a button is clicked, we would like to play an appropriate sound effect. We'll add a
member SoundPlayer& mSounds to the Button class. We'll then adapt its constructor
to take an entire Context object and initialize the reference to the
sound player:

Button::Button(State::Context context)
: ...
, mSounds(*context.sounds)
{
 ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[225]

In the Button::activate() method, which is called when a button is clicked, we'll
play the corresponding sound:

void Button::activate()
{
 ...
 mSounds.play(SoundEffect::Button);
}

Several Button objects are instantiated in their corresponding state classes. As a
short reminder, here is an excerpt of the constructor of such a state class. The context
is passed to the buttons, which extracts the sound player from it. Additionally, the
music theme is played in that constructor:

MenuState::MenuState(StateStack& stack, Context context)
: State(stack, context)
, ...
{
 auto playButton = std::make_shared<GUI::Button>(context);
 auto settingsButton = std::make_shared<GUI::Button>(context);
 auto exitButton = std::make_shared<GUI::Button>(context);
 ...

 context.music->play(Music::MenuTheme);
}

Now you'll hear a sound every time you activate a button.

Sounds in 3D space
The most interesting part about sound effects is yet to come. An immersive
atmosphere only builds up if sounds are properly located within the game world.
Like graphical objects, sounds can have a position.

The coordinate system for sounds is three-dimensional. SFML's sound API works
with the sf::Vector3f type, a 3D vector with the members x, y, and z. SFML
internally uses Open Audio Library (OpenAL), an interface for low-level audio
functionality, which is also the origin of the sound spatialization concepts we are
going to discuss here. Spatializing sounds means nothing more than to locate them
in the 3D space, that is, to give them a spatial representation.

www.it-ebooks.info

http://www.it-ebooks.info/

Cranking Up the Bass – Music and Sound Effects

[226]

The listener
The audition of spatial sound effects depends on the listener. A useful analogy is to
compare the listener with your head. The listener's location and orientation can be
described with the following three 3D vectors:

•	 Position: This vector describes where the listener is located in 3D space.
•	 Up: This vector tells where the top of the head points to. In SFML 2.0, the up

vector is hardcoded to (0, 1, 0), thus "up" lies always in the +Y direction.
•	 Direction: This vector expresses where the listener is "looking". It is a relative

vector, not a position in space. SFML uses a default direction of (0, 0, -1),
meaning that the listener is headed towards the negative Z axis. It must be
linearly independent from the up vector, so don't choose a direction with both
X and Z axes set to zero. The direction vector need not have a unit length.

up

position
direction

Y

Z

X

The orientation of the listener determines how sounds are perceived. If a sound
is played on the right-hand side of the listener, the user will hear it in its right
headphone. If you have a surround system, you will also be able to differentiate
between front and rear sounds.

SFML provides the sf::Listener class which has the setPosition() and
setDirection() methods to set the corresponding attributes. The sf::Listener
class contains only static methods, it is not intended to be instantiated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[227]

Attenuation factor and minimum distance
Close sounds are perceived louder than distant ones. The sound's volume is
inversely proportional to its distance from the listener (we have a 1/distance
relationship, also known as the inverse distance model).

The attenuation factor determines how fast a sound is attenuated depending on the
distance. The higher the factor, the weaker the sound becomes for a given distance or
the closer the sound has to get to be played at a given volume.

The minimum distance is the distance between the listener and the sound at which
100 percent volume is achieved. If the sound comes closer, the volume will not
increase anymore. If the sound goes further away, it will be attenuated.

The following figure should give you a better understanding of the perceived sound
volume depending on its distance to the listener. There are two cases: Distances
smaller than the minimum distance yield a constant volume of 100%, bigger
distances lead to attenuated sounds depending on the attenuation factor.

min distance
Distance

attenuated volume

100% volume

Gain

Attenuation factor and minimum distance are specific to each sound. SFML
provides the setAttenuation() and setMinDistance() methods in the sf::Sound
class. For sound spatialization, the setPosition() method is required to position a
sound in space.

Positioning the listener
Our sounds are located in the plane of the monitor, thus their Z coordinate is always

www.it-ebooks.info

http://www.it-ebooks.info/

Cranking Up the Bass – Music and Sound Effects

[228]

0. But how do we place the listener? It is tempting to set the listener's Z coordinate to
0, just like the sounds. This is wrong. When you do this, a sound moving from left to
right will pass directly through the listener. As a result, you first hear the sound only
in the left ear, and only afterwards in the right ear. Even if the sound is very close,
you will not hear it in both ears.

To get around this issue, we place the listener in a plane different than the
sound—just like your head is in front of the monitor, and not inside it. The
listener's Z coordinate therefore has a value greater than zero.

Let's say the 2D minimum distance is the number of world units between the
listener's place in the 2D world and the sound. Since the listener itself resides outside
the 2D world plane, the effective 3D minimum distance has to be computed with the
Pythagorean theorem, as shown in the following figure:

listener

3D min distancelistener z

2D min distance

3D audio coordinates

z

x

y

sound

y

x

2D graphics coordinates

Playing spatial sounds
An important fact to keep in mind: To enable audio spatialization, the sound
effects must have a single channel (mono). Stereo sounds are played at full volume,
regardless of their position in space.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[229]

In SoundPlayer.cpp, we create an anonymous namespace for a few constants
representing the measures discussed before. Don't hesitate to experiment with
these values!

namespace
{
 const float ListenerZ = 300.f;
 const float Attenuation = 8.f;
 const float MinDistance2D = 200.f;
 const float MinDistance3D =
 std::sqrt(MinDistance2D*MinDistance2D + ListenerZ*ListenerZ);
}

Now we need to connect the 3D audio coordinate system with our 2D graphics
coordinate system. Both coordinate systems are completely unrelated; how to map
one onto another depends on the use case. In the previous figure, you see how the
axes of both coordinate systems are aligned.

We implement the remaining functions of the sound player, beginning with the
listener's position. The X coordinate is the same in both graphics and audio system.
The Y coordinate needs to be negated, as the audio up vector is in the +Y direction,
but on the screen, the Y axis points downwards. For the Z coordinate, we take the
constant distance between the listener and the screen plane:

void SoundPlayer::setListenerPosition(sf::Vector2f position)
{
 sf::Listener::setPosition(position.x, -position.y, ListenerZ);
}

Next, we define the second overload of the play() function, which takes a 2D
graphics position. To compute the 3D audio position, we again need to negate Y, but
here we use Z=0. We also set the attenuation and minimum distance for the sound.
Finally, the sound is played:

void SoundPlayer::play(SoundEffect::ID effect, sf::Vector2f position)
{
 mSounds.push_back(sf::Sound());
 sf::Sound& sound = mSounds.back();

 sound.setBuffer(mSoundBuffers.get(effect));
 sound.setPosition(position.x, -position.y, 0.f);
 sound.setAttenuation(Attenuation);
 sound.setMinDistance(MinDistance3D);

 sound.play();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Cranking Up the Bass – Music and Sound Effects

[230]

Now, we must make sure that non-spatialized sounds (such as a button click) are
still played correctly. If we move the listener, all sounds will be affected, which is
not always what we want. In our first play() overload, we make sure the sound
is played directly in front of the listener, so it will have maximum volume. The
getListenerPosition() function transforms the 3D listener position back to 2D
graphics coordinates:

void SoundPlayer::play(SoundEffect::ID effect)
{
 play(effect, getListenerPosition());
}

Use case – In-game sound effects
That was a lot of theory; let's get back to the interesting stuff. We want to embed
sound effects in our game and play them whenever appropriate. Before we can do
that, we need access to the sound player; we let GameState pass a SoundPlayer
reference to our World class.

Inside the world, we would like to have a dedicated scene node for sounds, so that
we can use our command system to play sounds. We'll add a SoundNode class, which
is a simple adapter to the SoundPlayer class:

class SoundNode : public SceneNode
{
 public:
 explicit SoundNode(SoundPlayer& player);
 void playSound(SoundEffect::ID sound,
 sf::Vector2f position);

 virtual unsigned int getCategory() const;

 private:
 SoundPlayer& mSounds;
};

The function definitions are not particularly interesting. The getCategory() method
returns a new SoundEffect category, while playSound() forwards its arguments
to the mSounds sound player. The sound node is inserted into the scene graph in
World::buildScene().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[231]

Anyway, this allows us to define a playLocalSound() method for entities, which
sends a command to the sound node. As all of our current sound effects are related
to airplanes, we define playLocalSound() in the Aircraft class; but it would also
be possible to have it in the Entity or SceneNode base classes:

void Aircraft::playLocalSound(CommandQueue& commands, SoundEffect::ID
effect)
{
 Command command;
 command.category = Category::SoundEffect;
 command.action = derivedAction<SoundNode>(
 std::bind(&SoundNode::playSound,
 _1, effect, getWorldPosition()));

 commands.push(command);
}

The std::bind() call might look more confusing than it actually is. It converts the
SoundNode::playSound() function to a functor, using the following parameters:

•	 _1: This is the first parameter of Command::action (namely SceneNode&),
which is interpreted as the this pointer of SoundNode::playSound()

•	 effect: This is the sound effect ID
•	 getWorldPosition(): This is the position where the sound is played

Now we've written this method once, so we don't have to fiddle with commands
every time we want to play a sound. Next, we implement the sound effects for
launching a missile and firing the machine gun. In the case of the machine gun, we
create different sound effects for the player and enemies. In total, we only have to
add two playLocalSound() calls:

void Aircraft::checkProjectileLaunch(sf::Time dt, CommandQueue&
commands)
{
 ...
 if (mIsFiring && mFireCountdown <= sf::Time::Zero)
 {
 playLocalSound(commands, isAllied() ?
 SoundEffect::AlliedGunfire : SoundEffect::EnemyGunfire);
 ...
 }

 if (mIsLaunchingMissile)
 {
 playLocalSound(commands, SoundEffect::LaunchMissile);
 ...
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Cranking Up the Bass – Music and Sound Effects

[232]

For the explosions, the approach is very similar. In order to add variety, we
randomly choose one of two possible sound effects. For the pickup collection,
which is performed in World::handleCollisions(), we proceed in a slightly
different manner. Since we are in the World class and not a scene node, we invoke
playLocalSound() on the player's aircraft:

else if (matchesCategories(pair, Category::PlayerAircraft,
Category::Pickup))
{
 auto& player = static_cast<Aircraft&>(*pair.first);
 auto& pickup = static_cast<Pickup&>(*pair.second);

 pickup.apply(player);
 pickup.destroy();
 player.playLocalSound(mCommandQueue, SoundEffect::CollectPickup);
}

Because we are in the World class, we could directly call SoundPlayer::play();
however, we still use SoundNode for symmetry reasons. If the implementation
of Aircraft::playLocalSound() or SoundNode::playSound() changes, the
modifications will still be applied to all spatial sound effects.

The last thing we need to do is to update the listener and remove the sounds that
have finished playing. We'll set the listener to the player's aircraft position, so
that the player shares the audial position of its pilot. We'll add a function which is
invoked in World::update():

void World::updateSounds()
{
 mSounds.setListenerPosition(
 mPlayerAircraft->getWorldPosition());
 mSounds.removeStoppedSounds();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[233]

Summary
In this chapter, we have covered the basic topics for dealing with audio in 2D games.
We saw how the concepts are implemented using SFML classes and functions. In
particular, we played different music themes depending on the application state.
We also created sound effects for various in-game events, and positioned them in
the world in order to enable a spatial audition.

With this knowledge, you are now able to incorporate audio into your game; a
crucial component for creating an immersive gaming experience. As you have
seen during this chapter, SFML makes the implementation very simple. The actual
challenge is the fine-tuning and the combination of suitable sound effects and music
themes in order to create a unique atmosphere.

The audio functionality completes the attempt to create a playable game that uses
different sources of media. However, so far, only one player can play it. In the next
chapter, we are going to improve the situation by adding multiplayer support.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the
Clouds – Co-op Multiplayer

After a long journey through to the book, with lots of lessons learned, we have
now arrived at the last chapter. This is where we will handle a topic with growing
importance in the modern times—networking. This subject shall not be overlooked
as it can be very difficult to learn and implement. It is complicated enough for people
to actually dedicate their careers on dealing exclusively with it. Usually network
programmers are very experienced and good at it, so they can do it efficiently and
provide a good multiplayer gameplay to the end users.

Obviously, even if we wanted to, we couldn't teach every single thing about
network programming, good practices, and different implementations. However, we
try to pass on some knowledge on how to achieve a multiplayer experience, keeping
things as simple as possible. Based on the game we've built so far throughout
the book, we now add two new concepts: local cooperation and actual network
gameplay over the Internet.

The following is what this chapter has to teach essentially:

•	 Network sockets
•	 Client-server architecture
•	 Creating a protocol for communication
•	 Applying the concepts to our game
•	 Short introduction on latency problems
•	 Tips and tricks on cheating prevention

Let's now immerse ourselves in this complicated topic with a short introduction.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[236]

Playing multiplayer games
We've seen multiplayer games since computer games emerged—decades ago.
We are used to calling friends and family to play games with us, sometimes in a
co-operative mode with common goals and other times for a competitive experience.
The point is that playing with someone else is usually lots of fun!

There was a time when the Internet barely existed, or simply put, people's
connections were too slow to actually have a good online experience. By then, it
was very usual for games to have a local multiplayer mode. This allowed a big trend
for split screen and other types of local multiplayer gameplay. Local Area Network
(LAN) multiplayer was also implemented as a way to make the experience more
cooperative to players, and as a result, you could actually cooperate or fight with
your friends over a cable or wireless network. Unfortunately, as time passed and the
Internet became more powerful, the local multiplayer modes became less and less
used, and actual online multiplayer modes started to be the dish of the day. Either
mode is not extinguished or anything close to that, but the game market seems to
mark a tendency for online games.

For the purpose of this book, and to cover the networking field of programming,
we will be not be focusing on local modes, but rather will implement a fully-
networked concept. However, fear not! We will show you a concept that game
developers use a lot these days which allows you to actually have local co-op on
top of a networked architecture!

Interacting with sockets
First of all, in order to go deeper in to network programming, we need to understand
how computers communicate with each other. This is the technological base that
everyone should know before trying to do anything with networking.

This topic is not simple by itself, but it can be approached more easily without the
need to understand the deeper concepts, with the help of SFML's socket classes.

A socket is essentially a gateway for data. You can visualize it as a link between
two applications. These applications are virtual, in the sense, they only matter in the
network, but are not necessarily different application processes, because you can
use sockets to connect an application to itself, as we do in this chapter. These sockets
are the base of all networked programs; therefore, they are extremely important. As
sockets are a rather complicated concept, SFML provides classes to manage them.

There are the following two main ways of communicating between multiple machines:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[237]

TCP
Transmission Control Protocol (TCP) is a network convention for transferring
data between computers. This means that any operating system or platform that is
connected to the Internet and therefore uses the Internet Protocol (IP), which TCP is
built on top of, is able to communicate in a uniform way. This is why in a networked
application, we don't care who we are "talking" to, as long as the remote peer can
"speak" TCP/IP, communication is possible.

For example, when you use your Internet browser, some websites will be hosted in
Linux machines while others will be in Windows. Because they all use TCP/IP, it
is not relevant what the operating system is, the website will be transferred to our
browser and we will be able to visualize it just the same.

SFML provides two cross-platform classes for using TCP sockets: sf::TcpSocket
and sf::TcpListener, which are exactly what we will use to achieve an online
gameplay in this chapter. The sf::TcpSocket class initiates TCP connections, while
the sf::TcpListener class listens on a certain port for an incoming connection.

Please note that TCP/IP is a high-level protocol in your operating system. When you
use it, many things are being managed by the OS, which takes some weight out of
your back.

The TCP protocol comes with the following features by default:
•	 Packet ordering: It will ensure packet ordering so you can assume

that your data will arrive to the destination in the same order you
sent it.

•	 Packet restructuring: It also provides packet restructuring
facilities, completely built in. This means that if a packet is too
big, it will be split into smaller ones to make the network transfer
possible while still arriving at the destination in a seamless way.

•	 Reliability: It is another strong aspect of this protocol. It
will ensure every that packet gets to the destination, without
exceptions. If one packet fails to arrive, the protocol just stalls and
is assumed to have lost its connection. However, before a packet is
assumed to be impossible to transfer, it is re-sent many times in an
attempt to eventually deliver it successfully.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[238]

In order to exchange data between computers, this protocol demands that a
connection or a tunnel is made first. This means that before sending or receiving
data, both machines must "shake hands" and create a tunnel of information between
them. This is done when one of them enters a listening state on a specific port, using
sf::TcpListener, and the other uses sf::TcpSocket to connect to that port. Once
that connection is successfully established, data is free to roam!

A network port is an integer number, normally ranging from 0 to
65535, which defines a "gateway" in your network where data and
connections can pass through to your application's sockets. You are
free to pick what port(s) your game will use for communication as long
as you do the following:

•	 Be careful not to pick reserved ports by your operating system.
•	 Avoid picking ports that are commonly used by other programs,

which will cause a conflict. For example, port 80 is used very often
by web servers, remote desktop apps, and others. As a general
rule, avoid using ports below 1024.

•	 Make sure both the client and the server know the same port so
communication can happen.

Besides the obligation to establish a connection in order to communicate, this
protocol offers advantages such as, ordered arrival of data and reliable data sending.
The first means that the order in which you send your bytes to the remote peer
matters because they will get there in the same order! The latter means that the data
is guaranteed to arrive at the destination. This is very good for many uses, even
essential, but unfortunately, it adds an extra overhead to the network performance
that some real-time games cannot cope with. Imagine you send packet A, B, and C,
in order. Let's say your Internet connection isn't in its best shape and packet B keeps
getting lost before arriving at the remote peer. This means that A will get to the
destination, but B and C won't until B is sent successfully.

That said, we can conclude that this protocol is very adequate for file transfers and
other reliable data transfers, as well as for smaller games which are less hungry for
network performance. But it may be too slow for some real-time action games, which
have higher speed requirements.

UDP
User Datagram Protocol (UDP) is another often used tool for network programming.
Communicating data to another computer means simply pushing an array of bytes
to the network, so it is very similar to TCP/IP in this matter; however, UDP has a
very different set of rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[239]

The first important thing about this protocol is to know that it is connectionless.
You can't establish a tunnel of reliable data. You just take your data and send it
somewhere and it either gets there or not, and you are not notified of it.

This may seem strange at first. You may think "Why would I want to send data
that may not even get there?" and it is normal to be suspicious about the utility of
such a network protocol at first, but you'll understand how powerful it can become
if made right.

The strong aspect about this protocol is that data is sent fast and there is no
overhead on ensuring packet ordering or arrival. So, people usually implement
a custom protocol on top of UDP that allows sending some data reliably, by
sending data continuously until a confirmation of arrival is received, while other
data is sent unreliably.

Another important key difference of UDP and TCP is that UDP will not split a
packet into smaller parts when it exceeds the maximum limit of data size; you have
to take care of that manually. While in TCP you can neglect such things, in UDP, it's
important to keep packets small and efficient.

To use such sockets, SFML provides sf::UdpSocket. You just need to create an
object of this type, bind to a port with the sf::UdpSocket::bind() function,
and then either send data through it or check if anything was received using the
sf::UdpSocket::send() and sf::UdpSocket::receive() functions respectively.

We won't be covering UDP sockets in the chapter, but the SFML documentation
and tutorials on www.sfml-dev.org should provide what you need in order to
understand them in detail.

Socket selectors
Another facility that SFML provides is the sf::SocketSelector class. This one is
not used in the book's game, but it is very useful and will make your life easier if you
choose to use it.

This class will act as an observer for your sockets. It will hold pointers
to every socket you choose to register in it. Then, you may simply call
sf::SocketSelector::wait() and it will return when one or more of the sockets
receive some data. Once this happens, you handle the data somehow and call the
function again. This will ensure you always are notified of packets and handle them
in a simple and centralized manner.

You can call sf::SocketSelector::add() for any type of socket and listener:
sf::TcpListener, sf::TcpSocket, or sf::UdpSocket.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[240]

It is this simple; you create the sockets, add them to the selector, and then call
sf::SocketSelector::wait(). When it returns, you know one of the sockets
received something or a new peer has been connected. You just check who that was
by using sf::SocketSelector::isReady(socket) and then act upon it.

Custom protocols
We've talked about TCP and UDP so far, which are two socket types that are used
widely. Programmers don't usually program anything that is "lower-level" than
those two, but very often build custom protocols on top of them.

It is very useful to create such protocols as they allow us to abstract the more
complex tasks of networking, and orient a network system into being more focused
on a specific task. For a quick example, we can look at the FTP protocol. It allows
sending files in a quick and simple way, because it has abstracted the more complex
process of actually transferring that file over a lower-level protocol.

A custom protocol is merely a set of rules set in stone of how communication needs
to happen. When a custom protocol is created, it either sits on top of TCP or UDP
or even both; but it automatically absorbs all advantages and limitations of the
underlying protocol.

There are many custom protocols that are used widely. For example, HTTP and FTP
are two protocols that are used worldwide and are implemented on top of TCP/
IP. You use them all the time without knowing; for example, when you open a web
page in your Internet browser, it was received through the TCP/IP network protocol,
more specifically with the rules of the HTTP protocol.

As if SFML's basic socket support weren't good enough, it also implements
sf::Http and sf::Ftp, which you can use to communicate with any machine that is
implementing them too! This is a fantastic tool that you can use to your advantage,
for example, to directly transfer files to FTP servers, or to request web pages from
remote hosts using HTTP. We won't cover such classes, as they go out of the scope
of the book, but to bring up your curiosity, you could use sf::Http to send some
data to a website that would handle it and do something useful with it. For example,
that website could receive a high score information and immediately list it online for
everyone to see!

We will be implementing one custom protocol as well in the upcoming section
Creating the structure for multiplayer. It will be our own set of rules that are specific to
our own game. It will lie on top of the TCP/IP protocol and you will just see how it
can be used to make multiple instances of our game understand each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[241]

Data transport
We already know some things about how sockets behave and their inner workings,
but we only talked about sending and receiving data in an abstract way. We referred
to the data as arrays of bytes, which we simply send and receive, but how is it done?

Indeed, what is passed on through the network is merely a block of data, a collection
of raw bytes. Therefore, it must be sent in a way that can be read again by the remote
machine. Your data could be anything, text, numbers, images, sound, or pretty much
anything that is digital.

For this, we pack and unpack our data into a byte array when sending/receiving
it! When we use the term packet, we refer to a collection of bytes, which contain
one or more primitives (integers, floats, and others). This is very efficient from the
perspective that we don't have additional overhead for sending multiple primitives;
they all go at once in the same byte array. However, we have a per-packet overhead,
namely the packet headers that are required by the lower-level protocols (most
notably IP and TCP/UDP).

Packing and unpacking is not a complicated thing to do, but can be troublesome to
get right when done from scratch.

To add complexity to this task, you can't make assumptions on what byte ordering
system the target machine is using. There are big-endian and little-endian operating
systems, which mean a different ordering of bytes in memory. You can look at it as
reversing the order of the bits of a variable. Therefore, for example, the number 3
in a little-endian system, when transferred to a big-endian one is not the number 3
anymore, as the bits were reversed. This needs to be taken into account.

Luckily, SFML has also solved this! You can and should use the sf::Packet class to
address this issue. It is very simple to work with and it will make your life easier in
every way, as opposed to implementing it all from scratch. If properly understanding
the socket functionality is half of the work, understanding packets would be the
other half into making a good networked application.

The following code shows how to pack some data and send it:

sf::Packet packet;
std::string myString = "Hello Sir!";
sf::Int32 myNumber = 20;
sf::Int8 myNumber2 = 3;
packet << myString << myNumber << myNumber2;
mySocket.send(packet);

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[242]

This is as easy as it gets. You should notice the use of the operator <<. SFML
implemented it to make it more simple and readable, allowing to chain many
items in a single line, all being packed correctly within sf::Packet.

Then, on the other end of the network, the following code shows to unpack that
same data:

sf::Packet packet;
std::string myString;
sf::Int32 myNumber;
sf::Int8 myNumber2;
mySocket.receive(packet);
packet >> myString >> myNumber >> myNumber2;

Easy enough, isn't it? Now we know to use sockets, send and receive data; but how
do we know what data are we reading? An application will most likely want to act
differently upon receiving different packets, right? This is where it comes handy to
implement a custom protocol—a way to understand what the data really is for and
what to do with it.

Network architectures
Regardless of socket types and protocols, games take different approaches in the
architecture of the multiplayer mode.

We call the playable game application a client, network-wise, and this part of
the book concerns how clients communicate with each other and who they
communicate with.

There are at least two major approaches to a networked simulation.

Peer-to-peer
This architecture was and still is used in online games; however, it fits a very specific
set of purposes and is used less widely than its counterpart client-server architecture.

Nevertheless, its importance should be noticed and mentioned every time
networking is the topic. What defines this architecture is essentially the fact that
every game client in the simulation connects to each other. You can see it in the
following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[243]

Peer

Peer

Peer Peer

These inter-connections between all the clients, which somehow resemble a spider's
web, mean that every client has a connection with every client. This way, they
effectively communicate correctly, allowing chatting with each other, seeing each
other's movements, and other actions. When a client means to do something, such as
when the jump key is pressed and the character should jump, it notifies every other
client of this, so they can see it happen too.

However, while this approach can be efficient, as the network processing is done
among all clients, it introduces a nasty set of disadvantages that unfortunately can't
be avoided.

The major problem with the technique is that cheating cannot be prevented. A client
will just do whatever it wants to do and notify all the others of it. Players can and
they will exploit your game's weaknesses whenever there are any and destroy the
fun of the game to other players.

So, how will we make sure the clients can't do anything outside of the allowed
actions? That's where the other network architecture kicks in!

Client-server architecture
Alright, this is a very, very important subject. This is nearly the standard as far
as multiplayer gaming goes. Learn this concept well and you're gold. This will
be particularly useful for nearly all networking tasks you will be doing and not
exclusively games.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[244]

Why is it so important? First, because it allows a central instance to control
everything, and therefore provides the possibility to implement means of security.
The following figure shows how computers are laid in such architecture:

Server

Peer PeerPeer

Here, you see there is a central server, or group of servers (distributed systems)
that communicate with all the clients. Now, a client does not know, under any
circumstances, about other client's address or information. The server acts as a proxy,
or a bridge between the client's communications. However, saying the server is
merely a bridge for communication is a reductive view of what it really does.

Authoritative servers
In reality, having one server manage all of the clients and be in charge of all their
communications easily puts the server application under a heavy processing and
networking load. It is hard to develop and maintain efficient and fast servers that can
hold many clients at once. However, this cost is easily compensated by the advantages
this architecture inherently gives us. The most notable feature is the authority of the
server, entirely preventing the cheating and exploiting by the players.

How is this achieved, you may ask? It is easy to explain and a bit harder to get
right while developing, but what happens, in essence, is that the server holds the
true and absolute state of the simulation, and only the data being simulated in the
server application is considered valid. This way, each client will only receive valid
state information about the server and will always have correct and proper values in
the simulation.

On the other hand, the server may check for every packet received from clients, and
easily deduce what is possible to do under the constraints of the simulation. When
the server checks a client input, it is possible to analyze it in order to know if that
input is valid or is an attempt at cheating. If the server is programmed well to do
these checks, its internal state remains valid and accurate. A player may modify
its client to do weird things that were not programmed that way initially, that we
cannot prevent, but as long as the input that comes from that client is checked, the
other players won't even notice a difference, because what the cheating client sees is
merely a local version and the server, which is still intact.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[245]

This is the basis for all cheat prevention in online servers. It works effectively and
is an important area that must never be neglected. For the sake of simplicity, in our
implementation, the server is not entirely authoritative, so cheating would be possible.

Creating the structure for multiplayer
You must be fed up with networking theory by now, and you actually want to
see some code! Right, it is now time to start the concrete implementation of our
game server.

In order to extend our game and add an online mode to it, we went ahead and
created a new state MultiplayerGameState, which is very similar to GameState
at first. In the following code snippet, you see the important parts of the class
definition. As you see, the three typical state-related methods to draw, update, and
handle events are again there, as well as the variables for the world, window, and
texture holder. Several variables are new related to the management of different
players and socket connections:

class MultiplayerGameState : public State
{
 public:
 MultiplayerGameState(StateStack& stack,
 Context context, bool isHost);

 virtual void draw();
 virtual bool update(sf::Time dt);
 virtual bool handleEvent(const sf::Event& event);
 ...

 private:
 void updateBroadcastMessage(
 sf::Time elapsedTime);
 void handlePacket(sf::Int32 packetType,
 sf::Packet& packet);

 private:
 typedef std::unique_ptr<Player> PlayerPtr;

 private:
 World mWorld;
 sf::RenderWindow& mWindow;
 TextureHolder& mTextureHolder;

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[246]

 std::map<int, PlayerPtr> mPlayers;
 std::vector<sf::Int32> mLocalPlayerIdentifiers;
 sf::TcpSocket mSocket;
 bool mConnected;
 std::unique_ptr<GameServer> mGameServer;
 sf::Clock mTickClock;

 std::vector<std::string> mBroadcasts;
 sf::Text mBroadcastText;
 sf::Time mBroadcastElapsedTime;
 ...
}

We changed the main menu appropriately to accommodate the newly created Host
and Join options. To avoid creating one state for each of those options, we created
a custom constructor for MultiplayerGameState, which takes a parameter clearly
stating whether this state will be hosting or just joining. You can see those changes in
StateStack.cpp. Because both modes are almost equal, it wouldn't even make sense
to have another state. The only difference is that if the state is the host, it will launch
a background server in its constructor and shut it down again in its destructor!
By this logic, we can say that MultiplayerGameState is the client-side of our
application and GameServer is the server-side.

Working with the Server
Now it is time to put our hands on the actual server! We will be dissecting the
GameServer class to understand properly what is going on.

Server thread
To begin with, we decided to put the server in a separate thread. This is very useful
in many ways. For once, server processing can be intensive and could hurt the frame
rate on the client. On the other hand, if the server is running on a parallel thread, aside
from improving its performance, it also allows it to perform blocking calls whenever
necessary, and the game keeps running smoothly. Another plus in this approach is that
our server does not communicate programmatically with the client, it communicates
only via network; therefore, we don't even need to care about synchronization between
the two. It is just like as if server is running on a different application!

As we have already introduced sf::Thread before in Chapter 5, Diverting the
Game Flow – State Stack, we will skip that topic here. It is important to notice that
GameServer::executionThread() is the thread function and that it starts running
when GameServer gets constructed, and is stopped before it gets destructed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[247]

Now, inside GameServer::executionThread() is where all the magic happens.
First rule is that while executionThread() doesn't return a value, the parallel thread
is alive. There are three main logical steps in the server thread: initialization, the
server loop, and termination. Take a look at this pseudo-code:

void GameServer::executionThread()
{
 initialize();
 while(!timeToStop) loop();
 shutdown();
}

Not unlike the client-side of the game, we must do the appropriate things in the
proper places. In the initialization phase, just when the server thread starts, we are
going to tell the sf::TcpListener socket to start accepting new connections. This is
what allows the players to join our server. Also, we initialize some timing variables
here to be used in the server loop later. As you may notice, there isn't that much to
initialize at this point as the world is still empty without any ally or enemy aircraft,
and the basic variables are initialized by the constructor.

Then, we enter the server loop, which will simply keep executing until the while
loop ends, either by a forced termination of the thread, which is not recommended,
or by setting the timeToStop Boolean variable to true, effectively ending the while
loop at the end of the next step.

Server loop
Without a doubt, this part is the most important, and while many programmers take
different paths in the process of creating a server loop, we did it in a way that is not
unusual to see across programs. The following is the simplified anatomy of each step
in the loop:

handleIncomingPackets();
handleIncomingConnections();

while (stepTime >= stepInterval)
{
 updateLogic();
 stepTime -= stepInterval;
}
while (tickTime >= tickInterval)
{
 tick();
 tickTime -= tickInterval;
}

sf::sleep(sf::milliseconds(50));

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[248]

The first two functions are going to respectively handle all incoming traffic from the
connected peers and accept new connections, if there are any. Then, updateLogic()
will be very similar to the client's update() functions; it will simply perform the
evolution of data over time, to keep the server's state always up-to-date. The next
function, tick(), is very similar to the previous update step, but usually executes
fewer times and is used to send a snapshot of the server's state to the clients. In our
case, we send updates to the clients 20 times per second. We may call this frequency
the tick rate.

Just to be clear, the main reason tick() and updateLogic() functions are not
merged is because they run at different rates. This is to save processing time and
network bandwidth, as sending too many packets too often would just put a
heavy load on the network with no benefits. Ideally, we want to send as little data
as possible but making sure it is enough to accomplish the gameplay demands.
This way, updateLogic() runs a lot faster to always keep the data as refreshed as
possible, while tick() only performs as few times as necessary to make sure the
client has an accurate version of the server state locally at all times.

Finally, the call to sf::sleep() is entirely optional; however, it is not a bad idea to
tell the thread to sleep a bit and let the client's thread take the processor for itself for
a little while. The bigger time you pass to sf::sleep(), the less time will be spent on
server's tasks. It will be fine just until the server has too many tasks to perform and
too little time to do them.

Before heading to the depths of these functions, let's rest a bit by looking at the data
structures we will use, and how they are laid out.

Peers and aircraft
The multiplayer version of our game is a little different than its single-player
counterpart. Now, each client can have one or two local aircraft objects, but many
clients can be connected simultaneously. Though, one client is always one peer in the
eyes of the server. A peer by itself can contain multiple aircraft. Therefore the server
always knows how many clients are connected, how many aircraft are in the game
and which peers they belong to:

struct RemotePeer
{
 RemotePeer();

 sf::TcpSocket socket;
 sf::Time lastPacketTime;
 std::vector<sf::Int32> aircraftIdentifiers;
 bool ready;
 bool timedOut;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[249]

The preceding code snippet shows the structure of RemotePeer, which is declared
inside GameServer. The constructor merely initializes the peer's data to an invalid
state, which by itself means the peer is instanced, but not yet pointing to an actual
client. The socket variable is the TCP socket we mentioned earlier in the chapter that
we will use to communicate exclusively with a specific peer. The lastPacketTime
variable always contains the timestamp of the last packet received from that peer.
This is used to deduct disconnections and timeouts by a simple rule: If the peer did
not send any data after n seconds, kick it out because something is wrong, as there
are packets that the client has to compromise to send regularly.

The aircraftIdentifiers variable is an interesting one. It holds a list of IDs of
all the planes that belong to a specific peer. There is a good reason there is only an
integer here: All the aircraft data is centralized in GameServer, and is easily referred
to in there by using this integer ID, if needed.

The ready Boolean variable refers exactly to the valid or invalid state of the peer
connection. It only becomes true after a successful connection and sending the
world state to the newly connected socket.

The timedOut variable is just a flag that is set in the server logic to tell the
handleDisconnections() function that this peer needs to be erased.

std::size_t mAircraftCount;
std::map<sf::Int32, AircraftInfo> mAircraftInfo;
std::vector<PeerPtr> mPeers;

The preceding code snippet shows where all the peers are stored, as well as
the mentioned aircraft data. mAircraftCount will always contain the total of
human-controlled aircraft in the world at a time. Their data can be queried using
mAircraftInfo, through the struct declared as follows:

// Structure to store information about current aircraft state
struct AircraftInfo
{
 sf::Vector2f position;
 sf::Int32 hitpoints;
 sf::Int32 missileAmmo;
 std::map<sf::Int32, bool> realtimeActions;
};

Yes, it is very simple. It only holds the position of the aircraft and the set of real-time
actions the player is currently performing, such as moving and shooting.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[250]

The size of mPeers is always the number of truly connected peers plus one. That
extra peer that is never valid exists for a single purpose: To become valid once a new
connection is established. And when that peer becomes valid, another invalid one is
created for the same purpose! This way, new peers are always added at the end and
can be removed from the middle of std::vector without problems, as the "standby"
peer is always guaranteed to be at the last position of the array. The number of truly
connected peers can be queried with mConnectedPlayers. There is a chance you are
still struggling to understand why this extra peer is kept in the vector. Well, it had
to be somewhere since sf::TcpListener::accept() requires it, so it was just a
decision as any other when designing the code. Eventually, we insert the peer to the
vector anyway, so it is reasonable to construct it there in advance.

sf::Int32 mAircraftIdentifierCounter;

The aircraft identifier counter is an integer that starts at 1 and grows by one
every time a new aircraft is added to the world. This guarantees that no matter
how many aircraft join and leave the world; new ones will always be assigned
new unique identifiers. Also, we would like to emphasize the difference between
mConnectedPlayers and mAircraftCount. While the former refers to unique
connected peers or clients, the latter refers to unique airplanes present in the game.

Hot Seat
Our approach allows the handling of multiple aircraft in a single peer. This makes
our system inherently apt to handle what the gaming community refers to as Hot
Seat multiplayer. It really only stands for local cooperative gameplay, where the
same gaming machine is used by more than one player in a single game session.

For this reason, our sample allows this mode at any time. As soon as you press the
Return key, a second aircraft will join the game, and while you're actually playing
a networked game with a real server, it will seem like one of those old-school game
sessions, where you would be the friend or foe of your friends throughout the game.

Accepting new clients
About accepting incoming connections, the responsible object to do this is
our mListenerSocket, which is of type sf::TcpListener. As long as the
mConnectedPlayers value is below mMaxConnectedPlayers, that connection is
accepted. If this condition is not met, the socket entirely stops listening for new
connections, effectively rejecting them all.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[251]

The sf::TcpListener::accept() function is where the connection actually
succeeds, generating a valid tunnel for communication between the peer and the
server. It takes an already-instanced socket which is initialized in case of success.
Conveniently, we have that extra peer always allocated for this purpose! That's
exactly what we use to test if an incoming connection has arrived. The following is
what we do:

if (mListenerSocket.accept(mPeers.last()->socket) ==
 sf::TcpListener::Done)

An important remark in this situation is that sockets have two modes: blocking
and non-blocking. The main difference is that the first will hold the program from
continuing execution while waiting for incoming connections/packets/responses,
and the latter will never block execution, keeping the fluidity of the program. It
is good to remember that we set our mListenerSocket as a non-blocking socket.
This is due to having a fast execution of the server loop without any more threads.
The calls to sf::TcpListener::accept() that are constantly happening, return
immediately stating whether there are new connections or not. All other server
sockets are set to non-blocking as well for the same reason.

So, what does it mean when sf::TcpListener::accept() returns a successful
response? It means a new client is trying to join, whether it's the first or the nth,
whether it's local or in another country, we treat it the same way. There are a few
operations we must make in order to set up a new valid peer and attribute a new
aircraft to it:

// order the new client to spawn its own plane (player 1)
mAircraftInfo[mAircraftIdentifierCounter].position =
 sf::Vector2f(mBattleFieldRect.width / 2,
 mBattleFieldRect.top + mBattleFieldRect.height / 2);

sf::Packet packet;
mAircraftInfo[mAircraftIdentifierCounter].hitpoints = 100;
mAircraftInfo[mAircraftIdentifierCounter].missileAmmo = 2;

packet << static_cast<sf::Int32>(Server::SpawnSelf);
packet << mAircraftIdentifierCounter;
packet << mAircraftInfo[mAircraftIdentifierCounter].position.x;
packet << mAircraftInfo[mAircraftIdentifierCounter].position.y;

mPeers[mConnectedPlayers]
->aircraftIdentifiers.push_back(mAircraftIdentifierCounter);

broadcastMessage("New player!");
informWorldState(mPeers[mConnectedPlayers]->socket);
notifyPlayerSpawn(mAircraftIdentifierCounter++);

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[252]

mPeers[mConnectedPlayers]->socket.send(packet);
mPeers[mConnectedPlayers]->ready = true;
mPeers[mConnectedPlayers]->lastPacketTime = now(); // prevent initial
timeouts
mAircraftCount++;
mConnectedPlayers++;

First, we use our identifier counter to get a new ID for the new aircraft, then, we bind
to it some aircraft data, namely its initial position. Then we assign that aircraft to
belong to the newly created peer, using the aircraftIdentifiers struct.

Now, there are the following four things that we send to the client:

•	 The order to spawn itself immediately
•	 The current state of the world with all the current aircraft
•	 How big the map is
•	 How much distance has been travelled already inside the map

Also, we notify every other peer that this aircraft is joining, so they are aware of a
new player. Finally, and not as a mandatory step, we use broadcastMessage() to
send a message to all previously connected peers, informing them of the new player
that just joined!

The first thing in the list is actually the last being sent for a reason: When the client
spawns the aircraft, it expects the world to be configured already with the current
state. This is where TCP sockets come in very useful, as they help us ensure the
ordering of the packet arrival, making our game logic more consistent.

To finish, we just increment the proper peer and aircraft counters, that is,
mConnectedPlayers and mAircraftCount respectively, and set the current
timestamp to the peer, so it is not prematurely disconnected by lack of activity.

After setting mPeers.last()->ready to true, we are ready to instance the new
invalid peer for the next connection. This happens if there are still available slots for
peers in the server, otherwise, the mListenerSocket socket will go back to a sleeping
state, not listening to new connections anymore. It can indeed come back to life later,
if users leave in the meanwhile.

Handling disconnections
Every time the server checks the peers for incoming packets, it makes a quick
analysis of whether a peer hasn't sent anything in a very long time. If that is the case,
we consider that peer timed out, and it is effectively kicked out of the server along
with all its aircraft.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[253]

There are two main scenarios for disconnection; the first is when a user explicitly
quits the game, intentionally leaving the simulation by sending a specific packet
warning the server. The other is when something is wrong with the network, and the
packets are not arriving anymore—the situation that we know as timeout.

If in that situation, at least one peer is marked for removal by setting its mTimedOut
flag to true, handlingDisconnections() is called, and does the following:

FOREACH(sf::Int32 identifier, (*itr)->aircraftIdentifiers)
{
 sendToAll(sf::Packet() << static_cast<sf::Int32>
 (Server::PlayerDisconnect) << identifier);
 mAircraftInfo.erase(identifier);
}

mConnectedPlayers--;
mAircraftCount -= (*itr)->aircraftIdentifiers.size();

itr = mPeers.erase(itr);

// Go back to a listening state if needed
if (mConnectedPlayers < mMaxConnectedPlayers)
{
 mPeers.push_back(PeerPtr(new RemotePeer()));
 setListening(true);
}

broadcastMessage("An ally has disconnected.");

As you can see, it iterates over every peer, and for those who are flagged to be
removed, it warns every peer that those aircraft are going to disappear. Then, the
proper counters are decremented again and mAircraftInfo is partially cleared so
it doesn't contain any more data for the erased planes. The peer is then effectively
released from the mPeers list. Finally, if it's necessary, we resurrect the listener
socket to start listening again for new users and always send an "ally disconnected"
broadcast message, such that the other users are aware of what happened.

Incoming packets
We saved this part for last, as it is very important and a little more complex. We
will now inspect the behavior of sending actual packets and receiving them. We
use the exact same concepts we previously talked about for packing and unpacking
sf::Packet. However, every packet must conform to some rules in order for both
the client and the server to understand what is supposed to happen in the presence
of each packet.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[254]

All packets have a fixed identifier, sized as a sf::Int32 for coherence. This identifier
is what explicitly tells us what the packet contains and what it brings inside:

sf::Packet packet;
packet << static_cast<sf::Int32>(identifier);

The rest of the packet data depends on what the identifier actually is. All identifiers
we defined are under NetworkProtocol.hpp. All packets that originate in the server
are under the Server, and all the packets that come from the client are in the Client
namespace. The following is a code snippet with those identifiers:

namespace Server
{
 enum PacketType
 {
 BroadcastMessage,
 SpawnSelf,
 ...
 };
}

namespace Client
{
 enum PacketType
 {
 PlayerEvent,
 PlayerRealtimeChange,
 ...
 };
}

By making sure that both clients and server use the same "network language" by
packing and unpacking the transferred data the same way and conforming to the
specification of every packet type, we achieve a sane and logical communication
protocol, which we call the network protocol, custom-made to fit our needs! As
stated earlier in the chapter, defining such a protocol is, in many ways, similar to
how other protocols were defined, such as HTTP and FTP.

Now let's understand how packets are handled in code:

bool detectedTimeout = false;

FOREACH(PeerPtr& peer, mPeers)
{
 if (peer->ready)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[255]

 {
 sf::Packet packet;
 while (peer->socket.receive(packet) == sf::Socket::Done)
 {
 // Interpret packet and react to it
 handleIncomingPacket(packet, detectedTimeout, *peer);

 peer->lastPacketTime = now();
 packet.clear();
 }

 if (now() >= peer->lastPacketTime + mClientTimeoutTime)
 {
 peer->timedOut = true;
 detectedTimeout = true;
 }
 }
}

if (detectedTimeout)
 handleDisconnections();

What we do is essentially traverse all the properly connected peers, and for each
peer, we read as many packets as there are available using the non-blocking
sf::TcpSocket::receive() function.

For each packet received, we call handleIncomingPacket() and reset the timestamp
in the corresponding peer, so it doesn't time out. After receiving the packet, we test
this timestamp against a predefined timeout limit. If no packet was received for at
least mClientTimeoutTime, then the Boolean detectedTimeout flag is set, allowing
a call to handleDisconnections(), which will remove the peer that timed out, as it
was marked for removal by setting timedOut to true on the peer.

Now, let's take a look at how we handle a packet from the client:

sf::Int32 packetType;
packet >> packetType;

switch (packetType)
{
 ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[256]

As we mentioned, the packet identifier, which clearly states the packet type, depending
on whether it was sent by the client or the server, is fixed to be always a sf::Int32
value, so we begin by unpacking that header. Now, since that number matches directly
with the members of the corresponding enumerator, we perform a switch on it. The
preceding code snippet does not contain all cases that we handle, so we can better
understand the flow of the server logic and later analyze each packet properly.

This is exactly what defines the interaction between peers and the rules of the
gameplay in conformance with the network protocol we created. For example,
when we get a packet from the client of type Client::PlayerEvent, we already
know from the "specification" that we can find in the packet's data two sf::Int32
variables: the aircraft identifier and the action identifier that matches directly the one
in the Player.hpp file. This way, when we read such a packet, we can broadcast it
back to all peers so they all make the aircraft X perform action Y at the same time.

Studying our protocol
Let's attempt a deeper understanding of the logic of our server by checking what
each server packet exactly means.

Every packet in the Server::PacketType enum is formed by the bullet's title as its
identifier. That assumed, we explain the following packed parameters:

•	 BroadcastMessage: This takes a std::string and is used to send a message
to all clients, which they would show on the screen for some seconds.

•	 SpawnSelf: This takes a sf::Int32 value for the aircraft identifier and two
float values for its initial position. It is used to order the peer to spawn its
player one's aircraft.

•	 InitialState: This takes two float values, the world height and the initial
scrolling in it, then a sf::Int32 value with the count of aircraft in the world;
then for each, it takes a sf::Int32 identifier and two float values with the
position of the airplane.

•	 PlayerEvent: This takes two sf::Int32 variables: the aircraft identifier and
the action identifier, as declared in Player. This is used to inform all peers
that plane X has triggered an action.

•	 PlayerRealtimeChange: This is same as PlayerEvent, but for real-time
actions. This means that we are changing an ongoing state to either true or
false, so we add a Boolean value to the parameters.

•	 PlayerConnect: This is same as SpawnSelf, but indicates that an aircraft
from a different client is entering the world.

•	 PlayerDisconnect: This takes one sf::Int32 value with the aircraft
identifier to be destroyed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[257]

•	 AcceptCoopPartner: This is used to tell the client that it is free to spawn
another local plane. It takes a sf::Int32 value and two float values with the
identifier of the aircraft to be spawned and its initial position.

•	 SpawnEnemy: This takes one sf::Int32 value with the type of the aircraft as
declared in Aircraft class and two float values indicating where the enemy
should spawn.

•	 SpawnPickup: Similar to SpawnEnemy, but applies for the spawn of a pickup
in the world. The first sf::Int32 value to be packed is declared inside the
Pickup class.

•	 UpdateClientState: This takes one float value with the current scrolling of
the world in the server, and then a sf::Int32 value with the aircraft count.
For each aircraft, it packs one sf::Int32 value with the identifier and two
float values for position.

•	 MissionSuccess: This has no arguments. It is simply used to inform the
client that the game is over.

Understanding the ticks and updates
In the pseudo-code, we referred to the updateLogic(), now let's take a look at what
it actually does:

while (stepTime >= stepInterval)
{
 mBattleFieldRect.top += mBattleFieldScrollSpeed *
 stepInterval.asSeconds();
 stepTime -= stepInterval;
}

Comments are probably not needed, as fixed time steps were already explained
in Chapter 1, Making a Game Tick. All that is being actually updated in here is the
mBattleFieldRect variable, which scrolls upwards into the end of the level—an
exact replica of what happens in the client with the world view.

Simple enough, let's now look at a more important code, the ticks, which we use
to maximize the synchrony between both server and client. Let's use some
pseudo-code:

while (tickTime >= tickInterval)
{
 updateClientState();
 checkMissionEnd();
 spawnEnemies();
 spawnPickups;

 tickTime -= tickInterval;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[258]

The first step is to send to all clients the current snapshot of the server's state,
which consists of the current scrolling of the world (mBattleFieldRect.top +
mBattleFieldRect.height) and the positions of all aircraft.

About the aircraft positioning, it is important to notice that the server is not an
authority over the movement of aircraft, but rather an agent in their synchronization.
When you control your aircraft with the keys, the server will obey and register
your newly obtained positions and the client won't overwrite its own local plane
locations with the incoming server data. Therefore, we can assume that each client
is responsible for the positions of its own aircraft. The server will however dispatch
each client's positions to all others!

Then, checkMissionEnd() corresponds to the code that will check if all aircraft are
near enough to the end of the level for the Server::MissionSuccess packet to be
delivered, effectively showing a message in the client and quitting to the menu. This
check is performed by checking if all the aircraft positions are between the effective
end of the level and a given offset, provided in the endLevel constant.

After that, both spawnEnemies() and spawnPickups() functions will be responsible
for making enemies and pickups appear at random intervals and at random
locations, by using the randomInt() utility function.

Synchronization issues
If you test this chapter's sample extensively enough, you will notice clear
synchronization problems, where some things do not happen the exact same way
for all clients. This is intended and accounted for. We sacrificed a bit on the final
polish level of the networked simulation, so it could remain simple. We understand
networking is a very complex topic which might confuse even the brightest minds at
first. We could never learn everything about it in one book, let alone in one chapter.
Therefore, we went with an approach as simple as possible in this chapter. We would
rather have you focused in learning the concepts we directly teach so you can extend
them later into a fully-polished game than to have a way bigger codebase to look and
get lost in.

Taking a peek in the other end – the client
We have looked in the server extensively and have hopefully clarified all systems
and learned how they come together to form a single object that services a lot of
clients at once, and potentially even more aircraft! Now let's look at the other
end, the client, and see how we took a jump from a single-player-only game into a
fully-networked game.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[259]

Let's examine the MultiplayerGameState constructor first:

sf::IpAddress ip;
if (isHost)
{
 mGameServer.reset(new GameServer());
 ip = "127.0.0.1";
}
else
{
 ip = getAddressFromFile();
}

if (mSocket.connect(ip, ServerPort, sf::seconds(5.f)) ==
 sf::TcpSocket::Done)
 mConnected = true;
else
 mFailedConnectionClock.restart();

mSocket.setBlocking(false);
...

We need to deduce which IP to communicate with, in order to successfully join
a game. If we are the host, we just connect to the loopback address 127.0.0.1,
otherwise, we need to connect to a pseudo-remote server. This means that in
practice, the server could still be running in the same machine if the user is testing
two clients in the same computer. However, if we are joining a server on another
computer, we actually need a valid IP address. We get it from a file conveniently
named ip.txt, which is created and saved in the same directory as the executable
in case it doesn't exist, already containing the loopback address. Changing this file is
the way to go if you want to pick an arbitrary IP to connect to.

The port used is 5000 and it is hardcoded both in the server and the client. If you try
the application, make sure you don't have other games or programs conflicting with
this port.

The loopback address we referred previously is simply a
widely adopted IPv4 address that points to the local host
or the machine itself where it is being used.

After attempting to connect with a timeout of five seconds, we either set the client
to a valid connected state, or we restart a clock that will timeout after another 5
seconds, in the meantime showing the error message stating that connection was
not possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[260]

Most things in MultiplayerGameState are a direct copy of how GameState used to
work. Though there are some changes and additions we would like to mention. In
the update() function, besides what was already there, we now check for incoming
packets from the server:

 sf::Packet packet;
 if (mSocket.receive(packet) == sf::Socket::Done)
 {
 sf::Int32 packetType;
 packet >> packetType;
 handlePacket(packetType, packet);
 }

The handlePacket() function is very alike to the server's handleIncomingPacket()
function.

Then we perform some logic to update the broadcast queue that shows the messages
from the server on the screen and the text that blinks prompting a second player to
join in by pressing the Return or Enter key:

updateBroadcastMessage(dt);

mPlayerInvitationTime += dt;
if (mPlayerInvitationTime > sf::seconds(1.f))
 mPlayerInvitationTime = sf::Time::Zero;

Finally, we tick the client in the same way and rate we tick in the server. Instead of
sending a snapshot of all the local states, the client sends only the positions of its
local aircraft:

if (mTickClock.getElapsedTime() > sf::seconds(1.f / 20.f))
{
 sf::Packet positionUpdatePacket;
 positionUpdatePacket << static_cast<sf::Int32>(
 Client::PositionUpdate);
 positionUpdatePacket << static_cast<sf::Int32>(
 mLocalPlayerIdentifiers.size());

 FOREACH(sf::Int32 identifier, mLocalPlayerIdentifiers)
 {
 if (Aircraft* aircraft = mWorld.getAircraft(identifier))
 positionUpdatePacket << identifier
 << aircraft->getPosition().x
 << aircraft->getPosition().y;
 }

 mSocket.send(positionUpdatePacket);
 mTickClock.restart();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[261]

Client packets
Here's the protocol explanation for the client. The Client::PacketType enum
contains the following enumerators:

•	 PlayerEvent: This takes two sf::Int32 variables, an aircraft identifier, and
the event to be triggered as defined in the Player class. It is used to request
the server to trigger an event on the requested aircraft.

•	 Quit: This takes no parameters. It simply informs the server that the game
state is closing, so it can remove its aircraft immediately.

•	 PlayerRealtimeChange: This is the same as PlayerEvent, but additionally
takes a Boolean variable to state whether the ongoing action is active or not.

•	 RequestCoopPartner: This takes no parameters. It is sent when the user
presses the Return key to request the server a local partner. Its counterpart
AcceptCoopPartner will contain all information to actually do the spawn of
the friendly unit.

•	 PositionUpdate: This is what we saw in the client's tick code. It takes a
sf::Int32 variable with the number of local aircraft, and for each aircraft,
it packs another sf::Int32 variable for the identifier and two float values for
the position.

•	 GameEvent: This packet informs the server of a specific happening in the
client's game logic, such as enemy explosions.

Transmitting game actions via network nodes
Now, we will take a closer look at the GameEvent packet, which is sent when certain
actions in the game occur. We use it to notify about explosions of enemies in a
way that pick-up dropping is synchronized among different clients (either, a pick-
up drops at every client or not at all). However, our implementation allows you
to extend it for any game action. First, we have a GameActions namespace which
contains an enum to differ between the game actions, and a struct to store an action:

namespace GameActions
{
 enum Type { EnemyExplode };

 struct Action
 {
 Action();
 Action(Type type, sf::Vector2f position);

 Type type;
 sf::Vector2f position;
 };
}

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[262]

In Chapter 9, Cranking Up the Bass – Music and Sound Effects, you saw that we used
a dedicated scene node class named SoundNode to build an interface between
command-based game events and another game component, in that case, the sound
player. Here, we are repeating this approach: We create a NetworkNode class that lets
objects in the scene directly send events over the network:

class NetworkNode : public SceneNode
{
 public:
 NetworkNode();

 void notifyGameAction(GameActions::Type type,
 sf::Vector2f position);
 bool pollGameAction(GameActions::Info& out);
 ...

 private:
 std::queue<GameActions::Action> mPendingActions;
};

This class holds a queue of game actions that are going to be transmitted. The
notifyGameAction() method inserts a new game action into the queue, while
pollGameAction() checks if an action is pending. If so, it pops the action from
the queue and stores it in the output parameter—just as you know it from SFML's
pollEvent() function.

Now, how does this look in practice? In the Aircraft::updateCurrent() method,
we have a check if the current airplane has just exploded and if it's an enemy. In this
case, we issue a command. The Category::Network category is the receiver category
of NetworkNode:

Command command;
command.category = Category::Network;
command.action = derivedAction<NetworkNode>(
 [position] (NetworkNode& node, sf::Time)
{
 node.notifyGameAction(GameActions::EnemyExplode, position);
});

The network node itself is placed in the World class. A World::pollGameAction()
member function acts as a pure forwarder and can be used in other parts of the game
where we only have access to the world, but not its scene and entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[263]

One example is the MultiplayerGameState class. In its update() function, we
interpret the game action and build a packet based on it, which is then sent over
the network. We fill the packet with the Client::GameEvent packet type, the
game action type (which in our case is always GameActions::EnemyExplode) and
the position coordinates.

GameActions::Action gameAction;
while (mWorld.pollGameAction(gameAction))
{
 sf::Packet packet;
 packet << static_cast<sf::Int32>(Client::GameEvent);
 packet << static_cast<sf::Int32>(gameAction.type);
 packet << gameAction.position.x;
 packet << gameAction.position.y;

 mSocket.send(packet);
}

On the server side, in GameServer::handleIncomingPacket(), this packet is
interpreted. When the game action denotes an exploded enemy, a pick-up will
be spawned with a certain probability. This in turn leads to a packet of type
Server::SpawnPickup, which is distributed to all clients.

The new pause state
For this chapter, the pause state was slightly modified. The same PauseState class
was now modified to accept an option in its constructor to either allow or deny
underlying states from being updated. The "default" behavior didn't change, but
if we pass this parameter as true, the underlying states keep updating. This was
a necessity as there was no concept of pausing in a networked game, because the
world is persistent. However, the user may still want to access settings or go back to
the main menu!

Settings
You may now configure two sets of keys in the Settings screen! This was done
by not using an application wide Player instance anymore, rather by using a
proper KeyBinding structure, holding the keys that are later passed to Player
instances at will.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[264]

The new Player class
The Player class needed to be reworked quite a bit in order to support a multiplayer
mode. Players are not hardcoded anymore in a state context scope, but rather, there
is one player for each human-controlled aircraft in the world.

Every player is now identified by the same identifier that classifies one aircraft,
so they can be paired up fast. Also, the constructor of Player now looks like the
following:

Player(sf::TcpSocket* socket, sf::Int32 identifier,
 const KeyBinding* binding);

We pass on a socket instance or a nullptr, defining whether the Player class is
being used in a networked or a single-player game. This socket, if passed, is valid for
sending data to the server, which we will do next!

The identifier is exactly what you'd expect, the same that maps to an aircraft too.
Finally, we also have KeyBinding being passed here. We will be passing it three
different things: The defined keys for the player 1, player 2, and nullptr in case this
Player instance does not receive local input, but rather is controlled by the server!

As for event and input handling by the Player class, it now works a little
differently too.

Now, the real-time input is only delivered to the local player aircraft—the ones with
actual human players controlling them. In consequence, each client has total control
over its planes along with immediate responsiveness and smoothness. At the same
time, that input is sent to the server, so every client is aware of that movement.

Latency
Programming and maintaining efficient server software is already a very hard task;
however, to add even more complexity to this duty, we must deal with latency too.
This topic is very broad but we will still try to give you some starting tips on how to
deal with these issues.

Roughly, latency is the delay a network packet takes to reach its destination. The
bigger the latency, the more we get behind in the networked simulation, and in
consequence, the gameplay gets worse.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[265]

This little nightmare is one of the hardest troubles to deal with in network
programming. It will make players have a different experience based on their
connection and other network conditions, that is, it will make the game very
smooth for some players while completely unplayable for others; it will be a mess.
Unfortunately, it is not in the hands of the programmer to deal with the network's
latency at all. A programmer can at best prepare the software to behave a little better
in the worst case scenarios, where the latency is high. This is usually a very hard
task to get right and is one of the main reasons game development companies need
specialized and experienced network programmers to achieve a good simulation
for all players, independently of how bad their connection is, within reasonable
limits. Latency becomes a more and more determining factor as the geographical
distance between peers increases. Already the speed-of-light delay between different
continents of the Earth amounts to a fraction of a second, router logic on the way
through the Internet may add even more. Until a peer receives an answer, data must
be sent to the other peers and back; thus, we have the delay of both ways (also called
round-trip time). Therefore, physics significantly limits the way how multiplayer
games can be played across large distances.

Latency versus bandwidth
Do not confuse latency with bandwidth: The former denotes the time delay, while
the latter denotes the capacity of the link. If you imagine a link as a pipe, the latency
is related to its length, and thus to the time the water requires to flow through it.
Bandwidth however is determined by the cross-section of the pipe; it specifies how
much water can flow through it in a certain amount of time.

You cannot make a single bit arrive faster by increasing the bandwidth. What you
can do however is to send many bits in parallel, so that a bigger chunk of data still
needs less time to be transmitted. The bandwidth determines how much data you
can send in a certain amount of time.

View scrolling compensation
The view is now simulated both in the client and the server and updated at the
same speed in both of them. However, since the updates are happening in different
threads or even different machines, some discrepancies may occur occasionally.
Also, when a new player joins the game, he has to be informed of how far the
view currently is, so it can keep up with it. In order to keep the view synchronized
between all clients and the server, the server will send the view's position in every
tick and the clients will employ a little trick to smoothly resynchronize the view.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[266]

The trick is simple. When the view is scrolled, we multiply the scroll offset with a
compensation factor:

mWorldView.move(0.f, mScrollSpeed * dt.asSeconds() *
 mScrollSpeedCompensation);

Now we just need to ensure that the factor is 1 when the views are in sync, and vary
it, so the view scrolls faster or slower depending on how distanced it is from the
server's view position. We do this by dividing both positions whenever we get the
update:

 mWorld.setWorldScrollCompensation(currentViewPosition /
 currentWorldPosition);

This will keep the view synchronized while never losing smoothness, unless
something is very wrong and is too far behind, which should never happen in
normal circumstances.

Aircraft interpolation
After the compensation technique, we decided to implement another little trick for
the aircraft synchronization. Again, this is a simple way to achieve synchronization
and it doesn't give the smoothest results most often. We still wrote it so you could
face different algorithms and techniques and hopefully learn from them.

Remember, that each client commands its own planes and just informs the server
of what is happening locally. With this information, the server keeps track of where
every aircraft that is located. In every tick, it sends that information to its peers so
they can synchronize with the true simulation data.

The planes would move quite accurately anyway with the real-time input
information that comes from the server, but still some desynchronization could
happen eventually. Because of this, when we get the real position of the aircraft in
every tick, we move our aircraft slowly into that position, so, at best, after some ticks
the aircraft are completely synchronized:

if (aircraft && !isLocalPlane)
{
 sf::Vector2f interpolatedPosition = aircraft->getPosition() +
 (aircraftPosition - aircraft->getPosition()) * 0.1f;
 aircraft->setPosition(interpolatedPosition);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[267]

The logic is simple. If the aircraft belongs to a remote player, we will interpolate
its position between the current local position and the server's position
(aircraftPosition). We have hardcoded an interpolation "amount" of 0.1f, which
means that we will always move 10 percent of the distance between both positions.
This small value avoids having the aircraft "jump" from place to place, except when
the network conditions are really bad and the synchronization is suffering too much.

Cheating prevention
By now you probably are scratching your chin and asking yourself: "But is this
secure? Is a hacky player able to exploit the game to its benefit somehow?"

If you answered "No" to yourself, you are correct. By all means we would like to
explain you how to make every little thing cheat-proof. However, we don't want to
give you the fish by bloating the code with lots of validations; but rather, explicitly
writing about how you can learn how to fish.

The current game, as is, is not cheat-proof whatsoever. There are a lot of
validations that are not performed, so it will only work predictably until a clever
user starts doing packet-sniffing and sending things that are not really expected by
our protocol.

Let's try to understand how cheating could be achieved in our particular case, and
how would we prevent it by looking at a few examples:

•	 In the client's tick, we let the client decide where its planes are going to be
at. If a user with malicious intent sent this packet after modifying, he would
be able to position its aircraft in any location, effectively warping from place
to place as much as he wanted. We would fix this by not accepting the new
positions in the server without some validations first. We would need to
check if the new position is possible. Whether it could be achieved with
normal gameplay, given the aircraft velocity and previous positions. Right
here we could spot on a cheater and act upon it by banning or kicking or
simply logging what happened to a file.

•	 Another great example of how we could exploit this game is to look at the
PlayerEvent packet on the client-side. It carries an aircraft identifier and an
action to perform. However, as the server doesn't check if the identifier sent
is owned by that peer, a malicious user could effectively make other people's
planes shoot bullets and missiles.

We intentionally left such things uncovered so you could see how serious it can be
if you don't check all the data coming from a client. Users will often try to break the
server state for an in-game profit.

www.it-ebooks.info

http://www.it-ebooks.info/

Company Atop the Clouds – Co-op Multiplayer

[268]

The golden rule to prevent cheating is, when handling a packet in the server,
always ask yourself if what the client is requesting is possible! Do as many
validations as possible in the server's logic. The ultimate goal for a safe online
simulation is reaching that point when there is no possible combination of data
coming from the client that will produce unpredicted results. Always remember, as
long as the server's state is sane and controlled, there is no cheating, as hard as it may
be to achieve this.

Summary
In this final chapter, you learned about basic networking concepts. We had a
look at sockets, different network architectures, and protocols. We incorporated
this knowledge to our game, and extended the existing design to cope with new
challenges of networking. By using SFML's Network module, we implemented a
mechanism to communicate with other players on the same keyboard, the local area
network, or the Internet. Although we had to make compromises in some places,
you should have learned a lot of techniques which you can eventually apply in
another game.

Along with this chapter, also ends the book! It has been a long ride all the way and
we can only thank you for reading through our pages patiently. Finally, our aircraft
top-scroller has reached a state where it is not only playable, but contains many
features to create an immersive experience. We began with rendering, resource and
input handling, and went over to shape different states and menus with a graphical
user interface. We implemented actual gameplay mechanisms, polished the
appearance using a variety of visual effects, played sound and music, and eventually
added multiplayer support. Nevertheless, there are hundreds of possibilities to
further improve our game, there are virtually no limits!

By now, you have seen many different aspects of game development—maybe a lot
of unconventional approaches—and you are certainly motivated by these ideas to
create your own work. Remember, what we showed you should only be a source of
inspiration, not the one and only truth. We made choices that other people would
handle differently. Therefore, don't be afraid of experimenting and trying out your
own ideas! Be it code design, art style, or the gameplay itself—be creative, this is the
most important attribute of any game developer. We hope you have enjoyed reading
this book and following the development of our game, and wish you good luck on
your journey!

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
3D space

sounds 225
3D vectors

direction 226
position 226
up 226

-s postfix 9

A
AcceptCoopPartne 257
affectors 192
Aircraft::launchMissile() function 163
Aircraft class 51, 52, 157
Aircraft constructor 155
aircraftIdentifiers variable 249
AND operator 100
animated sprites 200-204
Application class

stack, integrating 121, 122
application programming interface (API) 7
apply() function 171, 206
Artificial Intelligence (AI) 156
aspect ratio 69
assertions 42, 43
assignKey() function 110
attenuation factor 227
Audacity software

URL 218
audio 35
audio module, SFML 8

B
bandwidth

versus latency 265
view scrolling compensation 265

bloom effect 205-213
Boolean return values 41
bounding rectangle 173
BroadcastMessage 256
bullets

firing 163-166
Button::activate() method 225
Button object 225

C
C++ 10, 11
centerOrigin() function 155
checkMissionEnd() 258
checkProjectileLaunch() function 167
checkSceneCollision() function 175
circle tree 69
client

about 258, 260
game actions transmitting, network modes

used 261-263
packets 261
pause state 263
player class 264
settings screen 263

Closed event 14
CMake 8

www.it-ebooks.info

http://www.it-ebooks.info/

[270]

collision
detecting 173, 174
pairs, finding 174, 175
reacting to 176-178

collision() function 174
command-based communication system 95
command execution 100
CommandQueue class 101, 106
command queues 101
commands

about 96, 97
overview 106

Component::handleEvent() function 139
component-based design 52
Component class 138
concurrency 133
container

finding 37
createProjectile() function 166
createState() method 118
culling 68
custom protocol 240

D
data tables

entity attributes, storing 152-154
data transport 241, 242
delta movement, mouse 93
delta time 21
destroy() function 152
direction, 3D vectors 226
DirectX 189
double buffering 26
draw

handling 119
draw call 68
drawCurrent() function 59, 61
draw() function 58, 65
draw() method 80

E
EmitterNode and ParticleNode

splitting 199
emitter nodes 197, 198
emitters 192

enemies
about 156
movement patterns 156-158
spawning 158-160

entities
about 50
Aircraft 51
attributes, storing in

data tables 152-154
connecting, with resources 61, 62
designs, alternative 52
drawing 61
equipping 151
text, displaying 154, 155

Entity::draw() function 53
Entity, base class 50
enum class. See strongly typed

enumerations
erase() 181
error

handling 40
events

about 86
and real-time input 92

exceptions
throwing 41, 42

executionThread() 247

F
FIFO (first in, first out) 101
file paths 25
Finite State Machine (FSM) 115
fire() function 163
fixed time step 22, 23
fonts 32
FPS 16
frames 201
Frames Per Second. See FPS
fullscreen post effects 205-207

G
game

class 13-16
developing 12

Game::handlePlayerInput() 18

www.it-ebooks.info

http://www.it-ebooks.info/

[271]

Game class
integrating 81
run method 81

game code, texture atlases
adapting 187, 188

GameEvent parameter 261
game logic

implementing 107
game loop 16
GameServer::executionThread()

function 246
general-purpose communication

mechanism 108
getAssignedKey() function 110
getBattlefieldBounds() 159, 182
getCategory() function 99
get function 50
get() method 43
getOrigin() 54
getStatus() method 220
getViewBounds() 159
getWorldPosition() function 231
GL Shading Language (GLSL)

about 32, 208
URL, for tutorial 215

graphical user interface. See GUI
graphics module, SFML 8, 34
graphics processing unit (GPU) 189
GUI 138-141
guide function 162
guideTowards() function 167

H
handleEvent() function 127-148
handleEvent() method 119
handlePacket() function 260
handlePlayerInput() function 18, 92
hitpoints 152
hot seat 250

I
identifier parameter 43
image 31
initializePickupData() function 171
InitialState 256

input
handling 119
state, obtaining in real time 90-92

Internet Protocol. See IP
IP 237
isButtonPressed() function 91
isDestroyed() function 181
isGuided() function 167
isKeyPressed() function 91
isMarkedForRemoval() function 181
isSelectable() function 139
isSupported() function 206
iterator class 179

J
joystick events, SFML

sf::Event::JoystickButtonPressed 88
sf::Event::JoystickButtonReleased 88
sf::Event::JoystickConnected 88
sf::Event::JoystickDisconnected 88
sf::Event::JoystickMoved event 88

K
key bindings

about 147-149
customizing 109-111

keyboard events, SFML
sf::Event::KeyPressed 88
sf::Event::KeyReleased 89
sf::Event::TextEntered 89

L
lambda expression 57
Landscape

rendering 71
SpriteNode 71, 72
texture 73
texture, repeating 73, 74

latency
about 264
Aircraft interpolation 266
versus bandwidth 265

launchMissile() function 163, 165

www.it-ebooks.info

http://www.it-ebooks.info/

[272]

layer 64
listener

3D vectors 226
about 226
positioning 227, 228

loadFromFile() call 46
loadFromStream() 30
load() function 46
LoadingState::update() 135
LoadingState class 130
load() method 44
Local Area Network (LAN) 236
low-level rendering 189

M
main() function 13, 81
main loop 16
menu

updating 146, 147
mFilenames variable 218
minimum distance 227
missiles

firing 163-167
MissionSuccess 257
mLoadingText function 131
modulo operator 158
mOptionIndex integer variable 126
mouse

delta movement 93
mouse events, SFML

sf::Event::MouseEntered 89
sf::Event::MouseLeft 89

move() function 19
movement 20
movement patterns 156-158
mSelectedChild variable 142
multiplayer games

playing 236
structure, creating 245, 246

music 33
MusicPlayer::play() method 219
music themes

about 218
loading 219, 220
playing 219, 220

N
network, architecture

about 242
authoritative servers 244, 245
client-server architecture 243, 244
peer-to-peer 242, 243

network module, SFML 8
network port 238
new operator 140
notifyGameAction() method 262
nullptr 56

O
Open Audio Library (OpenAL) 225
openFromFile() method 45
OpenGL

about 189
URL 208

OpenGL Shading Language. See GLSL
open type fonts (OTF) 32
overload function 91

P
packets 241, 253-255
ParallelTask class 130
ParallelTask. LoadingState 130
ParallelTask object 132
particle nodes 194
particles

about 192-194
embedding 200
rendering, on screen 194-196

particle system 192
particle types 193, 194
pause() method 220
pause state 263
PauseState class 128
PauseState constructor 221
PauseState destructor 221
Player class 111
PlayerConnect 256
PlayerEvent parameter 256, 261
player input

handling 102-106

www.it-ebooks.info

http://www.it-ebooks.info/

[273]

Player::isRealtimeAction() function 110
PlayerRealtimeChange parameter 256, 261
play() function 229
playLocalSound() method 231
pollEvent() function 86
pop operations

delayed 120
popState() function 120
position, 3D vectors 226
PositionUpdate parameter 261
PostEffect::applyShader() function 207
post rendering 205
prepareTextures() function 213
primitive type 191
processEvents() function 13, 14
processEvents() method 24
projectiles

adding 161, 162
push operations

delayed 120
pushState() function 120

Q
Quadtrees 69, 179
quit parameter 261

R
RAII 36
real-time rendering 26
receiver categories 98, 99
relative position 53
removeStoppedSounds() method 224
render() function 13, 27
render() method 15, 24
render target 189
render texture 190
render window 189
RequestCoopPartner parameter 261
requestStackClear() 120
requestStackPop() 120
requestStackPush() 120
resolution 69
Resource Acquisition Is Initialization.

See RAII
ResourceHolder template 43
ResourceHolder::load() function 46

ResourceHolder class template 47
resource parameter 43
resources

accessing 35
acquiring 35
defining 29, 30
in SFML 30
releasing 35

rotation 54
round-trip time 265
run() function 13, 16

S
sample, loading screen

about 129, 130
concurrency 133
ParallelTask 132
progress bar 130-132
task, implementing 134, 135
thread 133

scale 54
scene

layers 64
origin, aligning 63
rendering 53
updating 64, 66

scene graph 55
SceneNode::isDestroyed() function 180
SceneNode class 66, 98
SceneNode::onCommand() function 100
scene nodes

about 55, 56
inserting 56, 57
making drawable 58-60
removing 56, 57

selectNext() function 143
selectPrevious() function 143
Separating Axis Theorem 174
server

about 246
disconnections, handling 252, 253
hot seat 250
loop 247, 248
new clients, accepting 250-252
packets, incoming 253-256
peers and artifacts 248, 249

www.it-ebooks.info

http://www.it-ebooks.info/

[274]

protocol 256, 257
synchronization, issues 258
thread 246
ticks and updates 257, 258

server packet
AcceptCoopPartne 257
BroadcastMessage 256
InitialState 256
MissionSuccess 257
PlayerConnect 256
PlayerDisconnect 256
PlayerEvent 256
PlayerRealtimeChange 256
SpawnEnemy 257
SpawnPickup 257
SpawnSelf 256
UpdateClientState 257

setAttenuation() method 227
setBuffer() method 223
setCompletion() method 131
setDirection() method 226
set function 50
setMinDistance() method 227
setOrigin() 54
setPosition() method 226
SettingsState class 147
setVelocity() method 50
sf::Event::Closed event 10
sf::Event object 17
sf::Font class 32
sf::Music class

about 33, 219
compatibility with 45

sf::Mutex and sf::Lock 134
sf::Mutex object 135
sf::RenderWindow::display() function 26
sf::RenderWindow::draw() method 15
sf::RenderWindow::set

VerticalSyncEnabled() method 24
sf::Shader class 45, 46
sf::sleep() function 24
sf::SocketSelector class 239
sf::Sound constructor 223
sf::Sound object 33
sf::Sprite class 31, 72
sf::TcpListener::accept() function 251
sf::TcpSocket::receive() function 255

sf::Texture::loadFromFile() method 40
sf::Texture::loadFromX() function 31
sf::Texture::setRepeated(bool) function 73
sf::Texture class 24
sf::Thread::launch() 133
sf::UdpSocket::bind() function 239
sf::Event::Closed event 87
sf::Event::GainedFocus event 87, 94
sf::Event::JoystickButtonEvent

data structure 88
sf::Event::JoystickButtonPressed event 88
sf::Event::JoystickButtonReleased

event 88
sf::Event::JoystickConnected event 88
sf::Event::JoystickConnectEvent

data type 88
sf::Event::JoystickDisconnected event 88
sf::Event::JoystickMoved event 88
sf::Event::JoystickMoveEvent

data structure 88
sf::Event::KeyEvent data structure 89
sf::Event::KeyEvent data type 88
sf::Event::KeyPressed event 88
sf::Event::KeyReleased event 89
sf::Event::LostFocus event 87, 94
sf::Event::MouseButtonEvent structure 90
sf::Event::MouseButtonPressed type 90
sf::Event::MouseButtonReleased type 90
sf::Event::MouseEntered event 89
sf::Event::MouseLeft event 89
sf::Event::MouseMoved data type 89
sf::Event::Resized event 87
sf::Event::SizeEvent data type 87
sf::Event::TextEntered event 89
sf::Event::TextEvent data structure 89
sf::Event::type member variable 87
sf::Event variable 86
sf::Joystick class 90
sf::Keyboard class 91
SFML

about 7, 86
and transforms 54
API documentation, URL 28
audio module 8
events 17
graphics module 8
input state, obtaining in real time 90, 92

www.it-ebooks.info

http://www.it-ebooks.info/

[275]

joystick events 88
keyboard events 88, 89
minimal example 9, 10
mouse events 89, 90
network module 8
pre-built libraries, downloading 8
system module 8
URL 8
window events 87
window module 8

SFML resources
about 30
fonts 32
images 31
music 33
shaders 32
sound buffers 33
textures 31

sf::Mouse class 91, 93
sf::MouseMoveEvent data structure 89
sf::RenderWindow class 86
sf::Shape class 189
sf::Sprite class 186, 189
sf::Text class 189
sf::Window class 86
sf::Window::pollEvent() function 86
shader 32, 208
Simple and Fast Multimedia Library.

See SFML
sockets

about 236
selectors 239, 240

SoundBufferHolder::load() function 223
sound buffers 33
SoundEffect::ID enumerator 223
sound effects

about 221
class, implementing 222
GUI sounds, use case 224, 225
inserting 223
loading 223
playing 223
removing 224

SoundNode::playSound() function 231
SoundPlayer object 224
spatializing 225

spatial sounds
playing 228-230

spawnEnemies() function 258
SpawnEnemy 257
SpawnPickup 257
spawnPickups() function 258
SpawnSelf 256
SpriteNode 71, 72
sprites

displaying, on screen 24, 25
sprite sheet 186
stack

integrating, in Application class 121, 122
state

context 121
defining 113, 114
game, pausing 128, 129
game state, creating 123
main menu 125-127
navigating between 123
title screen 124, 125

State::Context class 220
State::Context structure 224
state stack

about 114, 115
draw, handling 119
input, handling 119
states, adding to 117, 118
update, handling 119

StateStack::registerState() 118
StateStack class

about 116, 118
states, adding to 117, 118

std::array function 75
std::bind() call 231
std::function 117
std::function class 144
std::list::remove_if() method 224
std::make_shared() function 140
std::bind() function 96
std::function class 96
stop() method 220
strongly typed enumerations 37
system module, SFML 8

www.it-ebooks.info

http://www.it-ebooks.info/

[276]

T
TCP

about 237
features 237

Texel 190
texture atlas

about 186
defining 186
game code, adapting 187, 188

TextureHolder class 62
texture mapping 190
texture rectangle 186
textures

about 31
accessing 39, 40

thread 133
tick rate 248
tile set 186
timedOut variable 249
timeout 253
TimePerFrame 23
time step 21
title screen 124, 125
toString() function 155
transform 54
transforms 66, 67
translation 54
Transmission Control Protocol. See TCP
true type fonts (TTF) 32
typedef 19
type inference 39

U
UDP 238, 239
unique pointers 37
unitVector() function 167
up, 3D vectors 226
update

handling 119
UpdateClientState 257
updateCurrent() function 167
update() function 13, 19, 21, 129,

165, 181, 260
updateLabels() function 148
updateLogic() function 248

update() method 24, 80
use case

in-game sound effects 230-232
in-game themes 220

User Datagram Protocol. See UDP
user tabs

interacting, with other applications 94

V
vector algebra 20
vectors 19
vertex 190
vertex array 191
Vertical Synchronization. See V-Sync
video memory 189
view

about 67
optimizing 68
rotating 71
scrolling 70
Viewport 68
zooming 71

Viewport 68
visual effect 192
V-Sync 24

W
waitEvent() function 86
window class 59
window events, SFML

sf::Event::Closed 87
sf::Event::GainedFocus 87
sf::Event::LostFocus 87
sf::Event::Resized 87

window module, SFML 8
world

composing 74, 75
draw() method 80
initialization 76, 77
scene, building 78, 79
textures, loading 77
update() method 80

World::update() function 182
World class 159

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
SFML Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Game Development with
GameMaker
ISBN: 978-1-849694-10-0 Paperback: 364 pages

Experience a captivating journey that will take you
from creating a full-on shoot 'em up to your first
social web browser game

1.	 Build browser-based games and share them
with the world

2.	 Master the GameMaker Language with easy to
follow examples

3.	 Every game comes with original art and
audio, including additional assets to build
upon each lesson.

Torque 3D Game Development
Cookbook
ISBN: 978-1-849693-54-7 Paperback: 380 pages

Over 80 prctical recipies and hidden gems for getting
the most out of the Tourque 3D game engine

1.	 Clear step-by-step instruction and practical
examples to advance your understanding of
Torque 3D and all of its sub-systems

2.	 Explore essential topics such as graphics,
sound, networking and user input

3.	 Helpful tips and techniques to increase the
potential of your Torque 3D games

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Cocos2d-X by Example
Beginner's Guide
ISBN: 978-1-782167-34-1 Paperback: 246 pages

Make fun games for any platform using C++,
combined with one of the most popular open source
frameworks in the world

1.	 Learn to build multi-device games in simple,
easy steps, letting the framework do all the
heavy lifting

2.	 Spice things up in your games with easy to
apply animations, particle effects, and physics
simulation

3.	 Quickly implement and test your own
gameplay ideas, with an eye for optimization
and portability

Mastering UDK Game
Development
ISBN: 978-1-849695-60-2 Paperback: 290 pages

Eight projects specifically designed to help you
exploit the Unreal Development Kit to its full
potential

1.	 Guides you through advanced projects that
help augment your skills with UDK by practical
example

2.	 Comes complete with all the art assets and
additional resources that you need to create
stunning content

3.	 Perfect for level designers who want to take
their skills to the next level

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Making a Game Tick
	Introducing SFML
	Downloading and installation
	A minimal example

	A few notes on C++
	Developing the first game
	The Game class

	Game loops and frames
	Input over several frames
	Vector algebra
	Frame-independent movement
	Fixed time steps
	Other techniques related to frame rates

	Displaying sprites on the screen
	File paths and working directories
	Real-time rendering
	Adapting the code

	Summary

	Chapter 2: Keeping Track of
Your Textures – Resource Management
	Defining resources
	Resources in SFML
	Textures
	Images
	Fonts
	Shaders
	Sound buffers
	Music

	A typical use case
	Graphics
	Audio
	Acquiring, releasing, and accessing resources

	An automated approach
	Finding an appropriate container
	Loading from files
	Accessing the textures

	Error handling
	Boolean return values
	Throwing exceptions
	Assertions

	Generalizing the approach
	Compatibility with sf::Music
	A special case – sf::Shader

	Summary

	Chapter 3: Forge of the Gods – Shaping Our World
	Entities
	Aircraft
	Alternative entity designs

	Rendering the scene
	Relative coordinates
	SFML and transforms
	Scene graphs
	Scene nodes
	Node insertion and removal
	Making scene nodes drawable
	Drawing entities
	Connecting entities with resources
	Aligning the origin
	Scene layers

	Updating the scene
	One step back – absolute transforms

	The view
	Viewport
	View optimizations
	Resolution and aspect ratio
	View scrolling
	Zoom and rotation

	Landscape rendering
	SpriteNode
	Landscape texture
	Texture repeating

	Composing our world
	World initialization
	Loading the textures
	Building the scene
	Update and draw

	Integrating the Game class
	The run method

	Summary

	Chapter 4: Command and
Control – Input Handling
	Polling events
	Window events
	Joystick events
	Keyboard events
	Mouse events

	Getting the input state in real time
	Events and real-time input – when to
use which
	Delta movement from the mouse

	Playing nice with your
application neighborhood
	A command-based communication system
	Introducing commands
	Receiver categories
	Command execution
	Command queues
	Handling player input
	Commands in a nutshell
	Implementing the game logic
	A general-purpose communication mechanism

	Customizing key bindings
	Why a player is not an entity

	Summary

	Chapter 5: Diverting the Game
Flow – State Stack
	Defining a state
	The state stack
	Adding states to StateStack
	Handling updates, input, and drawing
	Input
	Update
	Draw

	Delayed pop/push operations

	The state context
	Integrating the stack in the
Application class
	Navigating between states
	Creating the game state
	The title screen
	Main menu
	Pausing the game

	The loading screen – sample
	Progress bar
	ParallelTask
	Thread
	Concurrency
	Task implementation

	Summary

	Chapter 6: Waiting and Maintenance Area – Menus
	The GUI hierarchy, the Java way
	Updating the menu
	The promised key bindings
	Summary

	Chapter 7: Warfare Unleashed – Implementing Gameplay
	Equipping the entities
	Introducing hitpoints
	Storing entity attributes in data tables
	Displaying text

	Creating enemies
	Movement patterns
	Spawning enemies

	Adding projectiles
	Firing bullets and missiles
	Homing missiles

	Picking up some goodies
	Collision detection and response
	Finding the collision pairs
	Reacting to collisions
	An outlook on optimizations

	An interacting world
	Cleaning everything up
	Out of view, out of the world
	The final update

	Victory and defeat
	Summary

	Chapter 8: Every Pixel Counts – Adding Visual Effects
	Defining texture atlases
	Adapting the game code

	Low-level rendering
	OpenGL and graphics cards
	Understanding render targets
	Texture mapping
	Vertex arrays

	Particle systems
	Particles and particle types
	Particle nodes
	Emitter nodes

	Affectors
	Embedding particles in the world

	Animated sprites
	The Eagle has rolled!

	Post effects and shaders
	Fullscreen post effects
	Shaders
	The bloom effect

	Summary

	Chapter 9: Cranking Up the
Bass – Music and
Sound Effects
	Music themes
	Loading and playing
	Use case – In-game themes

	Sound effects
	Loading, inserting, and playing
	Removing sounds
	Use case – GUI sounds

	Sounds in 3D space
	The listener
	Attenuation factor and minimum distance
	Positioning the listener
	Playing spatial sounds
	Use case – In-game sound effects

	Summary

	Chapter 10: Company Atop the
Clouds – Co-op Multiplayer
	Playing multiplayer games
	Interacting with sockets
	TCP
	UDP
	Socket selectors
	Custom protocols

	Data transport
	Network architectures
	Peer-to-peer
	Client-server architecture
	Authoritative servers

	Creating the structure for multiplayer
	Working with the Server
	Server thread
	Server loop
	Peers and aircraft
	Hot Seat
	Accepting new clients
	Handling disconnections
	Incoming packets
	Studying our protocol
	Understanding the ticks and updates
	Synchronization issues

	Taking a peek in the other end – the client
	Client packets
	Transmitting game actions via network nodes
	The new pause state
	Settings
	The new Player class

	Latency
	Latency versus bandwidth
	View scrolling compensation
	Aircraft interpolation

	Cheating prevention
	Summary

	Index

SFML Game Development

Learn how to use SFML 2.0 to develop your own
feature-packed game

Jan Haller

Henrik Vogelius Hansson

Artur Moreira

 BIRMINGHAM - MUMBAI

SFML Game Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1170613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-684-5

www.packtpub.com

Cover Image by Vivek Sinha (vivek.ratan.sinha@gmail.com)

Credits

Authors
Artur Moreira

Henrik Vogelius Hansson

Jan Haller

Reviewers
Brandon DeRosier

Karol Gasiński

Eyal Kalderon

Acquisition Editor
Edward Gordon

Lead Technical Editor
Mayur Hule

Technical Editors
Sanhita Sawant

Priya Singh

Nitee Shetty

Dennis John

Project Coordinator
Amey Sawant

Proofreaders
Dan McMahon

Stephen Swaney

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

Foreword

I'm really honored to write the first words of this book, the very first one about SFML.
When I started to write this library, in 2006, I couldn't imagine that it would become so
much popular. Around 100,000 visitors per month, 100 new forum posts everyday...
this is huge! And this is just the beginning; with the release of SFML 2.0, the library
makes an important step forward. While SFML 1 is a constantly evolving (understand
"unstable") API, SFML 2.0 is meant to be a robust, stable, and mature foundation for
the future. And hopefully a solid base for more and more great games.

Increasing popularity also means more effort from the authors to provide complete
and quality documentation. Sadly, this is often overlooked by developers.

Although I do my best to provide detailed tutorials for SFML, they are nothing more
than an improved API documentation. Users often ask me where they can find a
more complete guide to start programming games with SFML. And until today,
I had nowhere to direct them to. But Artur, Henrik, and Jan did a great job to fill
this hole. They have gathered their wisdom and experience into a unique book that
covers the basics of game programming, as well as everything that SFML has to
offer—from audio to network, through advanced graphics. What I really appreciate
about this book is that it is written with the same philosophy that is behind SFML:
good design, simplicity, and modern code.

I hope you will enjoy reading this book as much as I did and find what you're
looking for; whether you're a beginner who wants to learn game programming with
SFML, or a more experienced programmer who wants to improve his design and
technical skills. And don't hesitate to come to the SFML forum if you have questions
or comments. I, the authors of this book, and all the community will be glad to
answer you.

Laurent Gomila

Author of SFML

Software Engineer, Tegesoft, France

About the Authors

Artur Moreira is a game development enthusiast who ultimately aims to start a
new game development company in his home country. He has been programming
games and game-related software for over 4 years. Most of the effort in that time
was put in creating an open source game-making library with lots of flexibility and
portability. The library is called Nephilim and is known for supporting all major
desktop and mobile operating systems, making game development fully cross-
platform and fast. Alongside this big project, he keeps making his own prototypes
and games for educational and commercial purposes.

Aside from the programming, he also puts some focus in creative areas such as 3D
modeling, digital painting, and music composing.

I would like to thank, first of all, my girlfriend for her patience and
unconditional support every single time the writing was taking
all of my time and energy. Also, I can't be thankful enough for
the support of my parents and sisters, along with all the closest
relatives, whose support is ever-present and always helpful. On the
technical side, I would like to directly thank Jan Haller and Henrik
Vogelius Hansson, the co-authors of the book, for their remarkable
collaboration, skill, and teamwork. It's been always a pleasure to
work with them.

Henrik Vogelius Hansson has always been in love with both games and
programming. He started his education fairly early and continued on into the indie
scene with Defrost Games and their game Project Temporality. The next company that
hired him was Paradox Development Studio where he got to work on titles such as
Crusader Kings 2.

Beside the game companies, Henrik has also been very active in the SFML
community and has even provided a binding for Ruby called rbSFML.

I would like to thank my co-authors, Jan and Artur, for the amazing
cooperation and great times. I am also very happy and would like
to thank my family that encouraged me to pursue this line of work.
Also special thanks to my grandmother.

Jan Haller is a Master's degree student of Electrical Engineering and Information
Technology. In his free time, he occasionally develops games in C++. He is also
interested in the creation of graphics and 3D models.

In 2008, Jan stumbled upon SFML. Since then, he has used the library for many of his
works. One of his bigger projects was a 2D Jump'n'Run game, where the character
has to find its way through different levels, defeating enemies and collecting various
items. During the years, Jan has actively participated in the SFML community,
getting a lot of insights into the development of SFML 2. He has also written a C++
library called Thor, which extends SFML by ready-to-use features such as particle
systems or animations.

I would like to thank Laurent Gomila for the passion and huge
efforts he invested into the Simple and Fast Multimedia Library. It
has always been interesting to discuss with him about the library
and its development process. I would also like to thank my co-
authors, Artur Moreira and Henrik Vogelius Hansson, who have
been a very nice team to work with.

About the Reviewers

Brandon DeRosier is a free software supporter, software engineer, and a hobbyist
game developer living in the Greater Boston area. Driven by an early interest
in programming, he took to the reverse engineering of his favorite games of his
childhood; he would later write several small augmentation tools to run alongside
these games. Over time, he developed his skills as a programmer—as well as an
interest in music composition, animation, and interactive media. Currently, he is
directing these skills and interests towards game design.

As a member of the Free Software Foundation, he understands that the
concealing of source code is unethical and regressive; dedicated to the digital
rights of users everywhere, he has actively participated in the development and
distribution of free software.

Brandon is currently pursuing a Bachelor of Science degree in Computer
Science at Wentworth Institute of Technology in Boston and takes pride in helping
others learn. Occasionally, he gives lectures in classes and clubs, with hopes of
encouraging interest in interactive media development with frameworks such as
SFML and LWJGL.

I'd like to thank my partner, Yamilah Atallah, for brainstorming
game ideas with me, coming up with meaningful concepts and
wonderful designs, and changing my life in so many positive ways;
with this support, my interest in game development has grown.

Karol Gasiński is a programmer, entrepreneur, and traveler living in Poland,
Europe. He works as a Graphic Software Engineer at an Intel Research &
Development facility, and has worked on 6 generations of Intel graphic cards. As a
member of KHRONOS group, Karol contributes to the development of OpenGL and
OpenGL ES Specifications—the industry standard for high-performance graphics.

Outside of his work, Karol's biggest passion is game development and low-level
programming. He has been associated with the games industry for over 6 years. In
the past, he has worked on mobile versions of games such as Medieval Total War,
Pro Evolution Soccer, and Silent Hill. Currently he is the founder and chairman of
the Polish Conference on Computer Games Development—the biggest and fastest
growing industry event in the country.

Karol gives lectures on most Polish conferences and events for game developers
including WGK, GameDay, SWPC, the DigitalFrontier course, IGK, and others.
You can also meet him on GDC Europe and GDC San Francisco, where each year
he gathers inspiration for his new games.

Eyal Kalderon is a self-taught computer programmer and high school student.
Having been introduced to the programming scene at a fairly young age, Eyal
developed his early skills in Visual Basic and made a switch to C# early on. Eyal
has made himself at home for several years now programming with C and C++ and
using shell scripts to automate every task he finds boring. After trying SDL, Eyal
switched to SFML in 2010, enjoyed it, and has been following its progress closely
ever since.

Understanding the power of print, having gained much from the Internet and
professional publications, Eyal chose to erect 'nullpwd' (nullpwd.wordpress.com)
in March of 2010, a casual software-centered blog that acts as an unintimidating
front for various software topics, such as programming, penetration systems, and the
current happenings of the open source community.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com

http://www.PacktPub.com

http://www.PacktPub.com

http://www.PacktPub.com

mailto:service@packtpub.com

http://www.PacktPub.com

http://PacktLib.PacktPub.com

http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Making a Game Tick	 7

Introducing SFML	 7
Downloading and installation	 8
A minimal example	 9

A few notes on C++	 10
Developing the first game	 12

The Game class	 13
Game loops and frames	 16

Input over several frames	 17
Vector algebra	 19
Frame-independent movement	 21
Fixed time steps	 22
Other techniques related to frame rates	 24

Displaying sprites on the screen	 24
File paths and working directories	 25
Real-time rendering	 25
Adapting the code	 27

Summary	 28
Chapter 2: Keeping Track of Your Textures – Resource
Management	 29

Defining resources	 29
Resources in SFML	 30

Textures	 31
Images	 31
Fonts	 32
Shaders	 32
Sound buffers	 33

Table of Contents

[ii]

Music	 33
A typical use case	 34

Graphics	 34
Audio	 35
Acquiring, releasing, and accessing resources	 35

An automated approach	 36
Finding an appropriate container	 37
Loading from files	 38
Accessing the textures	 39

Error handling	 40
Boolean return values	 41
Throwing exceptions	 41
Assertions	 42

Generalizing the approach	 43
Compatibility with sf::Music	 45
A special case – sf::Shader	 45

Summary	 47
Chapter 3: Forge of the Gods – Shaping Our World	 49

Entities	 50
Aircraft	 51
Alternative entity designs	 52

Rendering the scene	 53
Relative coordinates	 53
SFML and transforms	 54
Scene graphs	 55
Scene nodes	 55
Node insertion and removal	 56
Making scene nodes drawable	 58
Drawing entities	 61
Connecting entities with resources	 61
Aligning the origin	 63
Scene layers	 64

Updating the scene	 64
One step back – absolute transforms	 66

The view	 67
Viewport	 68
View optimizations	 68
Resolution and aspect ratio	 69
View scrolling	 70
Zoom and rotation	 71

Table of Contents

[iii]

Landscape rendering	 71
SpriteNode	 71
Landscape texture	 73
Texture repeating	 73

Composing our world	 74
World initialization	 76
Loading the textures	 77
Building the scene	 78
Update and draw	 80

Integrating the Game class	 81
The run() method	 81

Summary	 83
Chapter 4: Command and Control – Input Handling	 85

Polling events	 86
Window events	 87
Joystick events	 88
Keyboard events	 88
Mouse events	 89

Getting the input state in real time	 90
Events and real-time input – when to use which	 92
Delta movement from the mouse	 93

Playing nice with your
application neighborhood	 94
A command-based communication system	 95

Introducing commands	 96
Receiver categories	 98
Command execution	 100
Command queues	 101
Handling player input	 102
Commands in a nutshell	 106
Implementing the game logic	 107
A general-purpose communication mechanism	 108

Customizing key bindings	 109
Why a player is not an entity	 111

Summary	 112
Chapter 5: Diverting the Game Flow – State Stack	 113

Defining a state	 113
The state stack	 114

Adding states to StateStack	 117
Handling updates, input, and drawing	 118

Table of Contents

[iv]

Input	 119
Update	 119
Draw	 119

Delayed pop/push operations	 120
The state context	 121
Integrating the stack in the Application class	 121
Navigating between states	 123

Creating the game state	 123
The title screen	 124
Main menu	 125
Pausing the game	 128

The loading screen – sample	 129
Progress bar	 130
ParallelTask	 132
Thread	 133
Concurrency	 133
Task implementation	 134

Summary	 136
Chapter 6: Waiting and Maintenance Area – Menus	 137

The GUI hierarchy, the Java way	 138
Updating the menu	 146
The promised key bindings	 147
Summary	 150

Chapter 7: Warfare Unleashed – Implementing Gameplay	 151
Equipping the entities	 151

Introducing hitpoints	 152
Storing entity attributes in data tables	 152
Displaying text	 154

Creating enemies	 156
Movement patterns	 156
Spawning enemies	 158

Adding projectiles	 161
Firing bullets and missiles	 163
Homing missiles	 167

Picking up some goodies	 170
Collision detection and response	 173

Finding the collision pairs	 174
Reacting to collisions	 176
An outlook on optimizations	 179

An interacting world	 180
Cleaning everything up	 180

Table of Contents

[v]

Out of view, out of the world	 181
The final update	 182

Victory and defeat	 183
Summary	 183

Chapter 8: Every Pixel Counts – Adding Visual Effects	 185
Defining texture atlases	 186

Adapting the game code	 187
Low-level rendering	 189

OpenGL and graphics cards	 189
Understanding render targets	 189
Texture mapping	 190
Vertex arrays	 191

Particle systems	 192
Particles and particle types	 193
Particle nodes	 194
Emitter nodes	 197
Affectors	 199
Embedding particles in the world	 200

Animated sprites	 200
The Eagle has rolled!	 204

Post effects and shaders	 205
Fullscreen post effects	 205
Shaders	 208
The bloom effect	 208

Summary	 215
Chapter 9: Cranking Up the Bass – Music and Sound Effects	 217

Music themes	 218
Loading and playing	 219
Use case – In-game themes	 220

Sound effects	 221
Loading, inserting, and playing	 223
Removing sounds	 224
Use case – GUI sounds	 224

Sounds in 3D space	 225
The listener	 226
Attenuation factor and minimum distance	 227
Positioning the listener	 227
Playing spatial sounds	 228
Use case – In-game sound effects	 230

Summary	 233

Table of Contents

[vi]

Chapter 10: Company Atop the Clouds – Co-op Multiplayer	 235
Playing multiplayer games	 236
Interacting with sockets	 236

TCP	 237
UDP	 238
Socket selectors	 239
Custom protocols	 240

Data transport	 241
Network architectures	 242

Peer-to-peer	 242
Client-server architecture	 243

Authoritative servers	 244
Creating the structure for multiplayer	 245
Working with the Server	 246

Server thread	 246
Server loop	 247
Peers and aircraft	 248
Hot Seat	 250
Accepting new clients	 250
Handling disconnections	 252
Incoming packets	 253
Studying our protocol	 256
Understanding the ticks and updates	 257

Synchronization issues	 258
Taking a peek in the other end – the client	 258

Client packets	 261
Transmitting game actions via network nodes	 261
The new pause state	 263
Settings	 263
The new Player class	 264

Latency	 264
Latency versus bandwidth	 265
View scrolling compensation	 265
Aircraft interpolation	 266

Cheating prevention	 267
Summary	 268

Index	 269

Preface
Welcome to the pages of SFML Game Development!

Whether you are just grabbing our book in a store, previewing it in your e-book
reader, or you have already bought it—you have taken your first step in becoming a
game developer by picking up this book.

Game development is a very interesting topic, as it combines many different
fields such as software development, graphical design, music composition, and
storytelling. Nowadays, there is an enormous variety of games available, yet
developers never cease to be creative and to come up with innovations. This book
conveys the process of game development in a way that covers state-of-the-art
techniques, leaving you ready to implement your own ideas.

It does not matter if you are already an experienced developer or an ambitious
newcomer to the field of making games. Although the book requires no previous
knowledge on game development, we also teach valuable concepts and techniques
that will help you grow as a game developer.

Throughout the book, we develop a 2D game with SFML. We focus on a top-scrolling
aircraft shooter, where the player acts as a pilot and is confronted with various
challenges. We begin with the bare bones of each element and continuously add
functionality as we progress in the book. In every chapter, new features are introduced,
and the code is updated accordingly. Therefore, you will not only see the concepts in
theory, but also will have a direct implementation at hand, which you can investigate
and extend the way you like.

That said, we would like to wish you a great journey through the chapters of this
book. May it be a good experience in all its extent! Please enjoy!

Preface

[2]

What this book covers
Chapter 1, Making a Game Tick, introduces the SFML library and shows you basic
concepts such as the game loop and rendering.

Chapter 2, Keeping Track of Your Textures – Resource Management, covers the loading
and management of external resources such as images, fonts, and sounds.

Chapter 3, Forge of the Gods – Shaping Our World, builds up the framework of the game
world and addresses the concept of scene graphs and game entities.

Chapter 4, Command and Control – Input Handling, shows how to react to user input
from the keyboard, mouse, and joystick.

Chapter 5, Diverting the Game Flow – State Stack, covers switching between application
states such as different menus, or between menus and the game itself.

Chapter 6, Waiting and Maintenance Area – Menus, introduces a simple graphical user
interface in the menus.

Chapter 7, Warfare Unleashed – Implementing Gameplay, approaches actual gameplay
mechanisms. Enemies, bullets, missiles, power-ups and collision detection are
implemented.

Chapter 8, Every Pixel Counts – Adding Visual Effects, enhances the graphical
appearance of the game by adding animations, particle systems, and shaders.

Chapter 9, Cranking Up the Bass – Music and Sound Effects, explains a way to integrate
audio into the game.

Chapter 10, Company Atop The Clouds – Co-op Multiplayer, covers networking basics
and a multiplayer implementation over the network.

What you need for this book
Since this book is built around the SFML library, you need to download and
install it. You can get SFML at www.sfml-dev.org; the first chapter gives a brief
installation guide.

In case you decide to recompile SFML yourself, you will also require the
cross-platform build tool CMake, which can be downloaded from www.cmake.org.

Preface

[3]

Who this book is for
SFML Game Development is aimed at audiences of all ages who already know how to
program in C++, at least to an intermediate level. It is optimal if the reader already
has some experience in programming and knows the language well.

The ideal reader for such a book would be a person who is experienced in C++ and
would now like to enter the world of game development in a simple yet serious
way. However, if the reader already knows a good deal of it and still wants to read
through the pages to see different approaches, or if he simply wants to learn more
about SFML in a bigger practical example, we strongly encourage to read on!

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "To manage all these screens and
transitions, we create the StateStack class."

A block of code is set as follows:

namespace GUI
{
 class Component : public sf::Drawable,
 public sf::Transformable
 {
 public:
 typedef std::shared_ptr<Component> Ptr;

 Component();

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

: mChildren()
, mSelectedChild(-1)
{
}

void Container::pack(std::shared_ptr<GUI::Component> component)
{

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "It shows a
background with a little information about the game, besides its title and then blinks
a big old Press any key to continue message".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.PacktPub.com

http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Making a Game Tick
Through the words in this book, we will attempt to convey the best knowledge we
possibly can. We aim to teach techniques that we learned along the years, techniques
that we would like to have been told about in our early days of game development.
We now write this book to save your time, by showing you directly the solution to
common problems, and why things work the way they do.

Alongside our attempt to teach the basics and a little beyond game development,
we will especially focus on the Simple and Fast Multimedia Library (SFML). Every
part of this book will be about developing a game and leveraging the advantages
that SFML is able to provide us. To spice things up a little, and since we use the C++
programming language, we will try our best to use the language in a modern way,
applying more recent language features, techniques, and programming styles, in a
fully object-oriented approach. C++ is a great tool and it always has been, however,
it is a good thing if we grow with it and adapt to the possibilities it has to offer in the
present day.

This chapter introduces the SFML library and shows you its capabilities by creating
a small application. We are going to address the basic concepts relevant to game
development, namely; rendering, game loops, and code organization. Furthermore,
the first part of our game code developed, will serve as a basis for the coming chapters.

Introducing SFML
Before we start developing a game, we would like to tell you a little bit about
the library we will use throughout the book. SFML is an object-oriented C++
framework. As can be guessed by the name, its philosophy consists of having a
simple, user-friendly application programming interface (API), and allowing for
both high performances and fast development.

Making a Game Tick

[8]

SFML is a multimedia library, meaning that it provides a layer between you and the
hardware. It is split into five modules:

•	 System: This is a core module upon which all other modules are built. It
provides two-dimensional and three-dimensional vector classes, clocks,
threads, and Unicode strings, among other things.

•	 Window: The Window module makes it possible to create application
windows, and to collect user input, such as mouse movement or key presses.

•	 Graphics: This module provides all functionalities that are related to two-
dimensional rendering, such as images, texts, shapes, and colors.

•	 Audio: SFML also offers a module to work with sound. When you want to
load a music theme and play it on the computer's loudspeakers, this is the
module you have to look for.

•	 Network: Another medium SFML covers is the network, a more and more
important part of our interconnected world. This module allows you to send
data over LAN or the Internet; it also lets you work with protocols, such as
HTTP or FTP.

If you don't need all the modules, it is possible to use only a part of SFML. We will
cover every module in SFML, but of course we are not able to use every single class.
We recommend having a look at the SFML documentation, which is available at
www.sfml-dev.org/documentation.php. The documentation explains every class
and function in a detailed manner, and is an invaluable tool when developing a
game using SFML.

SFML is open source, which means that you have access to its complete source code.
Usually, the implementations aren't relevant to the user, but if you are interested in
how something was solved, don't hesitate to skim through SFML's code.

The library uses the zlib/libpng license, which is extremely permissive. You can use
SFML in both open and closed source projects, both free and commercial.

Downloading and installation
There are two possibilities when using SFML: download the pre-built libraries, or
recompile them yourself. The first option is simpler, but you have to wait for major
versions (2.0, 2.1, and so on) to be released. If you want to use the latest development
sources, you can download the current Git revision. The configuration software
CMake is used to prepare the sources for compilation with a compiler of your
choice. For example, CMake creates Visual Studio solutions or g++ Makefiles. The
recompilation process is explained in detail in the SFML tutorials, which can be
found at www.sfml-dev.org/tutorials.php.

Chapter 1

[9]

As mentioned, SFML is split into five modules. There are five headers to include a
complete module (and its dependencies). To include the whole Audio module, you
can write:

#include <SFML/Audio.hpp>

On the other hand, if you need a specific header file, you can find it in the directory
of the corresponding module:

#include <SFML/Audio/Sound.hpp>

Each module is compiled to a separate library, which makes it possible to use only
the modules you need. SFML can be built for release or debug mode, and it can be
linked statically or dynamically. The resulting libraries are named according to the
scheme sfml-module[-s][-d]. The -s postfix is required if you link statically; the
-d postfix specifies debug mode. For example, to link the Graphics module statically
in release mode, you have to specify the library sfml-graphics-s in your linker
options. Depending on your compiler, a file extension (such as .lib) might be
necessary. Keep in mind that some modules depend on others; therefore, you have
to link the dependencies too. For example, Graphics depends on Window, which
depends on System; therefore, you should link the three (in this order).

An important point to note is that if you link SFML statically, you have to define
the macro SFML_STATIC in your projects, so that the linker knows what functions to
resolve.

In case you do not know how linking a library works for a specific compiler, please
refer to the online tutorials. They explain how to install everything correctly, and are
always up-to-date.

A minimal example
Before you go deeper into the book and SFML itself, let's take a look at a minimal
application example to show how an application that uses this library looks like, its
general flow of execution, and some basic functionality.

#include <SFML/Graphics.hpp>

int main()
{
 sf::RenderWindow window(sf::VideoMode(640, 480), "SFML
Application");
 sf::CircleShape shape;
 shape.setRadius(40.f);
 shape.setPosition(100.f, 100.f);

Making a Game Tick

[10]

 shape.setFillColor(sf::Color::Cyan);
 while (window.isOpen())
 {
 sf::Event event;
 while (window.pollEvent(event))
 {
 if (event.type == sf::Event::Closed)
 window.close();
 }
 window.clear();
 window.draw(shape);
 window.display();
 }
}

All this application does is to open a window onto which we can render, with a
width of 640 pixels and a height of 480 pixels. Its title says "SFML Application".
Then, a cyan geometric circle is created, and while the window is open, it is drawn
to the screen. Finally, for each time the circle is drawn, the program checks for user
input that may have arrived from the underlying window. In our case, we only
handle the sf::Event::Closed event, which arrives every time the application
is requested to terminate, such as when we click on the close button, or press an
application-terminating shortcut, such as Alt + F4.

If you failed to understand a part of or the whole snippet of code, don't fear.
This book contains all you need to know about this and much more.

A few notes on C++
C++ is a very powerful, but also very complex programming language; even after
years one never stops learning. We expect you to understand the basic language
features (variables, data types, functions, classes, polymorphism, pointers, and
templates), as well as the most important parts of the standard library (strings,
streams, and the STL). If you feel unsure, we recommend reading a good C++ book,
before or in parallel to this book, since SFML and our code sometimes uses advanced
techniques. Game development is a difficult topic on its own; it is very frustrating
if you additionally have to fight C++. Even if it takes some time to reasonably learn
the programming language, it is a good investment, since it will save you days of
tedious debugging.

Chapter 1

[11]

You may have heard that in 2011, a new C++ standard was released, which
introduced a lot of extremely useful features. We are going to use a few C++11
features in the book, and show how they can improve code. Each time we use a new
C++11 technique, we will briefly explain it.

An issue that is widely underestimated, especially by beginners, is the importance of
clean code. Before making a game, it is always a good idea to have a rough imagination
of the game features and their implementation. It may help to draw sketches on a
paper, in order to visualize contexts better. Also during development, it is crucial to
keep an eye on the code design, and to refactor messy code where necessary.

Some key aspects of good code are as follows:

•	 Modularity: In this the functionalities are separated, and dependencies
between them are reduced to a minimum. This allows you to maintain and
debug application parts locally, as well as, to change the implementation of
a module without affecting the other modules. Concretely, we achieve this
by widely avoiding global variables, distributing functionality to different
classes, and keeping interfaces between them small. We also split the code
base to different headers and implementation files, and try to include only
what is really necessary.

•	 Abstraction: In this, the functionality is encapsulated into classes and
functions. Code duplication is avoided. The usage of low-level operations,
such as manual memory management (new/delete) is minimized,
because it is inherently error-prone, and replaced with idioms such as
RAII. In short, keep most of your code on a high abstraction level, such that it
is expressive and achieves a lot of actions within a few lines. When you need
boilerplate code, wrap it into functions, so that the code using it still looks
clean.

•	 Code style: One thing, be consistent. It does not matter what naming
convention you use, or if you have a space between if and the opening
parenthesis, so long as you stick to one style. It is important that you keep the
code readable and expressive, so that you still recognize what you have done
after several weeks. Use comments where appropriate.

After this initial sermon, we hope that you have recognized how a well-structured
code can keep up your motivation to develop, while on the other hand, a total mess
is contra-productive and frustrating, when it comes to maintenance, debugging, or
integration of new features. Don't be afraid if this advice sounds very abstract; you
will automatically gain experience while developing projects.

By the way, the code we are going to develop during the chapters is available for
download on the Packt Publishing website.

Making a Game Tick

[12]

Developing the first game
Now that we got the boring parts finished, we can finally start making a game. So
where do we start? What do we do first? First, you should have an idea of what kind
of game you want to develop, and what elements it will incorporate. For the purpose
of this book, we have chosen to create a shoot-em-up game. The player controls an
aircraft viewed from the top, and has to find its way through a level full of enemies.

In order to tease you a little, we show you a screenshot we will have at the end of
this chapter.

It might not be the most amazing game you have seen so far, but it exemplifies a
good point. To make a game, we need a medium for communicating what is going
on to the user. For us, that amounts to showing images on the screen to the player,
and having a way for the player to manipulate the game.

Chapter 1

[13]

The Game class
In this chapter, we implement the basis for your game that will get you going. The
root for us is a class called Game; instead of doing our logic in the main() function
as we did in the minimal example, we move everything into the Game class instead.
This is a good starting point—it gives us a better overview of our code, as we can
extract separate functionality into their own functions, and use them within the Game
class. If we look at the minimal example, we had three distinct areas in the code:
initialization, event processing, and rendering. Now if we continued to develop
there, these three parts would grow quite a lot, and we would end up with a gigantic
wall of code, which would be nearly impossible to navigate. The Game class helps us
out here.

Here is the general design of the class and its intended usage:

class Game
{
 public:
 Game();
 void run();

 private:
 void processEvents();
 void update();
 void render();

 private:
 sf::RenderWindow mWindow;
 sf::CircleShape mPlayer;
};

int main()
{
 Game game;
 game.run();
}

As you can clearly see, we replaced all the code in the main() function from the
minimal example with just a Game object and a call to its run() function. The idea
here is that we have hidden the loop we had previously in the run() function. It
doesn't happen very often that we have to fiddle with it anyway. Now, we can move
the actual code that updates the game to the update() function, and the code that
renders it to the render() function. The method processEvents() is responsible for
player input. So if we want to get something actually done, we implement it in one of
the three private functions.

Making a Game Tick

[14]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com . If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Let's have a look at the code now:

Game::Game()
: mWindow(sf::VideoMode(640, 480), "SFML Application")
, mPlayer()
{
 mPlayer.setRadius(40.f);
 mPlayer.setPosition(100.f, 100.f);
 mPlayer.setFillColor(sf::Color::Cyan);
}
void Game::run()
{
 while (mWindow.isOpen())
 {
 processEvents();
 update();
 render();
 }
}

The function processEvents() handles user input. It polls the application window
for any input events, and will close the window if a Closed event occurs (the user
clicks on the window's X button).

void Game::processEvents()
{
 sf::Event event;
 while (mWindow.pollEvent(event))
 {
 if (event.type == sf::Event::Closed)
 mWindow.close();
 }
}

The method update() updates the game logic, that is, everything that happens in the
game. For the moment, we leave the implementation empty. We are going to fill it as
we add functionality to the game.

void Game::update()
{
}

Chapter 1

[15]

The render() method renders our game to the screen. It consists of three parts.
First, we clear the window with a color, usually black. Therefore, the output of the
last rendering is completely overridden. Then, we draw all the objects of the current
frame by calling the sf::RenderWindow::draw() method. After we have drawn
everything, we need to actually display it on the screen. The render() method looks
as follows:

void Game::render()
{
 mWindow.clear();
 mWindow.draw(mPlayer);
 mWindow.display();
}

Later in the chapter, when we display something more interesting than a cyan circle,
we are going to have a deeper look at the rendering step.

Even though this actually is more code than what we started with, it still looks like it
is less, because at any given time, our eyes only have to rest on a smaller part.

Making a Game Tick

[16]

And with this you should still get the same result as you would in the SFML minimal
example: a cyan-colored circle in a window with a black background. Nothing fancy
yet, but we are well on our way.

Game loops and frames
Now talking a little more in-depth about the loop we have placed in the run()
function. This loop is most often called the main loop or the game loop because it
controls the lifetime of an application. As long as this one continues to iterate, the
application will stay alive. In our case, we would like our application to terminate its
execution as soon as the window ceases to exist.

Now what do we do during an iteration of this loop? First we process the events
from the window, then we update the game, and finally we render the results on
the screen. An iteration of the game loop is most often called a frame or a tick. You
might have heard of the term frames per second (FPS). This is a measurement of
how many loop iterations the game can do during a second. Sometimes, the concept
of FPS only accounts for rendering times, but it is not unusual for it to encompass the
input processing and logic updates as well.

We can explain this visually with a flow chart to further help you see clearly the logic
of our loop.

No

Yes

Application Start

Game setup

Update Game

Render game state onto window

Process events from window

Is window still open?

Application Shutdown

Chapter 1

[17]

It accurately describes what our application does at the moment. The only thing left
out is the event processing. That functionality could have its own flow chart. But it
does one task only in our basic example. It tells the window to close itself if the user
requests it.

Now, the way we work with the computer in C++ is very linear. Everything is done
in the set order that we give it, and the computer does nothing for us unless we
explicitly tell it to. So, if we don't tell it to draw the circle, it won't draw it. If the state
of the game somehow changes, and we don't tell the computer how to render a new
frame, then nothing will change on the screen because the computer won't know that
the graphics have changed.

Now that we got this sorted out, let's see if we can get something to happen over
several frames. We make the circle move by pressing keys on our keyboard.

Input over several frames
First we have to be able to detect that the user is pressing down a key on his
keyboard. SFML provides this functionality in several ways, but for now we will
settle with input detection by responding to events.

What are events? The word itself implies something that is happening with our
window, emitting a notice of the happening. As soon as the user somehow interacts
with our window, the operating system sends an event that we can process. For our
convenience, SFML translates events from the underlying operating systems to a
uniform structure that we can use with ease: sf::Event. Once the window internally
detects that some kind of input has happened, it will store an sf::Event object
containing information about that input. We will then poll all those events as fast as
we can, in order to respond to them.

SFML supports a wide variety of events, but there are two event types that interest
us here: sf::Event::KeyPressed and sf::Event::KeyReleased. They represent a
key being pressed and released respectively.

So let's change our code so that it can handle this. We again poll the window for
events, and have a case differentiation on the event type.

void Game::processEvents()
{
 sf::Event event;
 while (mWindow.pollEvent(event))
 {
 switch (event.type)
 {

Making a Game Tick

[18]

For each time the while loop iterates, it means a new event that was registered by
the window is being handled. While there can be many different events, we will only
check for some types of events, which are of our interest right now.

 case sf::Event::KeyPressed:
 handlePlayerInput(event.key.code, true);
 break;
 case sf::Event::KeyReleased:
 handlePlayerInput(event.key.code, false);
 break;
 case sf::Event::Closed:
 mWindow.close();
 break;
 }
 }
}

In the handlePlayerInput() function, we check which key on the keyboard has
been pressed or released. To store this information, we use four Boolean member
variables: mIsMovingUp, mIsMovingDown, mIsMovingLeft, and mIsMovingRight.
We set the corresponding variable depending on the key being pressed or released.

void Game::handlePlayerInput(sf::Keyboard::Key key,
bool isPressed)
{
 if (key == sf::Keyboard::W)
 mIsMovingUp = isPressed;
 else if (key == sf::Keyboard::S)
 mIsMovingDown = isPressed;
 else if (key == sf::Keyboard::A)
 mIsMovingLeft = isPressed;
 else if (key == sf::Keyboard::D)
 mIsMovingRight = isPressed;
}

In Game::handlePlayerInput()we receive the enumerator describing the key that
was pressed or released. The flag describing whether a press or release occurred is
passed as the second argument. So we check what key the user is manipulating, and
change our state depending on that.

Chapter 1

[19]

Now, we have a way to perceive that the user is pressing a key. We know when we
want to move up, down, left, and right. We know at each iteration of the main loop
exactly, what the user wants; we just have to update the circle with a new position
depending on this input. This method gives us a great advantage. So finally we can
write something in our update() function, namely, the movement of our player.
We check which of the four Boolean member variables is true, and determine the
movement accordingly. By using += (instead of =) and if (instead of else if), we
implicitly handle the case where two opposite keys, such as right and left are pressed
at the same time—the movement stays zero. The update() function is shown in the
following code snippet:

void Game::update()
{
 sf::Vector2f movement(0.f, 0.f);
 if (mIsMovingUp)
 movement.y -= 1.f;
 if (mIsMovingDown)
 movement.y += 1.f;
 if (mIsMovingLeft)
 movement.x -= 1.f;
 if (mIsMovingRight)
 movement.x += 1.f;

 mPlayer.move(movement);
}

We introduce two new things here: a vector and the move() function on the circle
shape. The move() function does what its name says, it moves the shape by the
amount we provide it.

Vector algebra
Vectors are an important part of algebraic mathematics. They imply lots of rules and
definitions, which go beyond the scope of our book. However, SFML's sf::Vector2
class template is way more practical, both in concept and functionality. To be as
simple as we could possibly be, we know that a coordinate in a two-dimensional
Cartesian system would need two components: x and y. Because in graphics all
coordinates are expressed with the decimal float data type, sf::Vector2 is
instantiated as sf::Vector2<float>, which conveniently has a typedef named
sf::Vector2f. Such an object is made to contain two member variables, x and y.
This makes our life simpler, because now we don't need to pass two variables to
functions, as we can fit both in a single sf::Vector2f object. sf::Vector2f also
defines common vector operations, such as additions and subtractions with other
vectors, or multiplications and divisions with scalars (single values), effectively
shortening our code.

Making a Game Tick

[20]

To be a little more precise in the explanation, vectors are not only used to define
positions, but they also are a perfect fit to define orientations. So, a vector is great to
store a two-component coordinate, be it an absolute or relative position, or even to
express a direction to follow, or to shoot a bullet towards. There is a little more to
know about two-dimensional vectors, especially if they are directions, such as the
concept of normalization or unit vector. This operation applies only to directions,
as it makes no sense in positions. We consider a vector normalized if it has length
one (hence the term unit vector) and the vector still expresses the same direction as
before normalization. The following figure visualizes the vector (2, 3). This vector
represents a translation of 2 units to the right and 3 units down.

y=3

x=2

Please do not confuse sf::Vector2f with std::vector. While their names are
similar, the first refers to the mathematical concept; the latter is simply a dynamically
allocated array from the standard C++ library.

In our case, our vector called movement expresses a movement from the origin of
the current coordinate system. For us, this origin is the shape's position. It might be
a bit tricky getting into the whole way of thinking in different spaces if you don't
like math.

Vector algebra is very interesting, and definitely something very useful if you know
it. So we recommend you study it. Mathematics is your friend as soon as you stop
fighting it; it really makes a lot of things easier for you in programming. It is almost
safe to claim that this subsection of math is the single most important topic when
we need to implement gameplay mechanics. A wide range of problems that you
will face in almost any kind of game are already solved and well-studied before, so
you're better off learning this subject than reinventing the wheel every time. To avoid
leaving you hanging, here's an example: Let's say you have point A and point B,
which represent two characters in an action game. When the enemy at point A wants
to shoot our player at point B, it needs to know the direction in which to shoot the
projectile. Why waste your brains thinking on how to solve this problem if this field
of math defines this operation as one of its most basic rules? All you need is to find
the direction vector C, which is obtained by calculating B minus A. The difference
between two positions gives us the direction between the two. Yes, that easy!

Chapter 1

[21]

Frame-independent movement
If you run everything we have done so far, you will be able to move the circle, but
it won't move uniformly. It will probably be very fast, because currently we have
done the movement in a very naive way. Right now your computer will be running
the update() function as fast as it can, which means it will probably call it a couple
of hundreds of times each second, if not more. If we move the shape by one pixel
for every frame, this can count up to several 100 pixels every second, making our
little player fly all over the screen. You cannot just change the movement value to
something lower, as it will only fix the problem for your computer. If you move to a
slower or faster computer, the speed will change again.

So how do we solve this? Well, let's look at the problem we are facing. We are having
a problem because our movement is frame-dependent. We want to provide the
speed in a way that changes depending on the time a frame takes. There is a simple
formula you should remember from your old school days. It's the formula that goes:
distance = speed * time. Now why is this relevant for us? Because with this formula
we can calculate a relevant speed for every frame, so that the circle always travels
exactly the distance we want it to travel over one second, no matter what computer
we are sitting on. So let's modify the function to what we actually need to make this
work.

void Game::update(sf::Time deltaTime)
{
 sf::Vector2f movement(0.f, 0.f);
 if (mIsMovingUp)
 movement.y -= PlayerSpeed;
 if (mIsMovingDown)
 movement.y += PlayerSpeed;
 if (mIsMovingLeft)
 movement.x -= PlayerSpeed;
 if (mIsMovingRight)
 movement.x += PlayerSpeed;

 mPlayer.move(movement * deltaTime.asSeconds());
}

The major difference we have made here is that we now receive a time value every
time we call the update. We calculate the distance we want to travel every frame,
depending on how much time has elapsed. We call the time that has elapsed since
the last frame delta time (or time step), and often abbreviate it as dt in the code. But
how do we get this time? We are lucky because SFML provides the utilities for it.

Making a Game Tick

[22]

In SFML, there is a class that measures the time from when it was started. What
we have to do is to measure the time each frame takes. We are talking about the
class sf::Clock. It has a function called restart(), which lets the clock return
the elapsed time since its start, and restarts the clock from zero, making it ideal
for our current situation. SFML uses the class sf::Time for all time formats; it is a
convenient data type that can be converted from and to seconds, milliseconds, and
microseconds. Here's the modified Game::run() member function:

void Game::run()
{
 sf::Clock clock;
 while (mWindow.isOpen())
 {
 sf::Time deltaTime = clock.restart();
 processEvents();
 update(deltaTime);
 render();
 }
}

There is no big difference; we create a clock, and in every frame we query it for its
current elapsed time, restart the clock, and then pass this time to the update function.

Fixed time steps
The solution we have come up with so far is sufficient for many cases. But it is not
a perfect solution, because you can have problems in certain scenarios where delta
times vary strongly. The code can be quite hard to debug, because it is impossible
to get 100 percent reproducible results, since every frame is unique, and you can't
guarantee that the delta time remains the same.

Consider that a frame may sometimes take three times the average delta time. This
can lead to severe mistakes in the game logic, for example, when a player moves
three times the distance and passes through a wall he would normally collide with.
This is why physics engines expect the delta time to be fixed.

Chapter 1

[23]

The following is a figure describing the problem we are referring to:

Normal Lag

What we will do now is use a technique called fixed time steps. We write code that
guarantees that in any circumstances, we always give the same delta time to the
update function, no matter what happens. If you find that sounding difficult, there is
no big difference from what we already have. We just have to do some book-keeping
in our code for how much time has passed since we last called the update() function.

void Game::run()
{
 sf::Clock clock;
 sf::Time timeSinceLastUpdate = sf::Time::Zero;
 while (mWindow.isOpen())
 {
 processEvents();
 timeSinceLastUpdate += clock.restart();
 while (timeSinceLastUpdate > TimePerFrame)
 {
 timeSinceLastUpdate -= TimePerFrame;
 processEvents();
 update(TimePerFrame);
 }
 render();
 }
}

The actual effect of this change is that we accumulate how much time has elapsed in
a variable timeSinceLastUpdate. When we are over the required amount for one
frame, we subtract the desired length of this frame (namely TimePerFrame), and
update the game. We do this until we are below the required amount again. This
solves the problem with variable delta times, as we are guaranteed that the same
amount of frames is always run. In the application you can download, the logic
frame rate will be set to 60 frames per second by having the TimePerFrame constant
equal to sf::seconds(1.f / 60.f).

Making a Game Tick

[24]

Eventually, we have two while loops. The outer one is the game loop as we know
it, and calls the render() method. The inner one collects user input, and computes
the game logic; this loop is executed at a constant rate. If rendering is slow, it may
happen that processEvents() and update() are called multiple times before one
render() call. As a result, the game occasionally stutters, since, not every update is
rendered, but the game doesn't slow down. On the other hand, fast rendering can
lead to render() being called multiple times without a logic update in between.
Rendering the same state multiple times does not change anything on the screen,
but it allows for techniques such as interpolations between two states to smoothen
the game flow.

If you are interested in the topic, there is a famous article with detailed explanations
at http://gafferongames.com/game-physics/fix-your-timestep.

Other techniques related to frame rates
SFML provides a few utilities that are worth knowing with respect to time handling
and frame updates. One of them is sf::sleep(), a function that interrupts the
execution for a given time, which gives the processor an opportunity to work on
other tasks. Sleeping is not very accurate, so you should not use it for exact timing
purposes. The method sf::RenderWindow::setFramerateLimit() tries to achieve
the specified frame rate by calling sf::sleep() internally. It is a nice function for
testing purposes, but it also lacks precision.

Another important technique is vertical synchronization, also known
as V-Sync. Enabled V-Sync adapts the rate of graphical updates (calls of
sf::RenderWindow::display()) to the refresh rate of the monitor, usually around
60Hz. This can avoid graphical artifacts such as screen tearing, where a part of your
window shows the old frame, and another the new one. You can enable or disable
V-Sync using the method sf::RenderWindow::setVerticalSyncEnabled().

Displaying sprites on the screen
Now let's get something interesting on the screen. Instead of just rendering a boring
single color circle to the screen, let's actually render an image. To do this, SFML
provides a couple of tools to make your life easy. First we have the sf::Texture
class that holds the actual image data loaded from the hard drive. Next is the
sf::Sprite class that represents an instance with position and orientation in the
scene. The texture describes the image, while the sprite describes where and how to
put one on the screen.

Chapter 1

[25]

A simple example of their relationship is as follows:

sf::Texture texture;
if (!texture.loadFromFile("path/to/file.png"))
{
 // Handle loading error
}
sf::Sprite sprite(texture);
sprite.setPosition(100.f, 100.f);
window.clear();
window.draw(sprite);
window.display();

Here, we load a texture from the hard drive, and check if loading has succeeded.
We construct a new sprite to use the texture and set its position to (100, 100), relative
to the upper-left window corner.

File paths and working directories
About file paths, it would be useful to make some things clear. First, the slashes
that separate directories in a path in order to locate a file will be most often forward
slashes (/), especially in Unix-like operating systems. In Windows, you will
occasionally see back slashes (\) used instead, but probably not everywhere. Do not
let this confuse you, the only true cross-platform way to specify a file path is using
forward slashes, so make sure they are always your choice, even in Windows.

Also, it is of extreme importance to note that every program being run in the
operating systems that SFML supports has a working directory while being
executed. Usually, when you run the program from a graphical window manager,
the working directory is exactly where the executable is located; however, this is not
always the case. It is possible to run a program with any working directory, and it
is even possible to change the working directory programmatically from inside the
program. In the context of a game, the point of understanding working directories is
for loading files, which are loaded in paths relative to the executable in most cases.
All paths passed on to SFML are relative to the working directory, unless you make
them absolute by starting them with a slash in Unix-like operating systems, or with a
drive letter in Windows.

Real-time rendering
In a game simulation, it is highly likely that there will be changes to what's drawn
in every frame. Even when there is no player input, you will observe in most cases
some kind of animation, which will effectively change the end result on the screen
for that given frame.

Making a Game Tick

[26]

Many programs use a render-on-demand approach. They will only redraw a new
frame on the screen when a change actually happens, minimizing the performance
costs in applications where the screen doesn't change very often. But, by the nature
of gaming software, this approach would be made redundant, as we would be
requesting new frames all the time. Because of this, game programmers adopted
entirely the concept of real-time rendering, which ignores frame requests as they
were previously known, and blindly draws to the screen as fast as possible. If while
playing your favorite game you eventually noticed a usual FPS count of 30 or 60, this
is due to the fact that our eyes can't perceive, in regular circumstances, more frames
than that amount in a second. Because it makes virtually no difference to the end
user, the programmers limit the FPS count to such a number, and save the processor
power for other tasks, such as logic processing. In short, nowadays, the whole scene
is rendered again and again, independently of what changed since the last frame.

To explain the notion of real-time rendering a bit further, we would like to mention
the concept of double buffering that comes inherently attached to it. Double
buffering is a technique that was created to negate graphical glitches derived from
asynchronies in the rendering tasks. Before this technique became widely used,
programmers needed to have additional concerns when drawing to the screen, to
ensure that only what belongs to a frame is drawn in it, and that there are no remains
of pixels from previous frames.

Double buffering defines two virtual screens to draw graphics to. The front buffer
and the back buffer are the names chosen to address these render targets. The front
buffer is what is currently displayed on the screen, while the back buffer is the one
we are drawing to at the moment, preparing a new frame. Once our frame is fully
drawn in the back buffer, we use the SFML's sf::RenderWindow::display()
function to put the contents of the back buffer on the screen. The back buffer
becomes the front buffer, while the front buffer that was set will now be the back
buffer to draw on. This way we ensure that we always have a buffer with the
previous frame unharmed, as well as a working buffer that we can safely change at
any time, without affecting what is on the screen. By clearing, drawing, and then
displaying these buffers in an interleaved manner, we achieve double buffering.

Chapter 1

[27]

Adapting the code
In our code, we replace sf::CircleShape with sf::Sprite, which only requires
minor modifications. We load an image file called Eagle.png. The relative path to
it is Media/Textures. Don't worry if you don't have the file; you can download it
together with the whole source code.

// Game.hpp
class Game
{
 public:
 Game();
 ...
 private:
 sf::Texture mTexture;
 sf::Sprite mPlayer;
 ...
};

// Game.cpp
Game::Game()
: ...
, mTexture()
, mPlayer()
{
 if (!mTexture.loadFromFile("Media/Textures/Eagle.png"))
 {
 // Handle loading error
 }
 mPlayer.setTexture(mTexture);
 mPlayer.setPosition(100.f, 100.f);
}

No code changes have to be done to get our render() function to work with sprites
instead of shapes. SFML is nice in that way. Everything that can be drawn to a
window has to inherit from the abstract class sf::Drawable. As long as it is possible,
the SFML API keeps a consistency to it. This makes it a lot easier to use, because if
you have used a function on one class, you can be pretty sure there will be identical
or similar functions in other classes.

Now you have achieved the results you observed in the screenshot we had in the
beginning of the chapter. You are also very well on the way to making your game.
With these few tools alone you would be able to make a simple game, such
as Snake or Pac-Man with ease.

Making a Game Tick

[28]

Summary
We had to cover a lot of ground in this chapter. We have explained the most basic
concepts that are required to create a game; concepts that you should always have
present in order to save yourself from losing time in such issues, and instead, focus
on making a great game.

In this chapter we:

•	 Learned what SFML is, and what functionality it provides
•	 Listened to input, and moved the player over several frames
•	 Rendered an image to the screen
•	 Learned about game loops and delta times, and saw the strengths and

weaknesses of different approaches to handle time steps.

And if you are interested in how you would measure your FPS and render that to the
screen, then have a look at the code base. We have implemented that functionality
there, and it is based on the subjects we have already covered. We would
recommend you try yourself; the only things you need are sf::Text and sf::Font
in order to render text on the screen. You can learn more about these classes in
SFML's API documentation at www.sfml-dev.org.

This concludes our introduction chapter. From now on we are going to investigate
different aspects of SFML and game development in a more detailed manner. In
the next chapter, we start with resource handling, which explains the backgrounds
behind textures, fonts, and other resources.

Keeping Track of
Your Textures – Resource

Management
In the previous chapter, you have learned how to load a texture, and display a sprite
that uses the texture. During the process of game development, you encounter such
situations again and again: you need to load data from the hard disk, be it images,
fonts, or sounds. This chapter intends to give you a broader understanding of the
following points:

•	 What is the motivation behind external resources
•	 Which classes for resource handling and manipulation does the Simple and

Fast Multimedia Library (SFML) provide
•	 What might a typical use case in a game look like
•	 How do we cope with the constantly recurring need to manage resources in a

simple way

Defining resources
In game development, the term resource denotes an external component, which the
application loads during runtime. Another often-used term for a resource is asset.

Mostly, resources are heavyweight multimedia items, such as images, music themes,
or fonts. "Heavyweight" refers to the fact that those objects occupy a lot of memory,
and that operations on them, especially copying, perform slowly. This affects the
way we use them in our application, as we try to restrict slow operations on them to
a minimum.

Keeping Track of Your Textures – Resource Management

[30]

Non-multimedia items such as scripts that describe the in-game world, menu
content, or artificial intelligence are also considered resources. Configuration files
containing user settings such as the screen resolution and the music volume are good
examples of resources as well. However, when we mention resources in the book, we
mostly refer to multimedia resources.

Resources are usually loaded from a file on the hard disk. Although being the most
common approach, it is not the only one—other possible examples are the RAM or
the network.

Resources in SFML
SFML offers classes to deal with a wide variety of resources. Often, the resource
classes are not directly used to output multimedia on the periphery. Instead, there
is an intermediate front-end class, which refers to the resource. In contrast to the
resource class which holds all the data, the front-end class is lightweight and can be
copied without severe performance impacts.

All resource classes contain member functions to load from different places.
Depending on the exact resource type, there may be slight deviations. A typical
method to load a resource from a file has the following signature:

bool loadFromFile(const std::string& filename);

The function parameter contains the path to the file, where the resource is stored,
and the return value is a bool, which is true if loading was successful, and false
if it failed. It is important to check return values in order to react to possible errors,
such as invalid file paths.

SFML resources also provide methods to load resources from media other than the
hard disk. The function loadFromMemory() loads a resource from RAM, which
may be useful to load resources that are directly embedded into the executable.
The member function loadFromStream() loads the resource using a custom
sf::InputStream instance. This allows the user to exactly specify the loading
process. Important use cases of user-defined streams are encrypted and/or
compressed file archives.

SFML's resource classes are explained in more detail in the following sections. For
this game, we will focus on loading from files.

Chapter 2

[31]

Textures
The class sf::Texture represents a graphical image. The image is stored as an array
of pixels in the graphics card's video memory, that is, it does not reside in the RAM.
Each pixel is a 32 bit RGBA value, specifying a color with the components red, green,
blue, and alpha (transparency), at a certain position in the image. Many common
image formats are supported by SFML, for example, JPEG, BMP, PNG, or GIF.

Textures can be drawn on the screen with the sf::Sprite class. A sprite is a
lightweight object that refers to a texture or a rectangular part of it. It stores
attributes such as the position, rotation, scale, or color to affect the way the texture
is represented on the screen. Multiple sprites can refer to the same texture and have
different attributes, while the texture itself is not affected. The separation between
sprites and textures has a big advantage that we have a simple possibility to deal
with graphics using sf::Sprite, while the heavyweight sf::Texture need not
be modified.

Images
The sf::Image class is a container for pixel values. It behaves similarly to
sf::Texture; however it stores its pixels on the RAM instead of the video
memory, which makes it possible to manipulate single pixels. sf::Image is able
to load the same image formats as sf::Texture. It is also capable of saving the
stored image back to a file. It is interesting to know that sf::Texture loads the data
using an intermediate sf::Image, more exactly, the sf::Texture::loadFromX()
functions are just a shortcut for combined sf::Image::loadFromX() and
sf::Texture::loadFromImage() calls.

When we want to display a sf::Image on the screen, we first have to convert it
into a sf::Texture, and create a sf::Sprite referring to it. It is also possible to
construct a texture only from a rectangular part of an image, in situations where not
all the pixels are going to be displayed. As a result, no memory on the graphics card
is wasted. In cases where we do not need to access the single pixels of an image after
loading, we are better off when we directly use sf::Texture.

Keeping Track of Your Textures – Resource Management

[32]

An important use case for sf::Image is the situation where big textures
are required. sf::Texture can only store textures on the graphics card that
do not exceed a hardware-dependent size. This limit can be retrieved with
sf::Texture::getMaximumSize(). If you try to load bigger textures into
sf::Texture, loading will fail. However, you sometimes still need to draw big
sprites, for example, a static background for the whole window. What you can do is
to load the pixels into sf::Image, which does not use the graphics card's memory to
store them. Afterwards, you can create multiple sf::Texture objects, of which each
one is only loaded from a rectangular part of the image. Eventually, the whole image
can be drawn by using multiple sf::Sprite objects, where each sprite references
one texture.

Fonts
The sf::Font class is SFML's resource type that stores a character font and provides
an interface to manipulate it. A font consists of glyphs, where a glyph is the visual
representation of a character. Glyphs are loaded on demand, that is, when the user
needs to render a certain character with a certain font size, the corresponding glyph
is sought in the font file. Therefore, sf::Font does not load the complete font data
into memory. As a consequence, the font source (file, memory location, or stream)
must remain accessible throughout the font's lifetime. SFML supports many font
formats, most notably, true type fonts (TTF) and open type fonts (OTF).

To display text on the screen, we use the class sf::Text. Analogous to sprites, texts
are lightweight objects that refer to fonts. In a game, there are usually only a few
fonts, but many different places where text is rendered. Therefore, we have many
sf::Text instances that refer to a small amount of sf::Font objects.

Shaders
A shader is a program that operates directly on the graphics card. Shaders are used
to apply a variety of graphical effects to rendered objects. Examples include a bloom
shader that amplifies bright parts of the scene, a toon shader that makes objects
look like in a cartoon, or a blur effect which simulates flickering hot air. Since SFML
builds upon OpenGL, its shader instances use the OpenGL Shading Language
(GLSL), a programming language similar to C. SFML supports vertex shaders
(which affect the geometry of objects in the scene) and fragment shaders (which
manipulate pixels of the scene).

sf::Shader can be created from a std::string containing the GLSL code of a
vertex or a fragment shader. It can also hold both shaders at once; in this case it can
be loaded from two strings. It is also possible to initialize a sf::Shader instance by
passing the filename of a GLSL source file to its constructor.

Chapter 2

[33]

Sound buffers
The sf::SoundBuffer class is used to store a sound effect. It holds an array of 16 bit
audio samples, where each sample specifies the amplitude of the audio waveform
at a given time. A sound buffer allows access and modification of the samples, but
it cannot play audio. Supported file formats are WAV, OGG, AIFF, and many more.
The MP3 format is not supported because of its restrictive license.

sf::Sound is the class that plays audio from a sound buffer. Like a sprite refers
to a texture containing the pixels, a sound refers to a sound buffer containing the
audio samples. Analogous to textures, sound buffers must remain alive while
they are used by sounds. sf::Sound objects can be played, paused, and stopped
and have configurable attributes such as volume or pitch. Note that a sf::Sound
object must stay valid as long as it is played, destroying it ceases to play the sound
effect immediately.

Music
sf::Music is the class to play music. While sf::SoundBuffer is appropriate for
short sound effects (explosions, button clicks, and so on.), sf::Music is designed
to handle music themes. Themes are usually much longer and thus require more
memory than sound effects. As a result, sf::Music does not load all data at once.
Instead, it streams the music, meaning that it continuously loads small chunks of
samples. The streaming semantics imply that the source of the music (for example,
a file or memory location) must remain valid while the music is in use. That is also
why sf::Music methods are called openFromX() instead of loadFromX(), where "X"
denotes a source media such as "File". The supported audio formats are the same as
for sf::SoundBuffer.

For music themes, there is no separation between heavyweight resource and
lightweight front-end. sf::Music manages all at once: in addition to the loading
functionality, it offers many of the sf::Sound methods to play, pause, or stop a
theme or to configure other parameters. Its objects must also remain alive while the
music plays.

Keeping Track of Your Textures – Resource Management

[34]

The difference between sound buffers and music is shown in the following diagram.
On the left, you see a sound buffer object, which loads the whole audio data from
the hard disk at once. It can be played using a separate sound object. On the right, a
music object streams from the hard disk, that is, it continuously loads small chunks.
It can be played on its own.

A typical use case
Now we have seen what kinds of different resources there are, but we do not know
yet how to apply this knowledge to our game. While the approach you have seen in
Chapter 1, Making a Game Tick, may work for simple examples, it does not scale well
to a bigger project. As our game grows, we have to reflect about how the resources
are going to be used. This is explained in the next sections.

Graphics
In our game, a crucial part will be the visual representation of the world and
different objects in it. We need to think about how we get from an image on the hard
disk to its visualization on the screen.

•	 Game entities such as the player's airplane, enemies, or the landscape are
represented with sprites and possibly texts. They do not own the heavy
textures and fonts; instead they use the front-end classes to refer to them.

Chapter 2

[35]

•	 As a consequence, the resources (textures and fonts) need to be accessible by
the entities. We must make sure that the resource objects stay alive as long as
any front-end object refers to them, so we have to find an appropriate scope
to declare the resources.

•	 A sprite in the airplane must somehow get a reference to the texture stored
outside. Therefore, we have to transport this information via constructor
parameter to the airplane class.

Audio
Another important resource is audio, which can be divided into sound effects and
background music. We have to consider how to make both of them audible in the
final application, when all we start with is a bunch of audio files in a directory:

•	 Sound effects are not tied to a specific game entity such as an airplane; they
persist independently of the object that causes them. Imagine an airplane that
explodes and creates an explosion sound. When we destroy the plane object,
we still want the explosion to be audible for some time. As a result, we do
not store sf::Sound instances in the game entities, but in an object which
remains alive throughout a mission. The same applies to the underlying
sf::SoundBuffer objects which are used by sf::Sound.

•	 For music themes, the semantics are similar. It may even occur that the same
theme is played across multiple missions. Ideally, the sf::Music objects exist
in a scope that outlives a single mission.

•	 Although the game entities do not own sound effects, they are supposed
to play them. As a consequence, we shall provide an interface that allows
playing new sound effects.

Acquiring, releasing, and accessing
resources
Once we have decided which resources are required by the application, the next step
is to investigate how long and by whom they are used. This allows us to decide how
the resources are stored in the application, as well as who is responsible of loading
and releasing them.

•	 We want to load the resource in advance, for example, at the time the game
starts or the player begins a new mission. In contrast to loading on demand
(as soon as a resource is needed), this approach has the advantage that possible
loading times occur in the beginning and not during a game. Therefore, the
game itself remains fluent and is not interrupted because of resources.

Keeping Track of Your Textures – Resource Management

[36]

•	 When resources are likely to not be needed anymore, we can release them
and free the memory. This is usually the case at the end of a mission or
when the application is quit. We do not want to release resources too early
if we risk reloading them shortly after. For example, we do not release the
explosion sound buffer as soon as the sound effect is over, because the next
explosion may follow a few seconds later.

•	 There must be a possibility to get a reference to a certain resource after it has
been loaded—using a resource identifier. This identifier (ID) could be the file
path as a std::string. This has some disadvantages: all classes that use a
resource must hardcode the path, so if it changes, a lot of code needs to be
refactored. Strings are also quite error-prone regarding typographic or case
errors. An alternative to strings are enums, where each enumerator denotes
an ID. Since an enum has a predefined set of possible states, we get some
compile-time safety, and we can handle the paths in a central place.

In conclusion, we have the heavy resource classes which shall be loaded when
appropriate, but before the game. Throughout their lifetime, front-end classes such
as sprites or sounds may reference them, so we must keep the resources alive. When
they are not needed anymore, we can release them.

An automated approach
Our goal is to encapsulate the just mentioned functionality into a class that relieves
us from managing resources again and again. For resource management, the C++
idiom Resource Acquisition Is Initialization (RAII) comes in handy.

RAII describes the principle that resources are acquired in a class'
constructor and released in its destructor. Since both constructor and
destructor are invoked automatically when the object is created or goes
out of scope, there is no need to track resources manually. RAII is mostly
used for automatic memory management (as in smart pointers), but it
can be applied to any kind of resources. A great advantage of RAII over
manual allocation and deallocation (such as new/delete pairs) is that
deallocation is guaranteed to take place, even when there are multiple
return statements or exceptions in a function. To achieve the same safety
with manual memory management, every possible path would have to be
protected with a delete operator. As a result, the code becomes quickly
unreadable and error-prone.

In our application, we want to take advantage of RAII to determine the construction
(loading) and destruction (release) of SFML resource objects.

Chapter 2

[37]

Let's begin with a class that holds sf::Texture objects and loads them from files.
We call it TextureHolder. Once we have implemented the semantics for textures, we
can generalize the implementation to work with other resource types.

Finding an appropriate container
First, we must find the right data structure to store the textures. We ought to choose
an STL container that does not perform unnecessary copies. std::vector is the
wrong choice, since inserting new textures can trigger a reallocation of the dynamic
array and the copying of all textures. Not only is this slow, but also all references
and pointers to the textures are invalidated. As mentioned before, we like to access
the textures by an enum, so the associative container std::map looks like the perfect
choice. The key type is our enumeration, the value type is the sf::Texture.

The C++11 standard introduces strongly typed enumerations, also
known as enum class. Unlike traditional enums, they do not offer
implicit conversion to integers, and their enumerators reside in the
scope of the enum type itself. Since C++11 is still being implemented
by compiler vendors, not all features are widely supported yet. In this
book, we focus on C++11 features that have already been implemented
for a few years. Unfortunately, strongly typed enums do not fall into
this category, that's why we do not use them in the book. If they are
supported by your compiler, we still recommend using them.

We call our enum as ID, and let it contain three texture identifiers Landscape,
Airplane, and Missile. We nest it into a namespace Textures. The namespace
gives us a scope for the enumerators. Instead of writing just Airplane, we have
Textures::Airplane which clearly describes the intention and avoids possible
name collisions in the global scope:

namespace Textures
{
 enum ID { Landscape, Airplane, Missile };
}

We do not store the sf::Texture directly, but we wrap it into a std::unique_ptr.

Unique pointers are class templates that act like pointers. They
automatically call the delete operator in their destructor, thus
they provide means of RAII for pointers. They support C++11
move semantics, which allow to transfer ownership between objects
without copying. A std::unique_ptr<T> instance is the sole
owner of the T object it points to, hence the name "unique".

Keeping Track of Your Textures – Resource Management

[38]

Unique pointers give us a lot of flexibility; we can basically pass around heavyweight
objects without creating copies. In particular, we can store classes that are non-
copyable, such as, sf::Shader. Our class then looks as shown in the following code:

class TextureHolder
{
 private:
 std::map<Textures::ID,
 std::unique_ptr<sf::Texture>> mTextureMap;
};

The compiler-generated default constructor is fine, our map is initially empty.
Same for the destructor, std::map and std::unique_ptr take care of the proper
deallocation, so we do not need to define our own destructor.

Loading from files
What we have to write now is a member function to load a resource. It has to take a
parameter for the filename and one for the identifier. The identifier is used as a key
to store the resource in the map:

void load(Textures::ID id, const std::string& filename);

In the function definition, we first create a sf::Texture object and store it in the
unique pointer. Then, we load the texture from the given filename. After loading,
we can insert the texture to the map mTextureMap. Here, we use std::move()
to take ownership from the variable texture and transfer it as an argument to
std::make_pair(), which constructs a key-value pair for the map:

void TextureHolder::load(Textures::ID id, const std::string& filename)
{
 std::unique_ptr<sf::Texture> texture(new sf::Texture());
 texture->loadFromFile(filename);

 mTextureMap.insert(std::make_pair(id, std::move(texture)));
}

Chapter 2

[39]

Accessing the textures
So far, we have seen how to load resources. Now we finally want to use them.
We write a method get() that returns a reference to a texture. The method has one
parameter, namely the identifier for the resource. The method signature looks as
follows:

sf::Texture& get(Textures::ID id);

Concerning the implementation, there is not much to do. We perform a lookup
in the map to find the corresponding texture entry for the passed key. The
method std::map::find() returns an iterator to the found element, or end() if
nothing is found. Since the iterator points to a std::pair<const Textures::ID,
std::unique_ptr<sf::Texture>>, we have to access its second member to get the
unique pointer, and dereference it to get the texture:

sf::Texture& TextureHolder::get(Textures::ID id)
{
 auto found = mTextureMap.find(id);
 return *found->second;
}

Type inference is a language feature that has been introduced with
C++11, which allows the compiler to find out the type of expressions.
The decltype keyword returns the type of an expression, while the
auto keyword deduces the correct type at initialization. Type inference
is very useful for complex types such as iterators, where the syntactic
details of the declaration are irrelevant. In the following code, all three
lines are semantically equivalent:

int a = 7;
decltype(7) a = 7; // decltype(7) is int
auto a = 7; // auto is deduced as int

In order to be able to invoke get() also, if we only have a pointer or reference to a
const TextureHolder at hand, we need to provide a const-qualified overload. This
new member function returns a reference to a const sf::Texture, therefore the
caller cannot change the texture. The signature is slightly different:

const sf::Texture& get(Textures::ID id) const;

Keeping Track of Your Textures – Resource Management

[40]

The implementation stays the same, so it is not listed again. Our class now
looks as follows:

class TextureHolder
{
 public:
 void load(Textures::ID id,
 const std::string& filename);
 sf::Texture& get(Textures::ID id);
 const sf::Texture& get(Textures::ID id) const;
 private:
 std::map<Textures::ID,
 std::unique_ptr<sf::Texture>> mTextureMap;
};

Now the get() method is easy to use and can directly be invoked when a
texture is requested:

TextureHolder textures;
textures.load(Textures::Airplane, "Media/Textures/Airplane.png");

sf::Sprite playerPlane;
playerPlane.setTexture(textures.get(Textures::Airplane));

Error handling
The basic steps are done, the main functionality is implemented. However, there
may be errors which we have to recognize and handle meaningfully. The first
error can occur during the loading of the texture. For example, the specified file
might not exist, or the file might have an invalid image format, or be too big
for the video memory of the graphics card. To handle such errors, the method
sf::Texture::loadFromFile() returns a Boolean value that is true in case of
success, and false in case of failure.

There are several strategies to react to resource loading errors. In our case, we
have to consider that the texture is later needed by sprites that are rendered on the
screen—if such a sprite requests the texture, we must give something back. One
possibility would be to provide a default texture (for example, plain white), so the
sprites are just drawn as a white rectangle. However, we do not want the player of
our game to fiddle around with rectangles; he should either have a proper airplane
or nothing. But how can we implement "nothing"? We have to notify the caller of
our load() method that something did not work. A possibility to implement these
notifications is shown in the next sections.

Chapter 2

[41]

Boolean return values
We could follow SFML's philosophy and return a Boolean value denoting success or
failure. This approach has some disadvantages. We cannot use the return type for
something else. Additionally, the caller has to check the returned value every time
he calls load(). This is easily overlooked, and if it is not, it leads to messy usage
code that is full of error checks. That is not what we want, as initially stated our
objective consists of performing as much work as possible in the TextureHolder,
to relieve the user from writing boilerplate code.

Throwing exceptions
Another approach to react to a loading failure is to throw an exception. We choose
the standard exception type std::runtime_error. To its constructor, we pass an
error message describing the problem as clearly as possible, including the filename:

if (!texture->loadFromFile(filename))
 throw std::runtime_error("TextureHolder::load - Failed to load "
 + filename);

Exceptions have the big advantage that user code can be kept clean of error handling.
Clients can now have the following code:

TextureHolder textures;
textures.load(Textures::Landscape, "Media/Textures/Desert.png");
textures.load(Textures::Airplane, "Media/Textures/Airplane.png");
textures.load(Textures::Missile, "Media/Textures/Missile.png");

We do not need to check every single call. If an error occurs, an exception will be
thrown until a try-catch block catches it and reacts meaningfully. It is possible that
the exception passes several functions before it is eventually handled.

Once the resource is loaded, we insert it into the map. Here, we have to be aware of
possible error sources too. When the given ID is already stored, the map will refuse
to insert our ID-resource pair, as it cannot contain duplicate keys. The member
function std::map::insert() returns a pair with an iterator to the inserted element
and a Boolean value which is true if inserting was successful. We store this returned
pair and check its second member (the Boolean value). Instead of writing std::pa
ir<std::map<Textures::ID, std::unique_ptr<sf::Texture>>::iterator,
bool>, we can use C++11 type inference:

auto inserted = mTextureMap.insert(std::make_pair(id,
std::move(resource)));

Keeping Track of Your Textures – Resource Management

[42]

Now, inserted is our pair containing an iterator and a Boolean value, inserted.
second is the Boolean value denoting the success of the insertion. If it is false, we
know that the ID is already stored in the map. How do we react to this situation?

We could throw a std::runtime_error exception again. However, in contrast to a
loading failure, double insertion is not a runtime error. The attempt to insert the same
ID twice in the map is a logic error, meaning, there is a mistake in the application
logic—in other words, a bug. A well-formed program would not attempt to load
the same resource twice. In comparison, runtime errors occur in correctly written
programs too, for example, if the user renames or moves the resource files. For logic
errors, the standard library provides the exception class std::logic_error.

This raises already the next question: how do you handle such exceptions? It is not
that once you have thrown an exception, you can forget about it and the world is in
harmony. Somebody has to catch those exceptions, and it had better be you and not
the operating system (unless you like crashing applications). In the case of a loading
failure, we can tell the player that the files were not found, and prevent him from
starting the game. But what in our double insertion case? Are we supposed to tell
the player that the programmer accidentally called load() twice? Certainly not.
This bug must not occur in the final application. There is no way to recover from
it—continuing the application is dangerous, because its logic is broken, and we risk
upsetting even more if we ignore the error. What if the two load() calls are passed
the same ID, but different filenames? We do not know with which resource the ID
is associated. If we later want to access a resource by its ID, we might get the wrong
resource, and thus display a wrong image on the screen. In this manner, errors can
propagate further and further, sometimes remaining for a long time before being
noticed. In case of a logic error, we would like the program to interrupt immediately.

Assertions
Clearly, a mechanism apart from exceptions is appropriate, which shows us directly
and inevitably when something goes wrong. This is where assertions come into play.
The macro assert evaluates its expression; if it is false in debug mode, a breakpoint
is triggered, halting the program execution and directly pointing to the source
of the error. In release mode, assertions are optimized away, so we do not waste
any performance to check for errors that cannot occur. The assert expression is
completely removed in release mode, so make sure you only use it for error checks,
and not to implement actual functionality with possible side effects.

We have to insert a single line, we expect that the Boolean member of the pair
returned by std::map::insert() is true:

assert(inserted.second);

Chapter 2

[43]

That is already it. The whole method looks now as follows:

void TextureHolder::load(Textures::ID id, const std::string& filename)
{
 std::unique_ptr<sf::Texture> texture(new sf::Texture());
 if (!texture->loadFromFile(filename))
 throw std::runtime_error("TextureHolder::load -
 Failed to load " + filename);

 auto inserted = mTextureMap.insert(std::make_pair(id,
 std::move(texture)));
 assert(inserted.second);
}

In our method get(), there are things that may go wrong too. The requested texture
might not exist in the map. This is also a logic error; we are supposed to load the
textures before we access them. Consequently, we verify whether the texture has
been found, again using assert:

sf::Texture& TextureHolder::get(Textures::ID id)
{
 auto found = mTextureMap.find(id);
 assert(found != mTextureMap.end());

 return *found->second;
}

Generalizing the approach
We have implemented everything we need for textures, but we would like to handle
other resources such as fonts and sound buffers too. As the implementation looks
extremely similar for them, it would be a bad idea to write new classes FontHolder
and SoundBufferHolder with exactly the same functionality. Instead, we write a
class template, which we instantiate for different resource classes.

We call our template ResourceHolder and equip it with two template parameters:

•	 Resource: The type of resource, for example, sf::Texture. We design the
class template to work the SFML classes, but if you have your own resource
class which conforms to the required interface (providing loadFromFile()
methods), nothing keeps you from using it together with ResourceHolder.

•	 Identifier: The ID type for resource access, for example, Textures::ID.
This will usually be an enum, but the type is not restricted to enumerations.
Any type that supports an operator< can be used as identifier, for example,
std::string.

Keeping Track of Your Textures – Resource Management

[44]

The transition from TextureHolder to ResourceHolder<Resource,
Identifier> is straightforward. We replace the used types with the generic
template parameters: sf::Texture becomes Resource, and Textures::ID becomes
Identifier. Furthermore, we rename some variables to reflect the fact that we are
talking about resources in general, not only textures. We also adapt the member
functions accordingly.

One thing we have to note when using templates is that the complete
implementation needs to be in the header. We cannot use .cpp
files for the method definitions anymore, but we would still like
to separate interface and implementation. That is why we use
a file ResourceHolder.hpp for the class definition, and a file
ResourceHolder.inl for the method definitions. At the end of the
.hpp file, we include the .inl file containing the implementation.
.inl is a common file extension for inline template implementations.

The generalized class definition has the following interface:

template <typename Resource, typename Identifier>
class ResourceHolder
{
 public:
 void load(Identifier id,
 const std::string& filename);

 Resource& get(Identifier id);
 const Resource& get(Identifier id) const;

 private:
 std::map<Identifier,
 std::unique_ptr<Resource>> mResourceMap;
};

The load() method can be written in the following way. Like before, we attempt to
load the resource from a file, and then we insert the unique pointer into the map and
make sure the insertion was successful:

template <typename Resource, typename Identifier>
void ResourceHolder<Resource, Identifier>::load(Identifier id,
const std::string& filename)
{
 std::unique_ptr<Resource> resource(new Resource());
 if (!resource->loadFromFile(filename))
 throw std::runtime_error("ResourceHolder::load - Failed to
 load " + filename);

Chapter 2

[45]

auto inserted = mResourceMap.insert(
std::make_pair(id, std::move(resource)));
 assert(inserted.second);
}

The two overloaded get() member functions are generalized using the same
principle, that is why they are not listed here. You can refer to the online code base
for a complete implementation.

Compatibility with sf::Music
As initially mentioned, the class sf::Music has semantics that are very different
from other resource types. This begins already with its openFromFile() method that
is not compatible to the loadFromFile() call in our implementation. Because of its
streaming nature, a music object cannot be shared between multiple clients—each
object represents one point in time of a certain music theme. No object contains the
whole music data at once.

Instead of forcing sf::Music into a concept it does not fit, we decide to not store
it inside ResourceHolder instances. This does not imply that there will be no
encapsulation for music; we are rather going to cover music handling in-depth
during Chapter 9, Cranking Up the Bass – Music and Sound Effects.

A special case – sf::Shader
There is one resource type we have yet to cover: shaders. Since a SFML shader
object can consist of a fragment and/or a vertex shader, the interface of sf::Shader
deviates slightly from the other resource classes in SFML. sf::Shader provides two
methods to load from a file:

bool loadFromFile(const std::string& filename, sf::Shader::Type type);
bool loadFromFile(const std::string& vertexShaderFilename,
const std::string& fragmentShaderFilename);

The first function loads either a fragment or a vertex shader (which one is specified
by the second parameter). The second function loads both a vertex and a fragment
shader.

This interface is an issue for our generic implementation, because
ResourceHolder::load() contains the following expression:

resource->loadFromFile(filename)

Keeping Track of Your Textures – Resource Management

[46]

Which assumes that loadFromFile() is invoked with one argument. For
sf::Shader, we have to specify two instead.

The solution is simple: we write an overloaded ResourceHolder::load()
function that takes an additional parameter and forwards it directly as the second
argument to sf::Shader::loadFromFile(). This parameter can have the type
sf::Shader::Type or const std::string&. In order to cope with both types,
we add a function template parameter. Our new load() function has the following
declaration:

template <typename Parameter>
void load(Identifier id, const std::string& filename,
const Parameter& secondParam);

The function definition is listed in the following code. Do not confuse yourself
by the two template parameter lists; the first one is required for the class
template ResourceHolder and the second one for the function template
ResourceHolder::load(). In the function body, only the loadFromFile() call is
different from before.

template <typename Resource, typename Identifier>
template <typename Parameter>
void ResourceHolder<Resource, Identifier>::load(Identifier id,
const std::string& filename, const Parameter& secondParam)
{
 std::unique_ptr<Resource> resource(new Resource());
 if (!resource->loadFromFile(filename, secondParam))
 throw ...;

 ... // insertion like before
}

A nice side effect of this additional overload is that it enables other argument
combinations for loadFromFile() too. The method of sf::Texture actually looks
as shown in the following line of code:

bool loadFromFile(const std::string& filename,
const IntRect& area = IntRect())

The default parameter can be used if we want the texture to load only a rectangular
area of the image. Usually, we do not specify it and load the whole file, but thanks to
our second load() overload, we have now the possibility to use this parameter.

In our complete implementation, we have written a separate function that inserts
resources into the map, in order to reduce code duplication.

Chapter 2

[47]

Using the new ResourceHolder class template, we can visualize a possible in-game
situation in the following diagram. On the left you see two resource holders, one for
textures and one for fonts. Each one contains a map of enumerators to resources. The
player's Aircraft class on the right stores a sprite that points to a texture, as well as
a text that points to a font.

ResourceHolder<sf::Texture, Textures::ID>

sf::Sprite

sf::Text

ResourceHolder<sf::Font, Fonts::ID>

Landscape sf::Texture

Airplane sf::Texture

Missile sf::Texture

Arial sf::Font

sf::FontTimes

Aircraft

Summary
In this chapter, we have learned the important points about resource management.
By now, we know the ideas behind resources and the facilities SFML provides to
work with them. We have taken a look at a possible way resources are used in a
bigger project, and implemented a generic resource holder that helps us with passing
resources to different parts of the application. We also investigated possible error
sources as well as techniques to handle them appropriately.

In the next chapter, we are going to develop the game world with a variety of objects
in it. Most of these objects require different resources, which is a good opportunity to
show our resource holder in a real-world example.

Forge of the Gods – Shaping
Our World

In the previous chapter, we have covered loading, managing, and releasing of
external resources. To sum up, we have investigated mechanisms to ensure that
textures, fonts, or sounds are ready to be used as soon as we need them. This chapter
attempts to bring knowledge around a few key topics:

•	 Entity systems in concept and practice
•	 The viewable area of our world and scrolling
•	 Tree-based scene graphs, rendering and updating of many entities
•	 Composition of all elements to shape the world

When writing a game, we invariably find the need to conceptualize our vision of the
game into actual data structures. In other words, it is extremely important to have
a clear idea of the scope of our vision. The world in our mind doesn't even have
to scale remotely to what we consider our real world; it is a product of our own
creation. It is well within our power, as game developers, to forge the whole world
as a simple board game table, or an ant farm, or even scale up to a whole universe
along with all the stars and planets.

The point is, it does not matter how our vision of the world looks, how small or big it
is, or how realistic or abstract the concepts in it are, we will always want to represent
that world in one or more data structures. For the reach of this book, we will apply
these concepts directly to our own sample vision of a game, while leaving a solid
background on the topic, for later implementation of new ideas and concepts.

Forge of the Gods – Shaping Our World

[50]

Entities
An entity denotes a game element in the world. In our game, possible entities are
friendly and enemy airplanes, bullets, missiles, or pickups that increase the player's
strength. Entities interact with each other: enemy airplanes can fire missiles, the
player's airplane may evade them, and the missiles may explode if they hit the
player's plane, dealing damage to it. The player's aircraft can touch a pickup to
collect it, as a result of which it gets a new ability. The possibilities are nearly
unlimited, and they may occur between almost any pair of entity types.

In our code, we represent entities using the traditional approach of an entity
hierarchy. We have a base class called Entity, which contains the data and
functionality that all different kinds of entities have in common. We have multiple
classes that derive from Entity, and that implement specific functionality. These
derived classes could represent airplanes, projectiles (such as missiles), or pickups.
One commonality between different entities is that they can move in our world with
a certain velocity.

We implement the velocity attribute in the base class Entity, so each concrete entity
has it. The velocity is represented using a two-dimensional vector. In addition to the
member variable, we provide the get and set functions to access the velocity from
outside the class. The setVelocity() method is overloaded to take either a vector or
two separate floats. The header Entity.hpp contains the following class definition:

class Entity
{
 public:
 void setVelocity(sf::Vector2f velocity);
 void setVelocity(float vx, float vy);
 sf::Vector2f getVelocity() const;

 private:
 sf::Vector2f mVelocity;
};

After initialization, we want the velocity to be zero. Since the class sf::Vector2f
has a default constructor, which initializes the vector to a zero vector, we need not
define our own constructor; the compiler-generated one works fine.

Chapter 3

[51]

The function definitions in the file Entity.cpp are not terribly surprising:

void Entity::setVelocity(sf::Vector2f velocity)
{
 mVelocity = velocity;
}

void Entity::setVelocity(float vx, float vy)
{
 mVelocity.x = vx;
 mVelocity.y = vy;
}

sf::Vector2f Entity::getVelocity() const
{
 return mVelocity;
}

Aircraft
Using the example of the aircraft, we need to define a concrete entity class. We derive
it from Entity. Since we have different airplanes in our game, it would be nice to
have a data type that can store them. An enumeration comes in handy; we call it
Type and make it a member of the Aircraft class. Therefore, we can now refer to it
as Aircraft::Type, which is quite expressive when we see it in the code. Up to now,
we have two distinct airplanes, we call them Eagle and Raptor. Each type of aircraft
corresponds to an enumerator in our enum.

Furthermore, we declare a constructor for the aircraft that takes its current type as
parameter. We also declare a member variable for the type in the following code:

class Aircraft : public Entity
{
 public:
 enum Type
 {
 Eagle,
 Raptor,
 };

 public:
 explicit Aircraft(Type type);

 private:
 Type mType;
};

Forge of the Gods – Shaping Our World

[52]

The constructor's definition is straightforward; we let it initialize our mType
member variable:

Aircraft::Aircraft(Type type): mType(type)
{
}

Now this is the fundament for our Aircraft class. During this book, we will
continuously extend it and add new functionality.

Alternative entity designs
You should be aware that a class hierarchy is not the only option to model game
entities. There are always different possibilities to design a piece of software, all of
which have its own advantages and drawbacks.

The hierarchy-based approach gets to its limits when we introduce many, slightly
different entity types. Imagine a complex game with different kinds of vehicles,
such as tanks, ships, submarines, airplanes, and more. Every entity type has
different capabilities, such as flying, transporting people, carrying weapons, and
diving. It may be tempting to create corresponding base classes TransportEntity,
ArmedEntity, DivingEntity that all derive from Entity. A submarine could
then inherit ArmedEntity and DivingEntity; an armed freighter could inherit
TransportEntity and ArmedEntity. On one hand, this design leads hand to the
so-called diamond of death, where the base class Entity is indirectly inherited
multiple times, requiring virtual inheritance. On the other hand, the hierarchy
becomes very deep and rigid. In order to reuse functionality for different entities, it
is moved to base classes. This makes classes towards the root of the hierarchy a lot
heavier than they should be. This in turn results in derived classes which inherit a
lot of functions and data they never need. Eventually, objects become overly large,
hence slower to process and more difficult to maintain.

In such a case, component-based design would be an alternative, meaning that
abilities are aggregated as components in the single entities, instead of base classes.
Each entity would then hold the abilities as members. But as you might expect, this
approach is not the silver bullet, either. Components often depend more on each
other than theory would like them to, and they need an efficient and flexible way to
communicate with each other. While component-based approaches are certainly an
option to consider for large-scale games, they are rather complex for the first game
to develop. In our basic aircraft shooter, the typical problems of entity hierarchies do
not show, so we chose this approach for the sake of simplicity.

Chapter 3

[53]

If you are interested in a more detailed explanation on the topic of component-based
game design, we recommend reading the article series on the following website:

http://stefan.boxbox.org/game-development-design.

Rendering the scene
At one point, we have to reflect about how the game is rendered on the screen.
How do we draw all the entities, the scenery, and interface elements (such as a health
bar)? A simple option is to have different sequential containers through which we
iterate. For each element, we call a possible Entity::draw() function to draw the
corresponding entity on the screen. We only have to make sure that objects that
appear behind others (such as the scenery background) are drawn first.

Relative coordinates
The sequential rendering approach works well for many cases, but makes it difficult
to handle an entity relative to another one. Imagine we have a formation of airplanes,
where one is the leader and the rest follows it. It would be nice if we could set the
position of the following airplanes dependent on the leader, in the sense of "plane
A is located 300 units behind (below on the screen) and 100 units right of the leader"
instead of "plane A is located at position (x, y) in the world". We call (300, 100) a
relative position, expressing where plane A is located with respect to the leader.

We can apply the principle of relative coordinates not only to position, but also to
rotation and scale. In the mentioned example of a plane formation, we also want the
planes to be headed towards the same direction as the leader. In other words, we
want their rotation to be the same. If the followers' relative rotation is zero, all planes
will face the same direction, namely the leader's one.

The advantage of relative coordinates consists of avoiding the need for manual
synchronization of different entities. Using absolute coordinates, we have to
recognize the leader and its followers, copy the leader's position to every follower,
and add it to the follower's own position. This has to be done every time the position
of the leader changes, which is cumbersome and error-prone (one can easily forget to
update a single plane). Now compare that with the relative coordinate approach: we
set the position of the leader, done. All followers adapt automatically.

This relationship is not limited to a single layer. An airplane that is following the
leader can in turn have other followers that move relatively to it. Eventually, we
build up a hierarchy of objects with relative transforms.

Forge of the Gods – Shaping Our World

[54]

SFML and transforms
Now, the question is how we achieve the semantics of relative transforms in our
game. Fortunately, SFML provides already the basic framework, on top of which we
can build our own abstractions.

A geometrical transform specifies the way an object is represented on the screen.
In mathematical terms, a transform maps a coordinate system onto another.
Translation affects the position of an object, rotation affects its orientation, and scale
affects its size. Although transforms are not limited to these three operations, we will
focus on them, because they are the ones mostly used.

SFML provides an API to work with position, rotation, and scale in the class
sf::Transformable. The class stores the three transforms separately and provides
useful accessor functions such as setPosition(), move(), rotate(), getScale(),
and many more. It can be used as a base class, such that the derived class
automatically inherits those functions. The following diagram visualizes the three
transforms you will encounter again and again:

Rotation

Translation Scale

sf::Transformable also contains the methods setOrigin() and getOrigin(),
which give access to the coordinate system's origin. The origin is the reference point for
the three transforms—it determines, which point in the object is looked at to set/get
the position, or around which point the object rotates, or which point the object uses as
the center for scaling. The origin is specified in local coordinates (relative to the object).
By default, it has the value (0, 0) and resides in the object's upper-left corner. Calling
setOrigin() with the half object size places the origin to the object's center.

SFML provides another useful base class for graphical entities: the class
sf::Drawable is a stateless interface and provides only a pure virtual function with
the following signature:

virtual void Drawable::draw(sf::RenderTarget& target,
 sf::RenderStates states) const = 0

Chapter 3

[55]

The first parameter specifies, where the drawable object is drawn to. Mostly, this
will be a sf::RenderWindow. The second parameter contains additional information
for the rendering process, such as blend mode, transform, the used texture, or
shader. SFML's high-level classes Sprite, Text, and Shape are all derived from
Transformable and Drawable.

Scene graphs
In order to manage transform hierarchies in a user-friendly way, we develop a scene
graph—a tree data structure consisting of multiple nodes, called scene nodes. Each
scene node can store an object that is drawn on the screen, most often this is an entity.

Each node may have an arbitrary amount of child nodes, which adapt to the
transform of their parent node when rendering. Children only store the position,
rotation, and scale relative to their parent.

A scene graph contains a root scene node, which exists only once in a world. It
resides above all other scene nodes in the hierarchy, thus it has no parent node.

Scene nodes
We represent the nodes in the scene graph with a class called SceneNode. Before we
can implement it, we need to think about ownership semantics. The scene graph
owns the scene nodes; therefore it is responsible for their lifetime and destruction.
We want each node to store all its child nodes. If a node is destroyed, its children are
destroyed with it. If the root is destroyed, the whole scene graph is torn down.

To store the children, we make use of the STL container std::vector. We cannot
use std::vector<SceneNode>, since element types must be complete types (which
they are only at the end of the SceneNode class definition, but not at the time of
declaring the container as a member variable) and since our class is polymorphic
(there will be derived classes overriding virtual functions of SceneNode). We could
use std::vector<SceneNode*>, but then we would have to manage memory
ourselves, so we take std::vector<std::unique_ptr<SceneNode>> instead. Since
we are going to use the type std::unique_ptr<SceneNode> really often, we create a
typedef for it, as a member inside the SceneNode class.

Forge of the Gods – Shaping Our World

[56]

In addition to the children container, a pointer to the parent node is stored, so our
class looks as follows:

class SceneNode
{
 public:
 typedef std::unique_ptr<SceneNode> Ptr;

 public:
 SceneNode();

 private:
 std::vector<Ptr> mChildren;
 SceneNode* mParent;
};

The constructor initializes the parent pointer to nullptr and leaves the
container empty.

nullptr is a keyword introduced with C++11 and represents
the value of a null pointer. The formerly used NULL is a macro
for the integer value 0, which implies many problems. A function
overloaded for int and char*, that is passed NULL as argument,
would unexpectedly choose the int overload.
For null pointer literals, nullptr should always be preferred
over 0 or NULL. It is also convertible to the standard library smart
pointers std::unique_ptr and std::shared_ptr.

Node insertion and removal
Now we write an interface to insert or remove child nodes into or from a scene node.
We do this by adding the following two functions:

void attachChild(Ptr child);
Ptr detachChild(const SceneNode& node);

The first method takes a unique_ptr<SceneNode> by value, taking ownership
of the scene node. The second method searches for an occurrence of the specified
node, releases it from the container, and returns it to the caller, again wrapped in a
unique_ptr. If the return value is ignored, the node will be destroyed.

Chapter 3

[57]

The function to attach a child node is simple to implement. We set its parent
pointer to the current node, and add the smart pointer to the container by moving
its contents in the following code snippet:

void SceneNode::attachChild(Ptr child)
{
 child->mParent = this;
 mChildren.push_back(std::move(child));
}

The second method is slightly more complex. First, we search for the specified node
in the container with the help of a lambda expression.

Lambda expressions are a C++11 language feature. They allow the
definition of local functions inside other functions, and the direct
usage in surrounding code.
A lambda expression creates an anonymous function object, similar to
a named functor class with overloaded operator(). Its declaration
consists of the following parts:

•	 The capture list specifies to which variables in the surrounding
scope the lambda expression has access. [] captures no
variables, [&] captures all variables by reference, [=] by
value, [&node] and [node] capture only the listed variables
by reference or value, respectively. The capture list is
comparable to the arguments passed to a functor's constructor.

•	 The parameter list contains the parameters passed to the
function. These correspond to the parameters of the
functor's operator().

•	 The return type has the syntax -> type. If the function
body consists of a single return statement, the return type
can be omitted.

•	 The function body is enclosed in {} and contains the
actual statements.

The lambda expression is invoked with each container element and returns true if
the element's pointer p.get() is equal to the address of the wanted node. The STL
algorithm std::find_if() returns an iterator to the found element, which we check
for validity using assert.

SceneNode::Ptr SceneNode::detachChild(const SceneNode& node)
{
 auto found = std::find_if(mChildren.begin(), mChildren.end(),
 [&] (Ptr& p) -> bool { return p.get() == &node; });

 assert(found != mChildren.end());

Forge of the Gods – Shaping Our World

[58]

In the second part of the function, we move the found node out of the container
into the variable result. We set the node's parent pointer to nullptr, erase the
empty element from the container, and return the smart pointer containing the
detached node.

 Ptr result = std::move(*found);
 result->mParent = nullptr;
 mChildren.erase(found);
 return result;
}

Now that the basic tree operations of our scene graph are working, we can
concentrate on the actual rendering.

Making scene nodes drawable
Our SceneNode class shall be rendered on the screen, thus we derive it from
sf::Drawable. It shall store its current position, rotation, and scale as well as
providing an interface to access them. Instead of re-inventing the wheel, we derive
also from sf::Transformable, which gives us all that for free. In addition, we
derive privately from sf::NonCopyable to state that our scene nodes cannot be
copied (copy constructor and copy assignment operator are disabled).

We override the pure virtual draw() function of sf::Drawable to render the whole
scene node. We also provide a new virtual function drawCurrent() which only
draws the current object (but not the children). It can be overridden by classes
deriving from SceneNode.

class SceneNode : public sf::Transformable, public sf::Drawable,
 private sf::NonCopyable
{
 public:
 typedef std::unique_ptr<SceneNode> Ptr;

 public:
 SceneNode();

 void attachChild(Ptr child);
 Ptr detachChild(const SceneNode& node);

 private:
 virtual void draw(sf::RenderTarget& target,
 sf::RenderStates states) const;

Chapter 3

[59]

 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 std::vector<Ptr> mChildren;
 SceneNode* mParent;
};

The draw() function allows our class to be used as shown in the following
code snippet:

sf::RenderWindow window(...);
SceneNode::Ptr node(...);
window.draw(*node); // note: no node->draw(window) here!

The window class internally calls our draw() function. No other classes need access
to it, so we can make it private. If your compiler already supports this feature, you
can declare draw() with the final keyword, to prevent the function from being
overridden in classes derived from SceneNode.

Our function to draw the scene node has to deal with different transforms:

•	 The current node's transform that determines position, rotation, and scale
relative to the parent node. It is retrieved via base class method sf::Transfo
rmable::getTransform().

•	 The parameter states, which is passed by value and has a member variable
transform of type sf::Transform. This variable holds the information
where to render the parent scene node.

Two transforms can be chained (applied one after other) using the overloaded
multiplication operators. Our expression with operator*= combines the parent's
absolute transform with the current node's relative one. The result is the absolute
transform of the current node, which stores where in the world our scene node
is placed.

void SceneNode::draw(sf::RenderTarget& target,
 sf::RenderStates states) const
{
 states.transform *= getTransform();

Now, states.transform contains the absolute world transform. We can draw the
derived object with it by calling drawCurrent(). Both parameters are forwarded.

By the way, the sf::Sprite class handles transforms very similarly: it also combines
its own transform with the one passed in the render states. Thus, we effectively copy
SFML's behavior in SceneNode.

Forge of the Gods – Shaping Our World

[60]

Eventually, we have to draw all the child nodes. We iterate through our container of
smart pointers, and recursively invoke draw() on each element, again forwarding
both parameters.

 drawCurrent(target, states);

 for (auto itr = mChildren.begin();
 itr != mChildren.end(); ++itr)
 {
 (*itr)->draw(target, states);
 }
}

In the code, we have factored out the last part into a function drawChildren().

In C++11, iteration through sequences can be achieved with the
range-based for statement. It has the following syntax, which can
be read as "for each variable in sequence":

for (Type variable : sequence)

If all current compilers supported range-based for, we could use the following code
to iterate over all child nodes:

for (const Ptr& child : mChildren)
{
 child->draw(target, states);
}

Fortunately, C++ is a very powerful language. It allows us to emulate the range-
based for loop with a few limitations, using a self-written macro FOREACH. We chose
it to make code more readable, and to make porting to C++11 easier, when the
feature is widely supported. Our loop then looks as follows:

FOREACH(const Ptr& child, mChildren)
{
 child->draw(target, states);
}

Note the increase in expressiveness and readability over the classical iterator loop.

Chapter 3

[61]

Drawing entities
Meanwhile, our data structure for hierarchical rendering is operational, but nothing
is actually rendered yet. In order to do so, the virtual method drawCurrent() must
be overridden in derived classes. One of these derived classes is Entity; it inherits
SceneNode, so that entities can be placed in the scene and rendered by SFML.

Since we want our plane to be rendered as an image on the screen, we use a
sf::Sprite object. This sprite becomes a member of the Aircraft class.

class Aircraft : public Entity // inherits indirectly SceneNode
{
 public:
 explicit Aircraft(Type type);
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 Type mType;
 sf::Sprite mSprite;
};

In drawCurrent(), we only draw the sprite. We call sf::RenderTarget::draw(),
and pass const sf::Drawable& (our sprite) as first argument and the render states
as second argument.

void Aircraft::drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const
{
 target.draw(mSprite, states);
}

As you see, we needn't care about transforms anymore. Implementing rendering for
a new entity has now become extremely simple! This is due to the fact that all the
actual work is performed in our scene node and SFML.

Connecting entities with resources
There is one thing we have concealed: how our sprite is initialized. As you know,
sprites need a texture to refer to, but where to get it from?

In Chapter 2, Keeping Track of Your Textures – Resource Management, we have
developed the class template ResourceHolder<Resource, Identifier> which
is able to store SFML resource objects such as textures. Now the time for its first
application has come. We need to choose the template arguments with which
we instantiate the template. Because we draw a sprite which needs a texture, the
resource type will be sf::Texture.

Forge of the Gods – Shaping Our World

[62]

Next, we ought to find a type for the resource identifier. For aircraft textures, we
could use the enum Aircraft::Type. However, there might be other objects than
airplanes that also require textures. The landscape is such an example. Therefore, we
create a new enumeration Textures::ID with identifiers for the textures. So far, we
only have two texture IDs, one for each of our aircraft types.

namespace Textures
{
 enum ID
 {
 Eagle,
 Raptor,
 };
}

Having defined the identifier type, we are ready to instantiate our resource holder
for textures. Because it is used in several places, we create a type definition for it:

typedef ResourceHolder<sf::Texture, Textures::ID> TextureHolder;

We will now go back to our Aircraft class. In its constructor, we want to initialize
the sprite with the correct texture. We could add a constructor parameter const
sf::Texture&, but we directly pass a const reference to our texture holder instead.
This has the advantage that the knowledge about the used texture stays local to our
plane—the creator of the plane need not know what texture it uses. Also, if the plane
suddenly requests more than one texture (for example, for an attached missile), we
do not have to change the constructor signature and the code that invokes it.

Our constructor has now this declaration:

Aircraft(Type type, const TextureHolder& textures);

The TextureHolder class, which is an instantiation of the ResourceHolder class
template, provides a function const sf::Texture& get(Textures::ID id) const
which we can invoke with an identifier to get a texture back.

We do not have the identifier yet, but we have the plane type, stored in the
constructor parameter type. We can map the aircraft type to the corresponding
texture ID, for example, with a switch statement:

Textures::ID toTextureID(Aircraft::Type type)
{
 switch (type)
 {
 case Aircraft::Eagle:
 return Textures::Eagle;

Chapter 3

[63]

 case Aircraft::Raptor:
 return Textures::Raptor;
 }
}

We define this global function at the beginning of the Aircraft.cpp file, so it does
not appear in the Aircraft interface. In our constructor, we then initialize our sprite
with the texture:

Aircraft::Aircraft(Type type, const TextureHolder& textures):
mType(type), mSprite(textures.get(toTextureID(type)))

{

}

Instead of the sf::Sprite constructor which takes const sf::Texture&, it would
also have been possible to call the method sf::Sprite::setTexture().

Aligning the origin
By default, the origin of sprites is located in their upper-left corner. When we call
setPosition(), we therefore always set the position of the sprite's upper-left
corner. For various tasks such as object alignment or rotation, it is however more
comfortable to work with the center. Therefore, we have to move the sprite's origin
to its center.

For the center, we need the half size of the sprite. With getLocalBounds(), we get
the local bounding rectangle (local means not taking any sf::Sprite transforms
into account—as opposed to getGlobalBounds()). The rectangle is of type
sf::FloatRect, which stores four float variables called left, top, width, and
height. SFML also provides sf::IntRect, which stores four int varibles. Our local
bounding rectangle's left and top coordinates are zero, while its width and height
correspond to the sprite's texture size.

sf::FloatRect bounds = mSprite.getLocalBounds();
mSprite.setOrigin(bounds.width / 2.f, bounds.height / 2.f);

After all this work, our aircraft is finally drawable! When it is added to a scene
graph, and somebody draws it, our plane will appear on the screen.

Forge of the Gods – Shaping Our World

[64]

Scene layers
In the game, we often have different scene nodes that must be rendered in a certain
order. Nodes with objects that are located "above" others (closer to the sky) must
be drawn after them. For example, we might first draw a desert background, then
an oasis and some buildings, above which we draw the planes, and eventually
some health bars located in front of them. This is rather cumbersome to handle
when we insert node by node to the scene graph, because we have to ensure the
order manually.

Luckily, we can easily automate the ordering, even using the scene graph's current
capabilities. We call a group of scene nodes that are rendered together a layer. Inside
a layer, the rendering order is irrelevant—we just make sure we render the different
layers in the right order. We represent a layer with an empty scene node, directly
under the graph's root node. A layer node itself contains no graphics; it is only
supposed to render its children. Since the scene graph is traversed node by node, we
know that all children of layer one will be rendered before any children of layer two.
We can assign a node to a certain layer by attaching it as a child to the corresponding
layer node. As a result, we have an automatic ordering of different layers, without
the need to manually sort objects.

Let us introduce two layers for now: one for the background, and one for entities
in the air. We use an enum to have an appropriate type. The last enumerator
LayerCount is not used to refer to a layer; instead it stores the total amount of layers.

enum Layer
{
 Background,
 Air,
 LayerCount
};

Updating the scene
In each frame, we update our world with all the entities inside. During an update,
the whole game logic is computed: entities move and interact with each other,
collisions are checked, and missiles are launched. Updating changes the state of
our world and makes it progress over time, while rendering can be imagined as a
snapshot of a part of the world at a given time point.

Chapter 3

[65]

We can reuse our scene graph to reach all entities with our world updates. To
achieve this, we implement a public update() member function in the SceneNode
class. Analogous to the way we have proceeded for the draw() function, we split up
update() into two parts: an update for the current node, and one for the child nodes.
We thus write two private methods updateCurrent() and updateChildren(), of
which the former is virtual.

All update functions take the frame time dt as a parameter of type sf::Time (the
SFML class for time spans). This is the frame time we computed for the Game class
in Chapter 1, Making a Game Tick. In our game, we work with fixed time steps, so dt
will be constant. Nevertheless, we pass the frame time every time to the scene nodes
and make entity behavior dependent on it. This leaves us the flexibility to change the
frame rate or to experiment with other approaches to compute the frame time.

We add the following methods to our SceneNode class:

public:
 void update(sf::Time dt);

private:
 virtual void updateCurrent(sf::Time dt);
 void updateChildren(sf::Time dt);

The implementation is the same as for rendering. The definition of updateCurrent()
remains empty, by default we do nothing for a scene node.

void SceneNode::update(sf::Time dt)
{
 updateCurrent(dt);
 updateChildren(dt);
}

void SceneNode::updateCurrent(sf::Time)
{
}

void SceneNode::updateChildren(sf::Time dt)
{
 FOREACH(Ptr& child, mChildren)
 child->update(dt);
}

Forge of the Gods – Shaping Our World

[66]

In derived classes, we can now implement specific update functionality,
such as movement of each entity. In the Entity class, we override the virtual
updateCurrent() method, in order to apply the current velocity. The class definition
of Entity is expanded by the following lines of code:

private:
 virtual void updateCurrent(sf::Time dt);

We offset the position by the velocity depending on the time step. A longer time step
leads to a bigger offset, meaning that our entity is moved further over longer time.

void Entity::updateCurrent(sf::Time dt)
{
 move(mVelocity * dt.asSeconds());
}

Here, move() is a function of the indirect base class sf::Transformable. The
expression move(offset) is a shortcut for setPosition(getPosition() + offset).

Since Aircraft inherits Entity, the update functionality for it is also inherited. We
thus do not need to re-define updateCurrent() in the Aircraft class, unless we
want to execute further actions specifically for aircraft.

One step back – absolute transforms
Relative coordinates are nice and useful, but there are cases where we still want
to access the absolute position of an object in the world. For example, to find out
whether two entities collide, relative positions won't help us—we need to know
where in the world the entities are located, not where in the local coordinate system.

To compute the absolute transforms, we can step upwards in the class hierarchy, and
accumulate all relative transforms until we reach the root. This was also the reason
why we introduced the parent pointer in the SceneNode class. In addition to the
function getPosition(), which is inherited from sf::Transformable and returns
the relative position, we add a new method getWorldPosition() to SceneNode,
which returns the absolute position. First, we add a function getWorldTransform()
that takes into account all the parent transforms. It multiplies all the sf::Transform
objects from the root to the current node, its iterative implementation looks as
follows. The position can be computed by transforming the origin sf::Vector2f()
using the absolute transform.

sf::Transform SceneNode::getWorldTransform() const
{
 sf::Transform transform = sf::Transform::Identity;

Chapter 3

[67]

 for (const SceneNode* node = this;
 node != nullptr; node = node->mParent)
 transform = node->getTransform() * transform;

 return transform;
}

sf::Vector2f SceneNode::getWorldPosition() const
{
 return getWorldTransform() * sf::Vector2f();
}

The constant sf::Transform::Identity represents the identity transform, which
does not have any effect on the object. Strictly speaking, it is not necessary in this
code, but it clarifies the way how transforms are applied from the beginning.

The view
A view is a concept that allows us to select the part of our world we want to see. You
can imagine a view to work like an image recording device. Essentially, every game
programmer needs to understand views in depth, simply because every graphical
game will require that knowledge to be applied directly. Sometimes it is called view,
camera, or differently. Be it a two-dimensional or three-dimensional simulation, this
concept will always be present.

Talking about graphics in two dimensions, we can describe a view as a rectangle that
represents the subset of our world that we want to see at a particular time.

Such a simple and yet powerful concept gives us the possibility to perform many
interesting tasks, such as an animated camera following the player around, a spy
camera that allows us to take a peek at a remote location, a combination of two views
to create a split-screen multiplayer experience, as well as many other applications.

It is not hard to grasp the power of the view; you may begin by knowing SFML,
which provides us this utility in the conveniently named class sf::View. This class
acts as a viewing lens, which ensures that anything you attempt to draw to the screen
that is outside the view's rectangle will remain unseen.

Besides the viewing rectangle, another parameter that defines the sf::View class is
the viewport, which gives us control over how to map the viewing rectangle to the
actual application window.

Forge of the Gods – Shaping Our World

[68]

Viewport
It is very easy to visualize what a viewport does. It is no more than a rectangle, in
unit-length coordinates, that defines what region of the application's window is
going to be used. So, a viewport rectangle starting at (0, 0) and ending in (1, 1) means
essentially that the entire window area will be used to render the world. This is the
most common use of viewports.

Another special use case for this concept is to provide split-screen multiplayer
support. In order to do that, one would only need to have two sf::View objects,
one for the top half of the screen, and another for the bottom. Then, each view would
be configured to take its respective portion of the screen, having their viewport
rectangles defined as, respectively, (left=0, top=0, width=1, height=0.5) and (left=0,
top=0.5, width=1, height=0.5).

This would immediately mean that we would have two distinct "eyes" looking at the
world, and that they would only render in their own viewports. Each of these eyes
may be looking at any region of the world without any conflicts. After having those
two views configured, having a split-screen support would be as simple as activating
the first view, rendering the world, then activating the second, and rendering it
again. But always beware that rendering the world twice will effectively consume
twice as much rendering power.

View optimizations
Requesting an object to draw itself to the screen, also known as a draw call, is one
of the most expensive operations you can do in a game, therefore, for any game that
goes beyond only a few sprites being drawn, we need to worry about rendering
performance by reducing draw calls as much as we can.

One way to do this is to use culling, which is a term that encompasses a wide range
of techniques. Using culling techniques is always a great optimization to do, and
the benefits will almost always be worth the extra work. For example, checking if
every object is within the viewing rectangle and only draw them if they are, is a very
simple form of efficient culling.

Of course, for big scenes with lots of objects, the simple fact that we are iterating
potentially thousands or millions of objects every frame will be a drag in the
performance. Because of this, game developers usually implement some kind of
spatial subdivision. A spatial subdivision system can be done in many ways, but
it always consists on dividing the scene in multiple cells, which group all objects
that reside within that given cell. This way it's possible to cull a group of objects
altogether, avoiding expensive iterations and tests on those objects.

Chapter 3

[69]

One of the most popular ways to subdivide space is to use a quad tree. A quad tree
is a hierarchical tree of cells. Only leaf nodes can contain objects and they subdivide
again when a predetermined number of objects are present. Every cell is at least
big enough to contain all its children cells. The hierarchical approach allows us to
stop iterating through every object and only perform tests down the tree if each cell
passes the test. This effectively reduces the complexity of the algorithm from O(n) to
O(log n), which is a very good optimization already. A quad tree is also much more
efficient to find objects within the scene.

An alternative is a circle tree, which is similar to the quad tree, but instead each cell
is a circle. This allows a different distribution of the objects and cheaper to compute
tests. Whether to use one algorithm or the other depends on many factors. For each
scene you may want to pick the most appropriate algorithm that will give you the
most efficiency.

Resolution and aspect ratio
We have seen how viewports work, even though they are not always used explicitly.
Now, it is very important to know how the viewing rectangle interacts with the
specified viewport, and what pitfalls can we avoid by knowing that, along with what
effects can we achieve by exploiting these notions to the limit. The resolution is the
number of pixels a monitor or application window displays in each dimension. It is
usually specified as width times height, for example, 1024 x 768. The aspect ratio is
the ratio of the width to the height, for example, 1024:768 = 4:3.

The simplest possible use case of views is to have a window with a fixed size, and
a view with the exact same dimensions, which implicitly means, the aspect ratio
of view and window will be equal. This ratio is very important, because if the
view rectangle is not proportional to the window size, we will experience a case of
shrinking or stretching of our world.

Let's create an example by saying we have a window with size (640, 320) and a view
with an equal rectangle. Then, we draw a circle in the middle of that screen, and
when we verify, we see a perfect circle. However, as soon as we increase the view's
rectangle height, without growing its width, as a result of trying to map more pixels
to the very same space, we will notice that the circle is now shrunk vertically. It
maintains the same width as before, but the height is smaller, turning the circle into
an ellipse. This does not mean that we drew an incorrect circle, but rather that our
view rectangle is not proportional and therefore shows distorted results.

Forge of the Gods – Shaping Our World

[70]

It is very difficult to the programmer to predict view sizes that will fit perfectly to
every screen, while keeping the same aspect ratio. There are tiny screens as well as
very wide ones, and sometimes there is no perfect solution to this issue. However,
there are tricks that can help handling this situation, to provide a better gaming
experience to the audience, such as the "widescreen" technique, which leaves a
bar on top of the screen and another on bottom without rendering, just so the
remaining area is more alike the window size the programmer idealized. This kind
of techniques is outside the scope of the book, but it is likely that after understanding
the concept of viewports and the viewport rectangle, the reader is able to implement
them by intuition.

This mapping of the view to the window can also be exploited beyond preventing
graphical glitches. It can be used to apply effects to the world, by animating the
view's rectangle, to create shrinking and stretching illusions in many ways.

View scrolling
Now that we covered the most important parameters of sf::View, we will talk about
how we use it in the context of the chapter's sample game.

After knowing how to define the viewport, and mapping to it an arbitrary region
of the world with sf::View::setRect() with correct aspect ratio, we now want to
move the view around, to create movement along the game world.

Since our game's action occurs in a vertical corridor, with no horizontal movement
apart from moving the plane inside the fixed width window we see, we don't need to
consider the x axis.

In every step of the game loop, when updating the state of the world, we also scroll
the view a little. We do this at a constant speed towards the negative y axis (up), so
we see a little further at each time step. Of course, we also move the player's aircraft
by the exact same distance, so it won't get left behind, but remains in action.

This incremental and automatic scrolling operation of the view is simply done in the
update code, by doing:

mWorldView.move(0.f, mScrollSpeed * dt.asSeconds());

It is always important to multiply our values by the elapsed time in seconds, so
we ensure that the speed of n pixels per second is guaranteed, independent of the
simulation frame rate.

Chapter 3

[71]

Zoom and rotation
The sf::View utility gives us another two precious features: zooming and rotating
our view.

We can use the sf::View::zoom(float factor) function to easily approach or
move away from the center of the view. The factor parameter means that the
current view's rectangle will be multiplied by it. It is really that simple. A factor of
one will have no effects on the zoom function. A factor bigger than one will grow the
view's rectangle, which makes objects appear smaller and gives us the impression to
watch from a more distant point of view. The opposite applies when using a factor
less than one, which will make the world appear to be closer, just like when we zoom
in a real camera.

About rotation, sf::View allows us to turn our view orientation to another angle
than the default one, zero, in degrees. The easiest way to visualize the results of this
operation is to picture how our world is seen under the default view orientation, and
then imagine the whole content rotating relative to the center of the view.

This is a concept that is better understood by experimenting until the desired effect is
reached. You can use sf::View::rotate(float degrees) to add a rotation angle
to the current one, or sf::View::setRotation(float degrees) to set the rotation
of the view to an absolute value.

Landscape rendering
As you can observe in the C++ sample for this chapter, our aircraft travels
continuously over a desert. This continuity can be achieved in many ways and with
many different levels of detail and complexity. However, we chose to go in a very
simple and yet effective way of doing it, using a feature that SFML provides out of
the box.

SpriteNode
In order to display our background sprite through the scene graph, we created a
new SceneNode type, the SpriteNode, which acts as a simple sf::Sprite that can
be plugged into our tree structure. Conveniently, this is all we need to make our
landscape. We only have to create SpriteNode and attach it to our background layer
of the scene graph.

Forge of the Gods – Shaping Our World

[72]

To demonstrate the implementation of a new node type, there follows a small
snippet of the SpriteNode declaration:

class SpriteNode : public SceneNode
{
 public:
 explicit SpriteNode(const sf::Texture& texture);
 SpriteNode(const sf::Texture& texture,
 const sf::IntRect& rect);

 private:
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 sf::Sprite mSprite;
};

The sf::Sprite class is constructed and prepared at startup and not touched again
in the future. This is a proof of the scene graph's power, showing us that the relative
transforms work very well because we can manipulate the positioning, rotation, and
scale of SpriteNode, and these transforms are inherently applied to the sf::Sprite
object as well.

With the sprite node, we have also introduced the last piece in our scene graph for
the moment. The following diagram should give you an impression of the current
inheritance hierarchy. The grey classes at the top are part of SFML, the black ones
are ours.

sf::Drawable sf::Transformable sf::NonCopyable

SceneNode

SpriteNode Entity

Aircraft

Chapter 3

[73]

Landscape texture
In order to have a good landscape, without wasting too much memory having
multiple images to represent it along the whole level, we used a tileable texture.

A tileable texture is no more than an image that can be put together continuously,
without letting the player notice that we actually have one single image repeating
itself. This is possible because the seam between every two instances of the image
is not noticeable. The image's beginning fits perfectly into its ending, creating an
illusion of infinity, with just one texture. As you can see in the following figure,
multiple desert images can be put together without creating a hard seam, giving
the illusion that it's only one image.

That is exactly what we did. We made a desert "tile", which is only big enough to fill
one screen. Using the following technique, we made it look infinite, repeating itself
along the whole level.

Texture repeating
The key to our tiling effect is exactly the texture repeating feature that SFML
provides us. Every sf::Texture comes along with the option to enable repeating
along both axis with the sf::Texture::setRepeated(bool) function.

When repeating is enabled for a texture, it means that it will be theoretically infinite,
tiling itself continuously as much as required. When a sf::Sprite object links to
a texture in this mode, it will behave normally until the sprite requests a texture
rectangle that is larger than the texture's real dimensions. In that moment, the sprite
will display the texture along its whole size.

Forge of the Gods – Shaping Our World

[74]

As a practical case, we can picture a texture that is only a square, such as
a floor's tile. Using this texture with a sf::Sprite object would normally
allow us to see only one tile, no matter how big dimensions we have set with
sf::Sprite::setTextureRect(). However, as soon as the texture activates its
repeating mode, sf::Sprite would now render a nice tiled floor, without any
extra effort!

Composing our world
Up to now, we have taken a look at entities and the scene graph, we know how to
render and update objects in the world, and we have seen how views and scrolling
work. We have a concrete knowledge about many building blocks, now it is time to
assemble them to shape a model of our fictional world.

Completely unforeseen, we create a new class called World. On one side, our World
class must contain all the data related to rendering:

•	 A reference to the render window
•	 The world's current view
•	 A texture holder with all the textures needed inside the world
•	 The scene graph
•	 Some pointers to access the scene graph's layer nodes

On the other hand, we store some logical data:

•	 The bounding rectangle of the world, storing its dimensions
•	 The position where the player's plane appears in the beginning
•	 The speed with which the world is scrolled
•	 A pointer to the player's aircraft

Concerning functionality, we implement public functions to update and draw the
world. We also add two private functions to load the texture and to build up the
scene. Since we only have one world and we don't want it to be copied, the class
derives privately from sf::NonCopyable.

class World : private sf::NonCopyable
{
 public:
 explicit World(sf::RenderWindow& window);
 void update(sf::Time dt);
 void draw();

Chapter 3

[75]

 private:
 void loadTextures();
 void buildScene();

 private:
 enum Layer
 {
 Background,
 Air,
 LayerCount
 };

 private:
 sf::RenderWindow& mWindow;
 sf::View mWorldView;
 TextureHolder mTextures;
 SceneNode mSceneGraph;
 std::array<SceneNode*, LayerCount> mSceneLayers;

 sf::FloatRect mWorldBounds;
 sf::Vector2f mSpawnPosition;
 float mScrollSpeed;
 Aircraft* mPlayerAircraft;
};

For the scene layers, we use an array of pointers with the size LayerCount.

std::array is a C++11 class template for fixed-size static arrays. It
offers the same functionality and performance as C arrays, but has many
advantages. It provides value semantics, which allow copies, assignments,
and passing or returning objects from functions. There is no implicit
conversion to pointers, and index access is checked in debug mode.
Additionally, an STL-conforming interface with useful methods such as
size(), begin(), or end() is provided. Because of the additional safety
and features, std::array should always be preferred over C arrays.

Forge of the Gods – Shaping Our World

[76]

World initialization
In the constructor, we build up the world. The following figure can help to imagine
the dimensions of our world:

World bounds

View after

some time

Initial view

Spawn position

mWorldBounds.left

mSpawnPosition.x

mWorldBounds.left

+mWorldBounds.width

mSpawnPosition.y

mWorldBounds.top

+mWorldBounds.height

mWorldBounds.top

+

The constructor initializes the important attributes. The mWorldBounds rectangle
is initialized so that the upper-left corner lies at position (0, 0). Its width equals the
window's width, and for its height we take an arbitrary value, here 2000. This is
rather small value, but it shows already after a short time that the desert texture
ceases to repeat any longer, leaving behind a black background.

The mSpawnPosition vector is initialized depending on the world bounds and the
window. According to the previous figure, the vector's x coordinate is assigned the
middle of the screen, and its y coordinate is the same as the bottom of the world
minus a half screen height.

Chapter 3

[77]

: mWindow(window)
, mWorldView(window.getDefaultView())
, mWorldBounds(
 0.f, // left X position
 0.f, // top Y position
 mWorldView.getSize().x, // width
 2000.f) // height
, mSpawnPosition(
 mWorldView.getSize().x / 2.f, // X
 mWorldBounds.height - mWorldView.getSize()
, mPlayerAircraft(nullptr) // Y
{
 loadTextures();
 buildScene();

 mWorldView.setCenter(mSpawnPosition);
}

For the scroll speed, we choose a negative value, since we scroll upwards and the y
axis points downwards. The aircraft pointer is initialized with a null pointer literal.
In the constructor body, we call our two private functions that are in charge of
further initialization. Finally, we move the view to the correct start position. As you
see in the figure, its center initially matches the player's spawn position.

Loading the textures
Now, let's have a look at texture loading. Thanks to our ResourceHolder class, this
part could not be simpler:

void World::loadTextures()
{
 mTextures.load(Textures::Eagle, "Media/Textures/Eagle.png");
 mTextures.load(Textures::Raptor, "Media/Textures/Raptor.png");
 mTextures.load(Textures::Desert, "Media/Textures/Desert.png");
}

We do not handle exceptions here, since the World class cannot react to them.
Without the textures, we are not able to construct our world meaningfully, thus it is
reasonable that we let possible exceptions abort the constructor.

Forge of the Gods – Shaping Our World

[78]

But if we handle exceptions nowhere, the program will crash. We put an exception
handler into the main() function, giving the user a meaningful error description:

int main()
{
 try
 {
 Game game;
 game.run();
 }
 catch (std::exception& e)
 {
 std::cout << "\nEXCEPTION: " << e.what() << std::endl;
 }
}

Building the scene
Now comes the interesting part: building up the scene, which is done in the
World::buildScene() method. First, we initialize the different scene layers.
We iterate through our array of layer node pointers and initialize each element.
std::unique_ptr::get() returns a raw pointer to the stored object, we do not
transfer ownership to the array. Finally, we attach the new node to the scene
graph's root node as shown in the following code:

for (std::size_t i = 0; i < LayerCount; ++i)
{
 SceneNode::Ptr layer(new SceneNode());
 mSceneLayers[i] = layer.get();

 mSceneGraph.attachChild(std::move(layer));
}

After the background texture for the desert is loaded, we configure it to repeat
itself. We also create a texture rect (with int coordinates) using the conversion
from the world bounds (which have the type sf::FloatRect and thus store
float coordinates).

sf::Texture& texture = mTextures.get(Textures::Desert);
sf::IntRect textureRect(mWorldBounds);
texture.setRepeated(true);

Chapter 3

[79]

Then, we create our SpriteNode class that links to the desert texture. We pass to its
constructor the texture rectangle. This grants that our sprite is as big as the whole
world. While the desert image is only one screen wide, it is tiled along the whole
level in -y direction.

std::unique_ptr<SpriteNode> backgroundSprite(
 new SpriteNode(texture, textureRect));
backgroundSprite->setPosition(
 mWorldBounds.left,
 mWorldBounds.top);
mSceneLayers[Background]
 ->attachChild(std::move(backgroundSprite));

Finally, we have come to the point where we add the airplanes! First, we create the
player's airplane. We set the world's pointer mPlayerAircraft to the newly created
scene node. Then, we specify an initial position (the spawn position) and velocity.
The forward velocity equals the scroll speed. We also introduce a sideward velocity
with value 40, to show a more interesting movement pattern. At last, we attach the
plane to the Air scene layer.

std::unique_ptr<Aircraft> leader(
 new Aircraft(Aircraft::Eagle, mTextures));
mPlayerAircraft = leader.get();
mPlayerAircraft->setPosition(mSpawnPosition);
mPlayerAircraft->setVelocity(40.f, mScrollSpeed);
mSceneLayers[Air]->attachChild(std::move(leader));

Since single planes are boring, we give our leader an escort of two other airplanes,
one on each side. After construction, we set a position and attach the escort to the
leader's scene node. The specified position is thus interpreted relative to the leader.
In the following example, the first escort plane is located 80 units to the left and 50
units behind the leader:

std::unique_ptr<Aircraft> leftEscort(
 new Aircraft(Aircraft::Raptor, mTextures));
leftEscort->setPosition(-80.f, 50.f);
mPlayerAircraft->attachChild(std::move(leftEscort));

For the second escort, the code is almost the same, except that the relative x position
is now positive, meaning that this plane is located to the right.

std::unique_ptr<Aircraft> rightEscort(
 new Aircraft(Aircraft::Raptor, mTextures));
rightEscort->setPosition(80.f, 50.f);
mPlayerAircraft->attachChild(std::move(rightEscort));

Forge of the Gods – Shaping Our World

[80]

That was it, now our scene is ready! Now, our scene graph looks as shown in the
following diagram. Below the description of each node, you see the most derived
class type.

Scene Graph Root

[SceneNode]

Desert

[SpriteNode] Leader Aircraft

[Aircraft]

Escort Aircraft 1

[Aircraft]

Escort Aircraft 2

[Aircraft]

Layer: Background

[SceneNode]

Layer: Air

[SceneNode]

Update and draw
The update() and draw() methods bring the encapsulated scene graph functionality
to the API of the World class.

The function to draw sets the current view and delegates the work to the
scene graph:

void World::draw()
{
 mWindow.setView(mWorldView);
 mWindow.draw(mSceneGraph);
}

Chapter 3

[81]

The update function controls world scrolling and entity movement. First, the view is
scrolled according to the passed time. Next, we check if the player's aircraft reaches
a certain distance (150) from the world's borders, and flip its x velocity in this case.
This results in the plane moving back, until it reaches the other border, and the
procedure repeats. Eventually, we forward the update to the scene graph, which
actually applies the velocities.

void World::update(sf::Time dt)
{
 mWorldView.move(0.f, mScrollSpeed * dt.asSeconds());

 sf::Vector2f position = mPlayerAircraft->getPosition();
 sf::Vector2f velocity = mPlayerAircraft->getVelocity();

 if (position.x <= mWorldBounds.left + 150
 || position.x >= mWorldBounds.left + mWorldBounds.width - 150)
 {
 velocity.x = -velocity.x;
 mPlayerAircraft->setVelocity(velocity);
 }

 mSceneGraph.update(dt);
}

Integrating the Game class
By now we already know how the Game class works, what a game loop is for, and
how to take advantage of it. For this chapter, we take the previously used Game class,
and plug into it our newcomer World class.

Because we obeyed a few principles, this integration is very easy and it's just a matter
of having a World object inside the Game class, and then letting it update and draw
itself in the appropriate times.

The run() method
Our application's main() function has a simple job. It allocates a Game object, and lets
it run itself through the run() method. When the run() method exits, the program
releases its resources and closes.

Therefore, it is within the run() method that the magic happens! It is responsible for
managing the famous game loop, fetching input from the window system, updating
the world, and ordering the rendering of the game.

Forge of the Gods – Shaping Our World

[82]

In the next chapter, events and input will be covered in depth. For now, it is
only important to understand how the drawing sequence happens inside the run()
method:

mWindow.clear();
mWorld.draw();

mWindow.setView(mWindow.getDefaultView());
mWindow.draw(mStatisticsText);
mWindow.display();

This code closely resembles the high-level drawing of a frame for any game. The
function call mWindow.clear() ensures that our frame buffer, the canvas where the
frame will be drawn, is cleaned up before we start drawing. Then, we let the world
draw itself, where it defines its own view and orders the scene graph to render
itself. Finally, because we want to display some text in the corner of the screen for
statistical purposes, we activate the default view, which is always the same so the
text always appears fixed on the screen.

On the mWindow.display() call, we tell SFML we are done drawing the frame and it
proceeds to upload it to our screen right away.

From this moment, you should be able to better dissect a game's mechanics and
visualize its structure in your mind, mapping it directly to a data structure in
C++. We can use the mental toolbox learned in this chapter to help us lay out our
thoughts into actual computational data. This hypothetical toolbox contains many
tools: managing entities and their transformations, scene graphs, views as cameras,
graphical tricks, and others. But more importantly, we have started to understand
how to properly glue all these elements together in a harmonious simulation.
Furthermore, you have also seen many smaller techniques, which you may or may
not have known, for example, practical use cases of C++11 features. So far, our result
looks as shown in the following screenshot:

Chapter 3

[83]

Summary
This chapter has moved away from the typical minimal examples, and has given
you deeper insights to a possible game architecture. As always, keep in mind that
we have chosen one of many design options—not every game needs a scene graph,
sometimes a list of entities is enough.

In the next chapter you can expect information about handling both input
events and real-time state of the keyboard and mouse. Also, you will learn about
command systems to deliver input to game entities as well as dynamic key binding
mechanisms, which allow you to configure the set of controls of a game in runtime.

Command and
Control – Input Handling

In the previous chapter, we talked about how to implement the world our game
takes place in and the different objects that the world is made up of. In this chapter,
we will focus on how to give the player the power to manipulate this world.

In this chapter we aim to learn:

•	 SFML events and their purpose as input
•	 SFML real-time input and its difference from events
•	 A command-based communication system to deliver events in our world
•	 How to dynamically bind keys at runtime

In the previous chapters, we have used events to manage input, but we have not
really delved into what they are or what they are meant to be used for. That is the
first point of this chapter. After that, we will look at more concepts of input than just
simply events.

Command and Control – Input Handling

[86]

Polling events
Generally speaking, events are objects that are triggered when something
happens; mostly related to the user input. Events are a construct in the underlying
operating system. On top of them, SFML provides a nice abstraction layer that is
easier to use and cross-platform. SFML goes with a polling design to have you
work with events. When an input occurs, the operating system reports it to the
application. SFML processes this input, converts it into the corresponding SFML
event type, and puts it into a queue of waiting events. In your actual application
code, you extract events from this queue using the sf::Window::pollEvent()
function (note that sf::Window is the base class of sf::RenderWindow, without the
rendering functionality). The pollEvent() function signature is a bit interesting:

bool sf::Window::pollEvent(sf::Event& event);

Now this is a bit special and might not be self-explanatory. The problem with
pollEvent() is that we want to receive two different values. We want to receive the
actual event and a value affirming that we got it from the list. If the second value is
false, we will not receive anything.

SFML uses a common approach to a polling system, which allows us to retrieve
one event instance at a time by continuously calling pollEvent() until the
function returns a false value, which means there are no more events to poll. In the
meanwhile, for every positive return value, we know that our sf::Event variable
has been filled with important event information.

That is why in all our examples up to now, we have received events in this
following fashion:

sf::Event event;
while (window.pollEvent(event))
{
 // Handle the event
}

Here we poll events from the window until its internal list becomes empty. There is a
waitEvent() function as well, that waits until it receives an event, but that is pretty
redundant for our case, so we will not dig into that.

Chapter 4

[87]

The event structure we have used so much already is built up of an enum and a union
of different event structures. As a short reminder, a union is similar to struct, with
the main difference that all the member variables occupy the same memory location.
Therefore, only one member can be actively used at a time. Applied to sf::Event, the
very nature of union grants that an event will never be two things at the same time.
Depending on the value of the sf::Event::type member variable, a different union
member is filled with useful data. When we receive an event, we first check the type of
it, and depending on it we access the specific data. We have to be careful to access the
correct union members, otherwise we risk undefined behavior.

We can group the different events to four different categories: window, joystick,
keyboard, and mouse. We will try to cover each and every one of the events, but it
will be near to impossible to go into too much detail, otherwise this chapter would be
huge. I urge you to check out SFML's documentation for more information, in case
anything is unclear on the events.

Window events
In this section, we have the window-based events which are the events that concern
windows directly. I have listed them as follows, with their intended purposes and
the conditions under which they are generated:

•	 sf::Event::Closed: This event occurs when the users somehow request
that they want the window closed. Mostly, this amounts to pressing the [X]
button in the window, or a shortcut such as Alt + F4 on Windows. This event
does not have any data associated with itself. We have already used it plenty
and your application should always handle this event.

•	 sf::Event::Resized: This event is triggered when the window is
resized. Most often this is when the user drags on the edges of the
window to manually resize it. The data type associated with this is
sf::Event::SizeEvent and can be accessed through the member
event.size. Of course, resizing the window is only possible if you have
enabled it to be resized.

•	 sf::Event::LostFocus and sf::Event::GainedFocus: These events come
from the window when it gains or loses focus. Focus here means that this
window is the one that the user has chosen right now and it will receive the
user input. No data apart from the event type is associated with these events.
These events are of interest when you want to pause the game if the user
clicks outside the window or switches to another application.

Command and Control – Input Handling

[88]

Joystick events
Now we have to cover the joystick-based events. These events are fired whenever
a connected joystick or gamepad changes its state. Every joystick event has a data
structure associated with it. A common member they all have is the ID number for
the joystick. The ID is required in order to keep track of which joystick generated
the event, since there can be more than one joystick. We have the following joystick
events that can be generated:

•	 Joysticks have buttons, for button-related events we have
the event types sf::Event::JoystickButtonPressed and
sf::Event::JoystickButtonReleased. These are triggered when a
button on the joystick is pressed or released. The data structure associated
with this is sf::Event::JoystickButtonEvent with the member event.
joystickButton. You should keep in mind that the buttons can be of a
variable amount.

•	 The sf::Event::JoystickMoved event is generated when the analog stick or
digital cross moves; it has the structure sf::Event::JoystickMoveEvent for
its data. It is accessible through the member event.joystickMove. A thing
to note here is that joysticks work in axes, so the movement is measured in an
axis as well. It is not guaranteed that the joysticks support all axes.

•	 Last we have the event of when a joystick is connected or
disconnected, allowing you to handle hot-plugging joysticks.
The event types are sf::Event::JoystickConnected and
sf::Event::JoystickDisconnected. The data type is
sf::Event::JoystickConnectEvent and is accessible
through the member event.joystickConnect.

Keyboard events
Now the defining feature of a PC, the keyboard. The keyboard generates events as
the primary input device available to computers:

•	 For the event when the user presses down a key, we have the event
type sf::Event::KeyPressed. The data structure for this event is
sf::Event::KeyEvent, which is accessed through event.key. It holds all
the data of the current state of the keyboard associated with that key press.
The member variable event.key.code contains the actual key, while other
members such as event.key.control are Booleans that state whether a
modifier is pressed. If you hold a key for a while, multiple KeyPressed
events will be triggered. This key repetition option can be deactivated using
sf::Window::setKeyRepeatEnabled().

Chapter 4

[89]

•	 The event sf::Event::KeyReleased is the counterpart to KeyPressed; it
is triggered when you release a key. To retrieve information about the key
release, you can also access the structure sf::Event::KeyEvent via event.
key—just like when a key was pressed.

•	 Last, we have a little special event that SFML creates for your convenience. It
is called sf::Event::TextEntered and is designed for receiving formatted
text from the user. Using the normal key event for this is a very tedious task,
so this event helps out a lot. The data structure is sf::Event::TextEvent
and it is accessible through event.text.

Mouse events
Last, but not the least, we have the mouse-based events. These are generated when
the state of the cursor, the mouse buttons or the mouse wheel changes:

•	 First we have the sf::Event::MouseEntered and sf::Event::
MouseLeft events. These are triggered when the mouse cursor enters or
leaves the window.

•	 Next we consider when the cursor moves inside the window. The type
for this is sf::Event::MouseMoved and its associated structure is
sf::MouseMoveEvent. You can access the data from the event.mouseMove
member. The coordinates in the data structure are measured in window
pixels and they are unaffected by scaling or any other transformation from
your window's current view. Please notice how the Y coordinate increases as
we go down. The origin of the window is always at the top-left corner and
then grows up to the size of the window:

(0,0) X

Y

Command and Control – Input Handling

[90]

•	 Then, we have the buttons of the mouse. For them we have
the sf::Event::MouseButtonPressed and
sf::Event::MouseButtonReleased types. They come associated with the
sf::Event::MouseButtonEvent structure and its data can be accessed
through the event.mouseButton member.

•	 Last is the mouse wheel on the mouse. When its state changes, it generates an
event of type sf::Event::MouseWheelMoved. Attached with this is the data
structure sf::Event::MouseWheelEvent that you can access via the member
event.mouseWheel.

Always remember, the mouse wheel doesn't have a global state.
This means that we will be notified that the mouse wheel is being
moved by some unit, but this information doesn't constitute an
actual rotation value, just an offset corresponding to the movement
we performed with the physical mouse.

Getting the input state in real time
Now, we have gone through many varieties of events. A problem with events is that
they report once when the state changes, but you cannot continuously ask them how
the state of the input devices look right now.

You can solve this by book keeping yourself, which we have done in the examples
preceding this chapter. But SFML, in an effort to make input management easier, has
implemented classes that let you access these states in real time whenever you want
from wherever you want. We will use the notion of real-time input to denote this
alternative method of handling user input.

The three classes sf::Joystick, sf::Keyboard, and sf::Mouse can provide almost
the same information that the event-based counterparts do, but with some minor
variations. They are summarized here and their difference to the events is shown;
we recommend visiting the SFML documentation for more details on them. The
three classes contain only static functions, so they are not designed to be instantiated.
Instead, you can access the real-time input state globally from any place:

•	 sf::Joystick: This class provides same tools that are similar to the
joystick-based events. They are based on ID numbers for the joystick, they
can state if a joystick is connected or disconnected or get the current input
state of the joystick. You can also ask how many buttons the joystick has and
if the joystick supports a specific axis.

Chapter 4

[91]

•	 sf::Keyboard: This is a really small class. It has one function
isKeyPressed(), you can ask if a key is pressed and it returns either true or
false. Nothing fancy.

•	 sf::Mouse: This class is a bit tricky. It behaves normally with the buttons,
the function isButtonPressed() tells you if a button is being pressed or not.
The part that differs from the events is the position. Previously, you polled
the event from a window so you always knew what window you wanted
the mouse to be relative to. Now you don't know that anymore. So if you
ask sf::Mouse::getPosition() for the mouse position, you will get the
screen coordinates. Luckily there is an overload that takes a window. It will
calculate the relative position from the provided window and the result is as
you first expected.

Now let's look at a real example where we would want to use this. Do you remember
when we had that circle that we moved by pressing keys on the keyboard? We
polled events from the window and pushed them to Game::handlePlayerInput()
and then we did the movement in Game::update():

void Game::handlePlayerInput(sf::Keyboard::Key key,
bool isPressed)
{
 if (key == sf::Keyboard::W)
 mIsMovingUp = isPressed;
 else if (key == sf::Keyboard::S)
 mIsMovingDown = isPressed;
 else if (key == sf::Keyboard::A)
 mIsMovingLeft = isPressed;
 else if (key == sf::Keyboard::D)
 mIsMovingRight = isPressed;
}

void Game::update()
{
 sf::Vector2f movement(0.f, 0.f);
 if (mIsMovingUp)
 movement.y -= 1.f;
 if (mIsMovingDown)
 movement.y += 1.f;
 if (mIsMovingLeft)
 movement.x -= 1.f;
 if (mIsMovingRight)
 movement.x += 1.f;

 mPlayer.move(movement);
}

Command and Control – Input Handling

[92]

If you look closely, you can see that we are book keeping what key has been pressed
down. But now we have got the real-time functions, so now we can minimize this
by asking sf::Keyboard if a button has been pressed down, instead of checking a
couple of Boolean values. The exact same functionality but using real-time input
instead will be significantly smaller. We do not even need the handlePlayerInput()
function anymore because everything will be handled in update() instead:

void Game::update(sf::Time elapsedTime)
{
 sf::Vector2f movement(0.f, 0.f);
 if (sf::Keyboard::isKeyPressed(sf::Keyboard::W))
 movement.y -= PlayerSpeed;
 if (sf::Keyboard::isKeyPressed(sf::Keyboard::S))
 movement.y += PlayerSpeed;
 if (sf::Keyboard::isKeyPressed(sf::Keyboard::A))
 movement.x -= PlayerSpeed;
 if (sf::Keyboard::isKeyPressed(sf::Keyboard::D))
 movement.x += PlayerSpeed;

 mPlayer.move(movement * elapsedTime.asSeconds());
}

This is all that we need now. Every frame, we query SFML if the appropriate keys
are being pressed. This removes our need of book keeping the events, making our
life much easier and our code much simpler to read and follow.

Although, even if we have this powerful tool provided to us, it is not a golden
hammer. Events are still very much needed and have their own purposes as we will
explore now.

Events and real-time input – when to
use which
It depends on the context. A rule of thumb is: if you are interested, if a state has
changed, you should use events. If you want to know the current state, then you use
the real-time functions. Here is an example:

if (sf::Mouse::isButtonPressed(sf::Mouse::Left))
 // WHILE the left mouse button is being pressed, do something
if (event.type == sf::Event::MouseButtonPressed)
 // WHEN the left mouse button has been pressed, do something

In the first if statement we do something during the time that the mouse is being
pressed down, while in the second version we only do something once after we have
pressed the button down.

Chapter 4

[93]

Delta movement from the mouse
A common thing that you want in your game is to get the delta movement of the
cursor. For the game we are making here in this book, it won't be needed but it's such
a common functionality that we should still go through what it is.

The delta movement is the difference of the cursor position between two frames; that
is, it is the distance that the cursor has traveled:

sf::Vector2i mousePosition = sf::Mouse::getPosition(mWindow);
sf::Vector2i delta = mLastMousePosition – mousePosition;
mLastMousePosition = mousePosition;

A little book keeping is needed here but nothing major. The delta vector contains the
data we need for anything relative. Now we are not making a first person shooter,
but in that scenario you would like this data in order to perform the rotation of the
camera. There are uses in 2D as well of course! Delta mouse movement can be used
for dragging the view of a map and lots more.

In some cases this naive method can become a problem eventually. What if you are
constantly moving more and more to the left? Eventually you will move outside the
window and reach the end of the screen. What then? The mouse will stop and the
delta will stay at a solid zero until you start moving back. This is no good, if we go
back to a first person shooter example, it would make the game totally unplayable.
But thanks to SFML this problem is easy to solve.

In the sf::Mouse class we have a setPosition() function pair. It works exactly the
same as the sf::Mouse::getPosition() functions, but it sets the mouse position on
the window instead of querying for it. And, you can use the basic version that sets it
in the screen coordinates or you can set it relative to your window:

sf::Vector2i windowCenter(mWindow.getSize() / 2u);
sf::Vector2i mousePosition = sf::Mouse::getPosition(mWindow);
sf::Vector2i delta = windowCenter – mousePosition;
sf::Mouse::setPosition(windowCenter, mWindow);

In this example, we reset the mouse to the center of the window, after we have
calculated the delta. And since we always know that the mouse starts from the center
of the screen, we don't have to book keep it anymore and can just use the half size of
the window.

Command and Control – Input Handling

[94]

Playing nice with your
application neighborhood
Now what we learned in the last part is indeed handy, but it has got its problem. What
if the user tabs out and tries to interact with the other applications that are running in
the background? We would be constantly forcing the mouse back to the center of our
window, making it impossible to do anything else than playing our game.

Believe it or not, this is actually very annoying for a lot of people, including
ourselves. When we are debugging our application, this behavior will make it
impossible to work with the IDE in the background. We have to detect when the user
doesn't want to interact with us anymore and behave properly.

This is where events come in again. If you remember, we had the event types
sf::Event::GainedFocus and sf::Event::LostFocus that notify the application
as soon as the window gains or loses focus:

void Game::processEvents()
{
 sf::Event event;
 while(mWindow.pollEvent(event))
 {
 if (event.type == sf::Event::GainedFocus)
 mIsPaused = false;
 else if (event.type == sf::Event::LostFocus)
 mIsPaused = true;
 }
}

void Game::run()
{
 while (mWindow.isOpen())
 {
 if (!mIsPaused)
 update();

 render();
 processEvents();
 }
}

In this example, we keep track of the focus of our application. We toggle a Boolean
value depending on the focus that tells us if the game should be paused or not. Then,
how do we prevent the game from changing if we are paused? That is simple with
our current architecture; we just branch out the update call to only be called if the
game is not paused. That way the game will keep rendering, registering events, and
be responsive to the user and the OS. But it won't change its state over time.

Chapter 4

[95]

A command-based communication
system
Up to now, you have seen how events and real-time inputs are handled. In our
game, we might handle them as follows (the aircraft methods are fictional to show
the principle):

// One-time events
sf::Event event;
while (window.pollEvent(event))
{
 if (event.type == sf::Event::KeyPressed
 && event.key.code == sf::Keyboard::X)
 mPlayerAircraft->launchMissile();
}

// Real-time input
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left))
 mPlayerAircraft->moveLeft();
else if (sf::Keyboard::isKeyPressed(sf::Keyboard::Right))
 mPlayerAircraft->moveRight();

There are several problems with this approach. On one side, we have hardcoded
keys, so a user cannot choose WASD instead of arrow keys for movement. On the
other side, we gather input and logic code in one place. The game logic code grows
as we implement more features, and makes the originally simple code complicated.

For example, imagine that we want to keep the airplane inside the screen bounds. So
we could only move the airplanes to the left if it is currently inside the screen, which
can be verified using an if condition. In case of the missiles, we want to check whether
enough ammunition is available before firing, leading to another if statement. Maybe,
we want to limit the fire interval, so that the player must wait at least one second
between two launched missiles. For this, we need a timer and further logic, and we
already have plenty of game-logic code mixed with the input-handling code. Sure, we
could outsource the code into functions, but there is still a problem.

Sometimes, we do not know whom to affect when the user input occurs. Imagine
a guided missile which is steered by the player. The missile itself may be stored
somewhere in the depths of the world's scene graph, we do not have access to it at
the time we handle input. To gain access, a pointer would have to be passed from the
scene graph via the World to the Game class. The same thoughts apply to many other
entities in the game, eventually we would duplicate the information about the world
at the place where input is handled.

Command and Control – Input Handling

[96]

This is of course not what we want. Instead, we aim to separate input handling
and game logics. A possible approach to achieve this goal is discussed in the
following sections.

Introducing commands
Here after, commands denote messages that are sent to various game objects.
A command is able to alter the object and to issue orders such as moving an entity,
firing a weapon, and triggering an explosion.

We design a structure Command that contains a function object, which can be called
on any game object represented by a scene node:

struct Command
{
 std::function<void(SceneNode&, sf::Time)> action;
};

std::function is a C++11 class template to implements
callback mechanisms. It treats functions as objects and makes
it possible to copy functions or to store them in containers. The
std::function class is compatible with function pointers,
member function pointers, functors, and lambda expressions.
The template parameter represents the signature of the function
being stored.

The following example shows std::function in action. First, we assign a function
pointer to it, then we assign a lambda expression:

int add(int a, int b) { return a + b };
std::function<int(int, int)> adder1 = &add;
std::function<int(int, int)> adder2
 = [] (int a, int b) { return a + b; };

The std::function object can be called using its overloaded operator():

int sum = adder1(3, 5); // same as add(3, 5)

Using the standard function template std::bind(), the
function arguments can be bound to the given values. The
std::bind() function returns a new function object that can
be stored inside std::function.

Chapter 4

[97]

In the earlier example, we can fix the second argument to 1 and thus have a new
function that takes only one argument. The placeholder _1 expresses that the first
argument is forwarded, while the second argument is bound to the constant 1:

std::function<int(int)> increaser = std::bind(&add, _1, 1);
int increased = increaser(5); // same as add(5, 1)

For more detailed information, consult a standard library documentation such as
www.cppreference.com. Coming back to our game, the Command structure's member
variable action contains the function that implements the order issued to an object.
The first parameter is a reference to a scene node, which is affected by the command.
The second parameter denotes the delta time of the current frame. For example, we
can instantiate a command as follows:

void moveLeft(SceneNode& node, sf::Time dt)
{
 node.move(-30.f * dt.asSeconds(), 0.f);
}

Command c;
c.action = &moveLeft;

Using the lambda expressions, the equivalent functionality can be written as follows:

c.action = [] (SceneNode& node, sf::Time dt)
{
 node.move(-30.f * dt.asSeconds(), 0.f);
};

In short, we can now define any operation on a scene node inside a Command object.
The advantage of a command over a direct function call is abstraction: We do not
need to know on which scene node to invoke the function; we only specify the action
that is performed on it. The message passing system is responsible to deliver the
commands to the correct recipients.

Command and Control – Input Handling

[98]

Receiver categories
In order to ensure the correct delivery, we divide our game objects into different
categories. Each category is a group of one or multiple game objects, which are likely
to receive similar commands. For example, the player's aircraft is an own category,
the enemies are one, the projectiles launched by the enemies are one, and so on.

We define an enum to refer to the different categories. Each category except None is
initialized with an integer that has one bit set to 1, and the rest are set to 0:

namespace Category
{
 enum Type
 {
 None = 0,
 Scene = 1 << 0,
 PlayerAircraft = 1 << 1,
 AlliedAircraft = 1 << 2,
 EnemyAircraft = 1 << 3,
 };
}

This makes it possible to combine different categories with the bitwise OR operator.
When we want to send a command to all available airplanes, we can create a
combined category as follows:

unsigned int anyAircraft = Category::PlayerAircraft
 | Category::AlliedAircraft
 | Category::EnemyAircraft;

The SceneNode class gets a new virtual method that returns the category of the game
object. In the base class, we return Category::Scene by default:

unsigned int SceneNode::getCategory() const
{
 return Category::Scene;
}

Chapter 4

[99]

In a derived class, we can override getCategory() to return a specific category. For
example, we can say that an aircraft belongs to the player if it is of type Eagle, and
that it is an enemy otherwise:

unsigned int Aircraft::getCategory() const
{
 switch (mType)
 {
 case Eagle:
 return Category::PlayerAircraft;

 default:
 return Category::EnemyAircraft;
 }
}

Of course, this is just a simple demonstration of how categories work. You can
implement a much more complex logic to determine a game object's category. An
object may also be part of multiple categories, where operator| is used to combine
categories. This is the reason why the return type of getCategory() is unsigned
int and not Category::Type.

In our game, categories are stored as unsigned int variables. This implies a small
issue that you should be aware of: Integer flags are not type-safe. Meaningless
numbers can be assigned to category variables, not only enumerators in the
Category namespace. A bigger problem is however the confusion between different
enum types:

Command command;
command.category = Aircraft::Eagle; // only Eagles receive command

Accidentally, the enums Category::Type and Aircraft::Type were mistaken,
but the code still compiles, leading to nasty bugs. Type safety could be achieved by
overloading bitwise operators for the enum, a dedicated class template Flags<Enum>
could store flag combinations.

Getting back to commands, we give our Command class another member variable that
stores the recipients of the command in a category:

struct Command
{ Command();

 std::function<void(SceneNode&, sf::Time)> action;
 unsigned int category;
};

Command and Control – Input Handling

[100]

The default constructor initializes the category to Category::None. By assigning a
different value to it, we can specify exactly who receives the command. If we want a
command to be executed for all airplanes except the player's one, the category can be
set accordingly:

Command command;
command.action = ...;
command.category = Category::AlliedAircraft
 | Category::EnemyAircraft;

Command execution
We have discussed how to construct commands with a function and a receiver
category. In order to execute them, the function must be invoked on the receivers.

In our world, commands are passed to the scene graph, inside which they are
distributed to all scene nodes with the corresponding game objects. Each scene node
is responsible for forwarding a command to its children.

We write a non-virtual method SceneNode::onCommand() which is called every
time a command is passed to the scene graph. First, we check if the current scene
node is a receiver of the command, that is, if it is listed in the command's receiver
category. The check is performed using the bitwise AND operator. If a bit is set in both
the command's and the current node's category, then we know that the node receives
the command. In this case, we can execute the command by invoking the action
member of type std::function on the current node, and with the current frame
time. The second part of onCommand() forwards the command to all the child nodes:

void SceneNode::onCommand(const Command& command, sf::Time dt)
{
 if (command.category & getCategory())
 command.action(*this, dt);

 FOREACH(Ptr& child, mChildren)
 child->onCommand(command, dt);
}

Chapter 4

[101]

Command queues
Now that the interface to distribute a command inside the scene graph is ready,
we need a way to transport commands to the world and the scene graph. For this
purpose, we write a new class CommandQueue. This class is a very thin wrapper
around a queue of commands. A queue is a FIFO (first in, first out) data structure
that ensures that elements, which are inserted first, are also removed first. Only the
front element can be accessed. The standard library already provides the container
adapter std::queue, which implements a queue interface on top of a full-featured
STL container such as std::deque.

Our class looks similar to the following:

class CommandQueue
{
 public:
 void push(const Command& command);
 Command pop();
 bool isEmpty() const;

 private:
 std::queue<Command> mQueue;
};

It only provides three methods, which directly forward their calls to the underlying
std::queue. Their definitions are straightforward, and hence they are omitted here.

The World class holds an instance of CommandQueue. In the World::update()
function, all commands that have been triggered since the last frame are forwarded
to the scene graph:

void World::update(sf::Time dt)
{
 ...

 // Forward commands to the scene graph
 while (!mCommandQueue.isEmpty())
 mSceneGraph.onCommand(mCommandQueue.pop(), dt);

 // Regular update step
 mSceneGraph.update(dt);
}

Command and Control – Input Handling

[102]

As explained earlier, SceneNode::onCommand() distributes a command across all
scene nodes. We also provide a getter function to access the command queue from
outside the world:

CommandQueue& World::getCommandQueue()
{
 return mCommandQueue;
}

Handling player input
Since this chapter is about input, it would be interesting to see how the commands
can be exploited to react to the SFML events and real-time input. Up to now, player
input has been handled in the Game class. But it deserves an own class, we call it
Player.

The Player class contains two methods to react to the SFML events and real-time
input, respectively:

class Player
{
 public:
 void handleEvent(const sf::Event& event,
 CommandQueue& commands);
 void handleRealtimeInput(CommandQueue& commands);
};

These methods are invoked from the Game class, inside the processInput() member
function. Only the sf::Event::Closed event is still handled inside Game, all other
events are delegated to the Player class:

void Game::processInput()
{
 CommandQueue& commands = mWorld.getCommandQueue();

 sf::Event event;
 while (mWindow.pollEvent(event))
 {
 mPlayer.handleEvent(event, commands);

 if (event.type == sf::Event::Closed)
 mWindow.close();
 }

 mPlayer.handleRealtimeInput(commands);
}

Chapter 4

[103]

Now let's see how input is handled inside the Player class. We treat the example
of the arrow keys and real-time input with sf::Keyboard. What we want to do is
change the aircraft's velocity if an arrow key is pressed. For our command, we need
an action function, we design it as a function object (functor) similar to the following:

struct AircraftMover
{
 AircraftMover(float vx, float vy)
 : velocity(vx, vy)
 {
 }

 void operator() (SceneNode& node, sf::Time) const
 {
 Aircraft& aircraft = static_cast<Aircraft&>(node);
 aircraft.accelerate(velocity);
 }

 sf::Vector2f velocity;
};

When the functor is invoked, operator() is called, which adds (vx, vy) to the
current aircraft velocity. aircraft.accelerate(velocity) is a utility function
that acts equivalently to aircraft.setVelocity(aircraft.getVelocity() +
velocity). In other words, the variable velocity is added to the aircraft's current
velocity. The downcast is required because the command stores a function which is
invoked on SceneNode&, but we need Aircraft&. It is safe as long as we guarantee
with the receiver category that only correct types receive the command. We can now
construct a command as follows:

Command moveLeft;
moveLeft.category = Category::PlayerAircraft;
moveLeft.action = AircraftMover(-playerSpeed, 0.f);

Command and Control – Input Handling

[104]

Since we often work on entities that are classes derived from SceneNode, the constant
need for downcasts is annoying. It would be much more user friendly if we could
directly create a function with the signature void(Aircraft& aircraft, sf::Time
dt) instead. This is possible, if we provide a small adapter derivedAction() that
takes a function on a derived class such as Aircraft and converts it to a function on
the SceneNode base class. We create a lambda expression, inside which we invoke
the original function fn on the derived class, passing a downcast argument to it. An
additional assertion checks in the debug mode that the conversion is safe, which
is extremely helpful to avoid bugs. The lambda expression uses a [=] capture list,
meaning that variables referenced from its body (such as the variable fn) are copied
from the surrounding scope:

template <typename GameObject, typename Function>
std::function<void(SceneNode&, sf::Time)>
 derivedAction(Function fn)
{
 return [=] (SceneNode& node, sf::Time dt)
 {
 // Check if cast is safe
 assert(dynamic_cast<GameObject*>(&node) != nullptr);

 // Downcast node and invoke function on it
 fn(static_cast<GameObject&>(node), dt);
 };
}

Given this adapter, we can change our AircraftMover to take Aircraft& instead of
SceneNode&:

struct AircraftMover
{
 ...

 void operator() (Aircraft& aircraft, sf::Time) const
 {
 aircraft.accelerate(velocity);
 }
};

A command would then be constructed as follows:

Command moveLeft;
moveLeft.category = Category::PlayerAircraft;
moveLeft.action
 = derivedAction<Aircraft>(AircraftMover(-playerSpeed, 0));

Chapter 4

[105]

To be honest, our adapter does not have the simplest implementation, but it should
be worth the advantage that after writing it once, we can create actions in a much
cleaner way, without the need to downcast again and again.

Let's get back to the interesting part. Let's finally define
Player::handleRealtimeInput(), which creates a command every frame an arrow
key is held down:

void Player::handleRealtimeInput(CommandQueue& commands)
{
 const float playerSpeed = 30.f;

 if (sf::Keyboard::isKeyPressed(sf::Keyboard::Up))
 {
 Command moveLeft;
 moveLeft.category = Category::PlayerAircraft;
 moveLeft.action = derivedAction<Aircraft>(
 AircraftMover(-playerSpeed, 0.f));
 commands.push(moveLeft);
 }
}

For one-time events, the handling is quite similar. As a simple example, we write a
lambda expression that outputs the position of the player's aircraft every time the
user presses the P key:

void Player::handleEvent(const sf::Event& event,
 CommandQueue& commands)
{
 if (event.type == sf::Event::KeyPressed
 && event.key.code == sf::Keyboard::P)
 {
 Command output;
 output.category = Category::PlayerAircraft;
 output.action = [] (SceneNode& s, sf::Time)
 {
 std::cout << s.getPosition().x << ","
 << s.getPosition().y << "\n";
 };
 commands.push(output);
 }
}

Command and Control – Input Handling

[106]

Simple, isn't it? Once you have understood the concepts of functions and lambda
expressions, you can quickly build complex functionalities. Note that you don't have
to use lambda expressions, you can still stick to functors such as AircraftMover. But
in some situations, lambdas allow you to express semantics far more compactly.

Now that was it, our command system is complete!

Commands in a nutshell
We have discussed many components in our command-based system; easy for
someone to get lost. The following diagram should give you an overview about
the whole functionality. Basically, the system is split into an input handling and
a game logic side. SFML events are polled in Game and forwarded to Player, which
transforms the events to commands and feeds CommandQueue with them. The same
process is followed for the real-time input, Player checks the current input state
and pushes corresponding commands to the queue. The CommandQueue class stores
a queue of commands and acts as the bridge between input handling and game
logic. On the game logic side, the World class pops commands from the
CommandQueue class and sends them to the root of the scene graph, inside which
the commands are distributed depending on their receiver categories. Eventually,
the functions stored in each command are applied to the correct game objects.
The following diagram gives an overview of the command system and the way it
is integrated into our game architecture:

Player

Ev
en

t

R
ea

l-t
im

e
in

pu
t

Game

Command
CommandQueue World

Scene graph

Input handling Game logic

Command Command

Chapter 4

[107]

Implementing the game logic
You certainly remember the basic example of the aircraft floating from left to right
and back from Chapter 3, Forge of the Gods – Shaping Our World. As we now use player
input, we do not need that code any more. However, we write some new code; for
example we want to ensure that the player's plane remains inside the view, now that
it can move freely.

All this is done in the function World::update(). In the following paragraphs,
we advance through it step by step, explaining each piece of code. We begin with
scrolling the view and setting the player's velocity to zero. Note that we really use
zero, not the scrolling speed, so that the player falls behind relative to the moving
view. The scrolling speed is addressed later in this function:

void World::update(sf::Time dt)
{
 mWorldView.move(0.f, mScrollSpeed * dt.asSeconds());
 mPlayerAircraft->setVelocity(0.f, 0.f);

Next, all commands from the queue are forwarded to the scene graph. This makes
our plane react to the user input. When an arrow key is held down, the plane's
velocity will be changed:

 while (!mCommandQueue.isEmpty())
 mSceneGraph.onCommand(mCommandQueue.pop(), dt);

Now, the basic velocity has been set. If right and top arrow keys are both held down,
the plane will fly diagonally to the upper-right corner, but the velocity will be faster
than the velocity when either the right or top key is pressed. To correct diagonal
velocities, we divide the velocity by the square root of two. We also add the scroll
speed. Now it is evident why we have not done this before; we could not have
checked for diagonal movements if the velocity had not been zero:

 sf::Vector2f velocity = mPlayerAircraft->getVelocity();

 if (velocity.x != 0.f && velocity.y != 0.f)
 mPlayerAircraft->setVelocity(velocity / std::sqrt(2.f));

 mPlayerAircraft->accelerate(0.f, mScrollSpeed);

In the next step, the regular update step of the scene is performed:

 mSceneGraph.update(dt);

Command and Control – Input Handling

[108]

The only thing left to do is to handle the case where the plane leaves the visible area
of the screen. First, we compute the rectangle of the current view, and then we keep
all X and Y coordinates inside the boundaries, given some distance to the screen's
border. Last, we call Aircraft::setPosition() to apply the corrected position:

 sf::FloatRect viewBounds(
 mWorldView.getCenter() - mWorldView.getSize() / 2.f,
 mWorldView.getSize());
 const float borderDistance = 40.f;

 sf::Vector2f position = mPlayerAircraft->getPosition();
 position.x = std::max(position.x,
 viewBounds.left + borderDistance);
 position.x = std::min(position.x,
 viewBounds.left + viewBounds.width - borderDistance);
 position.y = std::max(position.y,
 viewBounds.top + borderDistance);
 position.y = std::min(position.y,
 viewBounds.top + viewBounds.height - borderDistance);
 mPlayerAircraft->setPosition(position);
}

A general-purpose communication
mechanism
What you have seen in the previous sections are commands—how they are used for
input. Note that during the design process of our message-passing system, we have
paid attention to encapsulate input handling and to make the other components
generic and reusable. Only the Player class is directly coupled to the input; the
classes Command and CommandQueue can deal with any functions that affect scene
nodes for a given amount of time.

This genericity will be a great advantage, as it makes it possible to use our
command system for other sources of control, like the network or artificial
intelligence. We can even use the command system for in-game events, to
notify entities about happenings in the world. All we need to do is to set up the
corresponding command, push it to the queue, and it will be automatically
delivered to the related scene nodes.

Chapter 4

[109]

Customizing key bindings
A big part with input management in a game is allowing the user to customize how
he interacts with it, like the keys. Most of the time, you can find the most popular key
bindings and see them written directly in the code. But there will always be people
that want to do stuff their way.

We have to provide tools in order to dynamically bind the keys to specific actions.
With the command queue introduced in the previous sections, this becomes a much
easier task to accomplish.

With the command queue, we already define specific actions for a specific key. The
difference is that right now, we have it hardcoded as follows:

if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left))
 commands.push(moveLeft);
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Right))
 commands.push(moveRight);

The problem with this code is that it is very inflexible. We have to change a lot in
order to allow any key to respond to any action. We have two clearly separate sets
of data that we want to link together. We have the actual action that we want to
perform, such as moving left or right. Then, we have the input key, the key that is to
trigger the action.

Now the keys in sf::Keyboard are just part of an enum. So on top of this, we
create an enum in our Player class that represents the different kinds of actions we
associate with the pressed keys:

class Player
{
 public:
 enum Action
 {
 MoveLeft,
 MoveRight,
 ...
 };

 void assignKey(Action action,
 sf::Keyboard::Key key);
 sf::Keyboard::Key getAssignedKey(Action action) const;
 ...

Command and Control – Input Handling

[110]

 private:
 static bool isRealtimeAction(Action action);

 private:
 std::map<sf::Keyboard::Key, Action> mKeyBinding;
 std::map<Action, Command> mActionBinding;
};

Here, we have divided the input into two abstractions. We have the key binding to a
specific action, and we have the binding of an action to a specific command. This is
all we need to remove any hardcoded segments of input.

Next step is actually using this to translate an input to a command, which will
essentially be our key bindings. We do this best by iterating through our key
bindings map and just performing a simple check if the key is being pressed. If it is,
we tell the command queue to insert our command we provide it with. The function
Player::isRealtimeAction() returns if the specified action is triggered by the
real-time input (as opposed to events).

void Player::handleRealtimeInput(CommandQueue& commands)
{
 FOREACH(auto pair, mKeyBinding)
 {
 if (sf::Keyboard::isKeyPressed(pair.first)
 && isRealtimeAction(pair.second))
 commands.push(mActionBinding[pair.second]);
 }
}

Just remember that this function has to be called once every frame, otherwise
nothing will happen.

The two functions assignKey() and getAssignedKey() set and get the key
mapped to a specific action. Their implementations perform map operations as
expected, the only notable thing is that assignKey() checks that no two keys map
to the same action.

The command stored under an action in mActionBinding knows exactly what it
is supposed to do, so you don't have to provide any extra code to handle the key
press, since it has been abstracted out into its own entity. You have already done this
previously in the chapter. The difference now is that we store the commands in the
map together instead of unique variables.

Chapter 4

[111]

The following is the constructor, where we set the default settings that you expect
and prepare everything to work:

Player::Player()
{
 mKeyBinding[sf::Keyboard::Left] = MoveLeft;
 mKeyBinding[sf::Keyboard::Right] = MoveRight;

 mActionBinding[MoveLeft].action =
 [] (SceneNode& node, sf::Time dt)
 {
 node.move(-playerSpeed * dt.asSeconds(), 0.f);
 };

 mActionBinding[MoveRight].action =
 [] (SceneNode& node, sf::Time dt)
 {
 node.move(playerSpeed * dt.asSeconds(), 0.f);
 };

 FOREACH(auto& pair, mActionBinding)
 pair.second.category = Category::PlayerAircraft;
}

We assign the actions to the keys and achieve our initial key binding. After that we
create the commands and implement the lambda function to be executed. The last
iteration is just to ensure that the commands are only applied on the player aircraft.
It should all look familiar.
Now this itself is not really dynamic. All we have provided is the possibility to make
it dynamic. We don't have a setting screen where you can manipulate the bindings or
a way to parse the data from a config file. We will actually create a settings screen
later in the book in the GUI chapter. This would have been a way too big topic to
cover in this chapter as well.

Why a player is not an entity
Well, the Player class can very much be considered as an entity, but in our case it is
just a controller of entities. The class represents the player's input in the world of the
game. In our gameplay, this entails only to manipulating a node in our scene graph.

Take this with a grain of salt. This is something that people do differently, we
could have created a player entity and a player controller or have everything in
the player entity.

Our opinion while writing was that this is a much cleaner way to do it and gives a
nice separation of the external input signals from the player and the game logic. We
felt much more comfortable working like this, instead of potentially having a giant
blob inside the hierarchy of entities.

Command and Control – Input Handling

[112]

Summary
Reading through this chapter, you learned a whole new mechanism to handle input
and deliver it correctly to the game's entities. It may not be the simplest concept you
will come across, but it certainly pays off later, when you see it under heavier action.
Not only have we played with event delivering systems, but we also paid a lot of
attention on how to capture input and handle every detail about it. This is essential
for every game, after all, who would like to play a game that plays itself?

After having a basic world scene with robust behaviors and features, it is now
time to start looking at other phases of a game's development. In other words, the
next chapter will cover mechanisms which are not directly related to the game's
mechanics and systems, but that instead allow a coherent flow between multiple
parts of a game, such as the pause and main menu, the game itself and others that
you will encounter. Therefore, expect a lot of interesting information on handling
this kind of management that you see in games so often.

Diverting the Game
Flow – State Stack

In the earlier chapters of this book, you have learned how to make an efficient
program structure for a game, modern game loops, and data structures to contain a
world with rich graphics. You also learned how to deal with user input, making it an
interactive simulation. With the combination of all those pieces of knowledge, we can
already make an interesting game experience. However, a game is usually more than
that. A full blown product doesn't just open and let you play without an explanation,
a menu, or a title screen. That is what is going to be covered in this chapter, the
ability to make the game richer by adding different states and screens to it.

The main bits of knowledge to acquire throughout the chapter are as follows:

•	 The state and the stack
•	 Navigating between states
•	 Moving our game into a state
•	 The title screen as the entry point of the game
•	 Our old friend, the main menu
•	 Implementing an overlay pause screen
•	 A simple example of a concurrent loading state

Defining a state
While it is a bit difficult to define correctly what a state actually is, and because that
also depends on the implementation we choose to go with, we will try to pass our
own idea of what states are and how they should behave.

Diverting the Game Flow – State Stack

[114]

We can look at a state as an independent screen in the gaming software, an object
that encapsulates the logic and graphics of a determined group of functionality
and information.

Nothing stops us from creating a state that behaves in any way we'd like; however,
there are some usual guidelines into what belongs to the same state. Let's try to
prove this shallowly by looking at the commercial games of our time. We will
often see most games showing introduction videos, from the trailer of the game to
company brand logos. We can look at each of these screens as states. In fact, having a
VideoState that would simply playback a video and proceed to the next state would
fit this model perfectly!

Then, we usually see a title screen, which is all about fancy artwork and minor
information. That would be another state. Usually, by pressing a key, we would
enter into the main menu, which itself is another effective state. If we look closely at
any game, we can more or less define what belongs to each state, and that is the exact
point so you can understand the concept better. There are countless ways you can
separate your game into multiple states, but practicing always makes you achieve
cleaner and more efficient designs!

Using such a system is of extreme importance. The combination of all these screens
working together as one final product always makes a game feel more professional
and rich in features.

However, not all the states are the same. While some states take over the whole
screen and are running individually, others will work together, in parallel, rendering
to the same screen, to achieve a variety of effects such as the very common pause
screen, which still shows the game in background without motion.

To manage states efficiently and in an easy way, we create the stack!

The state stack
One way to visualize the flow of the game screens would be to picture a finite state
machine of all the screens and how they trigger each other's appearance. However,
while that works and is logically accurate, we broaden the concept of the active state
into a stack.

Chapter 5

[115]

Finite State Machine (FSM): While this is a well known concept
across the world of computation, we will shortly describe the state
machine as a collection of states that ensures that only one state is
active at any given time. The transition of the current state into a
new one is always triggered by a condition or a timer. So, for any
state of the FSM, there will be a determined set of triggers that will
activate new states when appropriate.

Now, turning the active state into a stack essentially means that the current state
is not an individual piece anymore, but rather a stacked group of pieces, when
necessary. Usually, the state mechanism will only have one state active at a time,
and while this is true, we effectively have a finite state machine as it is known by the
computer science community. In other situations, however, such as the infamous
pause screen, we will break the concept of FSM a little and have states on top of
states, representing the active state all together.

As you can see in the following figure, a usual game flow can be represented
like this:

Begin Title Screen Pause Screen

Game Screen

Main Menu Screen

End

Diverting the Game Flow – State Stack

[116]

To manage all these screens and transitions, we create the StateStack class:

class StateStack : private sf::NonCopyable
{
 public:
 enum Action
 {
 Push,
 Pop,
 Clear,
 };

 public:
 explicit StateStack(State::Context context);

 template <typename T>
 void registerState(States::ID stateID);

 void update(sf::Time dt);
 void draw();
 void handleEvent(const sf::Event& event);

 void pushState(States::ID stateID);
 void popState();
 void clearStates();

 bool isEmpty() const;

 private:
 State::Ptr createState(States::ID stateID);
 void applyPendingChanges();

 private:
 struct PendingChange
 {
 ...
 Action action;
 States::ID stateID;
 };

 private:
 std::vector<State::Ptr> mStack;
 std::vector<PendingChange> mPendingList;
 State::Context mContext;
 std::map<States::ID,
 std::function<State::Ptr()>> mFactories;
};

Chapter 5

[117]

We also create the so called State class:

class State
{
 public:
 typedef std::unique_ptr<State> Ptr;
 struct Context { ... };

 public:
 State(StateStack& stack, Context context);
 virtual ~State();

 virtual void draw() = 0;
 virtual bool update(sf::Time dt) = 0;
 virtual bool handleEvent(const sf::Event& event) = 0;

 protected:
 void requestStackPush(States::ID stateID);
 void requestStackPop();
 void requestStateClear();

 Context getContext() const;

 private:
 StateStack* mStack;
 Context mContext;
};

Adding states to StateStack
All states in the game have a unique identifier declared in an enum States, located
in the StateIdentifiers.hpp file. For example, ID States::Game refers to the
GameState class.

Initially, we register inside the stack all the states we may use. We do not create all
the state objects from the beginning, since some of them may never exist, therefore
we avoid loading resources of never-used states. Instead, we have factory functions
that create a new state on-demand, represented by std::function. The member
variable StateStack::mFactories maps state IDs to those factory functions.

Diverting the Game Flow – State Stack

[118]

A member function StateStack::registerState() inserts such mappings. The
template parameter T is the derived state class we want to register. A lambda
expression acts as a factory for the state: It creates an object of the derived class T by
passing the stack and context to its constructor. This object is wrapped into a unique
pointer and returned as a base class pointer. The lambda expression is assigned to
the corresponding state ID in the map:

template <typename T>
void StateStack::registerState(States::ID stateID)
{
 mFactories[stateID] = [this] ()
 {
 return State::Ptr(new T(*this, mContext));
 };
}

This approach has the advantage that the StateStack class need not know the
concrete state classes, we thus keep dependencies low. For state classes that take
more than two parameters, we can write an overload to pass an additional argument
(which will be done in later chapters). If your compiler supports variadic templates,
a single function template will handle all these cases.

The createState() method takes an ID of a state, and returns a smart pointer to a
newly created object of the corresponding state class. It does so by looking up the
ID in the map and invoking the stored std::function factory, which returns the
std::unique_ptr to the State base class:

State::Ptr StateStack::createState(States::ID stateID)
{
 auto found = mFactories.find(stateID);
 assert(found != mFactories.end());

 return found->second();
}

Handling updates, input, and drawing
Until this point, we taught the concept of the stack and the states it holds. Now it is
time to feed our StateStack and consequently our active State objects with events,
update, and drawing orders.

Chapter 5

[119]

Input
Every polled event is fed to the state stack. Then, internally, the stack will deliver
that event to the active states:

void StateStack::handleEvent(const sf::Event& event)
{
 for (auto itr = mStack.rbegin(); itr != mStack.rend(); ++itr)
 {
 if (!(*itr)->handleEvent(event))
 return;
 }

 applyPendingChanges();
}

In this for loop, you can verify that we iterate the active stack from the end to the
beginning, in other words, from the highest state to the lowest. And, if any of the
states returns false in its handleEvent() method, the loop is immediately ended.
This gives the control to the states that may not want to let input flow to other states
than itself!

Update
The updating happens under the same guidelines of event handling, both the
delivery order and the stopping of update propagation to lower states, if desired.

Draw
Drawing is straightforward; the StateStack class will order every active state to
render itself.

The first state to be drawn is the lowest and oldest on the stack, and only then come
the others, in order. This grants that the states are transparent, and you will be able
to see the underlying screens. Anyway, if you don't desire to see pixels from the
lower states, you can use sf::RectangleShape to draw a colored rectangle over the
whole screen, blocking the undesired graphics, as you will see later in this chapter.

Diverting the Game Flow – State Stack

[120]

Delayed pop/push operations
As you can see in the source, the StateStack class provides the pushState()
and popState() functions to let us add and remove states from the active stack.

However, in the middle of an event or update iteration by the stack, it is not possible
to alter the active state stack because it would generate a conflict when adding/
removing objects to a container that is being iterated.

Because of this, those functions don't immediately push or pop states into the stack,
but rather register these actions in a pending action list, so they can be processed
later, when it's safe.

Then, inside your own state logic code, you call requestStackPush() and
requestStackPop(), allowing the states to alter the stack from within their own
code, without risking the safety of the program, thanks to the delayed processing of
push and pop operations.

A special kind of pop operation is also provided, allowing a state to call
requestStackClear(), which will completely empty the active stack.

These delayed processing operations are done in the following function:

void StateStack::applyPendingChanges()
{
 FOREACH(PendingChange change, mPendingList)
 {
 switch (change.action)
 {
 case Push:
 mStack.push_back(createState(change.stateID));
 break;

 case Pop:
 mStack.pop_back();
 break;

 case Clear:
 mStack.clear();
 break;
 }
 }

 mPendingList.clear();
}

Chapter 5

[121]

The state context
In general, every screen will need to display some text or sprites, draw to the screen,
among other common things. Due to this fact, and to avoid unnecessary memory
wasting by loading the same texture or font to memory in multiple places, we
introduced the State::Context structure. It works as a holder of shared objects
between all states of our game.

Essentially, every state will now have access to the getContext() method, which
itself contains the pointer to the window used to draw its objects and resource
holders such as font and texture managers. Here's the declaration of the structure:

struct Context
{
 Context(sf::RenderWindow& window,
 TextureHolder& textures,
 FontHolder& fonts,
 Player& player);

 sf::RenderWindow* window;
 TextureHolder* textures;
 FontHolder* fonts;
 Player* player;
};

The usefulness of the state context is undeniable. It will save system memory by
reusing the same fonts and textures for every state. It will also provide access to the
window's view at all times, which is a necessity when positioning and resizing our
objects relatively to the view's dimensions.

Integrating the stack in the
Application class
Since we have now more states than the game itself, we create a new class
Application that controls input, logic updates, and rendering. Having a ready
StateStack implementation waiting to be used, it is time to promote it into the
Application class. We will plug our new state architecture into our Application
class and then start using it!

Diverting the Game Flow – State Stack

[122]

First, we add the mStateStack member variable to Application. We register all the
states in an own method:

void Application::registerStates()
{
 mStateStack.registerState<TitleState>(States::Title);
 mStateStack.registerState<MenuState>(States::Menu);
 mStateStack.registerState<GameState>(States::Game);
 mStateStack.registerState<PauseState>(States::Pause);
}

Now there are a few more things we must care about for a full integration of our
state architecture:

•	 Feeding it with events in the Application::processInput() function:
while (mWindow.pollEvent(event))
{
 mStateStack.handleEvent(event);
}

•	 Updating with the elapsed time:
void Application::update(sf::Time dt)
{
 mStateStack.update(dt);
}

•	 Rendering of the stack, in the middle of the frame draw:
mStateStack.draw();

•	 Closing the game when no more states are left:
if (mStateStack.isEmpty())
 mWindow.close();

And now that everything is plugged in and ready to go, in the end of our constructor
we make the machine start with the title screen!

mStateStack.pushState(States::Title);

Chapter 5

[123]

Navigating between states
So far we have our state machine in place and running smoothly, the title screen
starts up the program, but how to make the title screen call another state to its place
when someone hits a key?

That is exactly what the StateStack class's delayed push and pop mechanism is for.
Inside a state handleEvent() and update(), you are given three methods to control
the execution and transitions of states: requestStackPush(), requestStackPop(),
and requestStackClear().

It is appropriate to use these methods to request new states to be pushed, or to show
and replace the current one, as you will verify that our example states do throughout
this chapter.

Creating the game state
So far we have covered the theory and practice for inserting the state stack into our
sample game. It is fully functional but yet empty, so, it is finally time to create our
first state, the game state.

For this, we create a class named GameState and we proceed to relocate the code
that could be found in the Game class related to the actual aircraft gameplay to its
new home:

class GameState : public State
{
 public:
 GameState(StateStack& stack,
 Context context);

 virtual void draw();
 virtual bool update(sf::Time dt);
 virtual bool handleEvent(const sf::Event& event);

 private:
 World mWorld;
 Player& mPlayer;
};

Diverting the Game Flow – State Stack

[124]

The title screen
Because a good place to start is always the beginning, we are about to create the title
screen; that initial screen you sometimes see in games. Before you enter the main
menu of the game, it asks you to press any key.

We decided to go with the name TitleState, and define it as follows:

class TitleState : public State
{
 public:
 TitleState(StateStack& stack,
 Context context);

 virtual void draw();
 virtual bool update(sf::Time dt);
 virtual bool handleEvent(const sf::Event& event);

 private:
 sf::Sprite mBackgroundSprite;
 sf::Text mText;

 bool mShowText;
 sf::Time mTextEffectTime;
};

Our implementation of this screen is not very different from what you are used to
see. It shows a background with a little information about the game, besides its title
and then blinks a big old Press any key to continue message.

Here's how we detect the key stroke and use our state system to trigger a new state:

bool TitleState::handleEvent(const sf::Event& event)
{
 if (event.type == sf::Event::KeyPressed)
 {
 requestStackPop();
 requestStackPush(States::Menu);
 }

 return true;
}

Chapter 5

[125]

The background is merely an image covering the whole window and the blinking
effect on the sf::Text object is achieved through this little trick:

bool TitleState::update(sf::Time dt)
{
 mTextEffectTime += dt;

 if (mTextEffectTime >= sf::seconds(0.5f))
 {
 mShowText = !mShowText;
 mTextEffectTime = sf::Time::Zero;
 }

 return true;
}

The magic happening here is simple. The variable mShowText determines the
visibility of the sf::Text object, so we toggle it every half second, achieving the
blinking effect.

Every time the state updates, we have a time counter mTextEffectTime that
increments with the elapsed time. Then, when that elapsed time is greater than half a
second, we just toggle the mShowText variable and restart the counter.

Main menu
Okay, our title screen just finished, the user pressed a key and it is time to launch
another screen, the famous main menu!

This is probably the most common state you will find in virtually every game, it is
responsible for presenting the user its options and what can be done with the game.
This is usually the point where you change settings, start or continue your game,
watch videos and artwork, or simply exit the game.

For simplicity, we created the most basic main menu possible. It only presents two
options: play and exit. Then, you can select which one you want by pressing the
return key or alternate between the options with the up and down arrow keys.

Please notice this is a basic form of graphical user interface, which is the topic in
the next chapter, therefore you can expect interesting improvements to it when we
introduce the user interfaces in more depth!

Diverting the Game Flow – State Stack

[126]

This state is not so different from the title screen but it does implement the option
selection, and here is how we did it:

enum OptionNames
{
 Play,
 Exit,
};

std::vector<sf::Text> mOptions;
std::size_t mOptionIndex;

First we declare the containers of our options in the MenuState class, as well as the
enumerator of the available options.

Then, we setup and push to the mOptions array the sf::Text objects, in the
constructor, as follows:

sf::Text playOption;
playOption.setFont(font);
playOption.setString("Play");
centerOrigin(playOption);
playOption.setPosition(context.window->getView().getSize() / 2.f);
mOptions.push_back(playOption);

The mOptionIndex integer variable is present so that we can track which is the
currently selected option between all those in the mOptions array; it will have a
value between 0 and n-1, n being the number of options in the menu, which is two in
our example.

Finally, we define the most important function that helps controlling this menu:

void MenuState::updateOptionText()
{
 if (mOptions.empty())
 return;

 // White all texts
 FOREACH(sf::Text& text, mOptions)
 text.setColor(sf::Color::White);

 // Red the selected text
 mOptions[mOptionIndex].setColor(sf::Color::Red);
}

Chapter 5

[127]

This function is called once after constructing mOptions and again every time the
mOptionIndex value changes. It ensures that only the selected option is highlighted
in red, and the remaining is in white.

About what makes the mOptionIndex value actually change, it is merely simple
handling of key presses in the handleEvent() function:

if (event.key.code == sf::Keyboard::Up)
{
 if (mOptionIndex > 0)
 mOptionIndex--;
 else
 mOptionIndex = mOptions.size() - 1;

 updateOptionText();
}

else if (event.key.code == sf::Keyboard::Down)
{
 if (mOptionIndex < mOptions.size() - 1)
 mOptionIndex++;
 else
 mOptionIndex = 0;

 updateOptionText();
}

Now that we handled the selection of an action between multiple options, it is time
to actually make them push their own states and give the game continuity:

if (event.key.code == sf::Keyboard::Return)
{
 if (mOptionIndex == Play)
 {
 requestStackPop();
 requestStackPush(States::Game);
 }
 else if (mOptionIndex == Exit)
 {
 requestStackPop();
 }
}

Diverting the Game Flow – State Stack

[128]

We have seen how to push states before so it is not a big deal anymore. However, the
Exit option applies something new; it only requests to pop itself without pushing
anything else in its place.

In consequence, after the MenuState class is popped, the state stack is left empty.
This is exactly the condition that is checked in the Application class in order to exit
its loop, so the game closes naturally when the user selects this option.

Of course, if there would be another state present in the stack at this moment, it would
not really be empty, and the game could not close. A good way to prevent this would
be to request a clearing of the whole stack, instead of just popping the menu state.
However, by doing it this way we can detect possible programming errors faster by
not concealing the presence of a state that shouldn't be there in the first place.

Pausing the game
After having a cute menu that allows the game to start playing, we find ourselves
locked again inside GameState. Indeed, we can play, but what about when we get
tired of it or just want to take a break? That's when the pause screen comes into
the scene!

We make use of the PauseState class not only as a way to rest and go have a coffee,
but also as a gateway for going back to the main menu.

The implementation of this screen follows the line of the previous ones although it
has some remarks and little things that make it special. To begin with, it is a state
that is not meant to work by itself, but rather on the top of the state stack, living
simultaneously with GameState, at least.

Because of this, we apply directly the concepts we implemented in the StateStack
mechanism. The screen of PauseState is transparent and we can see the game in
the background:

void PauseState::draw()
{
 sf::RenderWindow& window = *getContext().window;
 window.setView(window.getDefaultView());

 sf::RectangleShape backgroundShape;
 backgroundShape.setFillColor(sf::Color(0, 0, 0, 150));
 backgroundShape.setSize(sf::Vector2f(window.getSize()));

 window.draw(backgroundShape);
 window.draw(mPausedText);
 window.draw(mInstructionText);
}

Chapter 5

[129]

When we are drawing this screen, we can assume that the game has been already
drawn. The backgroundShape rectangle fits the whole screen as a way to darken
what we see on the background. If we wanted an opaque screen and cease to see the
game we could simply set the fill color of backgroundShape with full alpha (255).

On the event handling topic, we simply define PauseState to pop it again and
return to game if Escape is pressed again. Besides that, we also return to the main
menu when Backspace is pressed:

if (event.key.code == sf::Keyboard::BackSpace)
{
 requestStateClear();
 requestStackPush(States::Menu);
}

So, why call requestStateClear() instead of requestStatePop()? Easy! The
PauseState class has no idea how many states are lying underneath it in the stack.

Even though usually there will be only GameState living under it, this may not be a
truth quite easily. GameState might have pushed other game play states on its top,
like tutorial states or information displayers.

Therefore, to be safe, we request a complete clearing of the stack and only then a
push of the main menu.

The last thing that is very important to notice about PauseState is the return
false; statement in the end of handleEvent() and update() functions.

If you were paying close attention earlier this chapter, it will be obvious to you what
those mean in this context; nevertheless, returning false in those functions works as a
smooth trick to automatically pause our GameState. Because PauseState is the top
screen and it doesn't let any underlying states update or handle events, all those are
inherently paused by absence of input or discrete time updates.

For convenience, we could have a pause method in the GameState class but we don't
even need it thanks to the state system!

The loading screen – sample
While our example game does not use a loading screen up to this point, we have
decided to provide a possible implementation of such a state. You can find its source
code together with the sources of this chapter, as well as guide yourself through the
following paragraphs into understanding it.

Diverting the Game Flow – State Stack

[130]

A loading screen is a state like any other, except for one thing; it performs a
task in the background, using a parallel thread of execution. Using threads and
understanding them in full is out of the scope of this book; however, SFML does
provide sf::Thread, a cross-platform implementation for launching and managing
multiple branches of execution in a program. Because of this, we will briefly
introduce the use of sf::Thread and apply it directly into our loading screen.

But why do we need to use threads? Simply because a loading screen will most often
be passing a number of resources from the hard drive into memory and this will be a
lengthy process, and even worse, a blocking process.

We need to ensure that our state remains fluid in its execution, that all calls are
finished as fast as they can, and the game has a solid frame rate. Having our loading
screen stuck in a method loading a huge list of resources would defeat this purpose,
as while a resource loading operation is being executed, the state couldn't display
a smooth progress bar. Due to this issue, we let the loading operation happen in a
parallel thread, while the loading state keeps running without interruption!

In order to implement such a state we create two classes, LoadingState and
ParallelTask. LoadingState is responsible for displaying information of what is
being loaded and a progress bar so the user has some perception of how much time
is left to begin playing. The ParallelTask class will manage the actual loading
operation and give some feedback to the LoadingState class.

Please note that while these two classes are not integrated in the chapter's sample
application, you can find their sources in LoadingState.hpp, LoadingState.cpp,
ParallelTask.hpp, and ParallelTask.cpp in the source directory of the chapter.

Progress bar
To better understand the implementation of LoadingState which is not that
different from the other screens, lets take a look at its members:

sf::Text mLoadingText;
sf::RectangleShape mProgressBarBackground;
sf::RectangleShape mProgressBar;
ParallelTask mLoadingTask;

We have sf::Text to display our Loading Resources string, two
sf::RectangleShape objects for the progress bar background and fill, and a
ParallelTask object.

Chapter 5

[131]

First things first, constructing the objects happens as follows:

mLoadingText.setFont(font);
mLoadingText.setString("Loading Resources");
centerOrigin(mLoadingText);
mLoadingText.setPosition(window.getSize().x / 2u, window.getSize().y /
2u + 50);

mProgressBarBackground.setFillColor(sf::Color::White);
mProgressBarBackground.setSize(sf::Vector2f(window.getSize().x - 20,
10));
mProgressBarBackground.setPosition(10, mLoadingText.getPosition().y +
40);

mProgressBar.setFillColor(sf::Color(100,100,100));
mProgressBar.setSize(sf::Vector2f(200, 10));
mProgressBar.setPosition(10, mLoadingText.getPosition().y + 40);

setCompletion(0.f);

mLoadingTask.execute();

The mLoadingText function is configured with position, font, and string. Then, the
background of the progress bar is initialized with a white color and a size that fits the
window horizontally except for a 20 pixel wide margin, split between each side.

Both mProgressBar and mProgressBarBackground are at the exact same position, so
that mProgressBar can grow inside the background correctly. The progress bar is set
with a grey color, so it can be seen over its background.

To finalize, we simply ensure the progress bar is at 0 percent completion, with a
width of 100 pixels and then launch the parallel task.

The setCompletion() method is nothing more than the following:

void LoadingState::setCompletion(float percent)
{
 if (percent > 1.f)
 percent = 1.f; // clamp

 mProgressBar.setSize(sf::Vector2f(
 mProgressBarBackground.getSize().x * percent,
 mProgressBar.getSize().y));
}

Diverting the Game Flow – State Stack

[132]

It merely resets the width of the progress bar fill color to a percent of the background
width, as you can see.

This is enough to provide us a static progress bar, while a parallel task is already
executing in the background; now it is important to go fetch data from the task to
update the state:

bool LoadingState::update(sf::Time)
{
 // Update the progress bar from the remote task or finish it
 if (mLoadingTask.isFinished())
 {
 requestStackPop();
 requestStackPush(States::Game);
 }
 else
 {
 setCompletion(mLoadingTask.getCompletion());
 }
 return true;
}

This method's body is just as simple as it looks, if the parallel task has finished
already, it is time to spawn the game state, because in theory it already has the
needed resources to run. Otherwise, if the task is still executing, we will only
update the progress bar.

ParallelTask
So far we have been able to see that a ParallelTask object runs in the background
and allows querying some information about the task's progress.

To remain as simple as possible explaining the concept of a task executed in a
parallel thread, we decided to implement the sample class as a dummy operation
that does not do any actual loading, but rather just waits ten seconds for a timer to
expire and finalize the task.

But, before explaining our implementation, let's approach a couple of
concepts rapidly.

Chapter 5

[133]

Thread
A thread is essentially a function that runs in another branch of execution. You know
the mandatory main() function, right? That is the entry point of every application,
when it is called by the operating system, it creates one thread: the main one. You
can visualize it as a sequential stream of commands that flows until the main()
function is over and exits the program.

We can conclude from this that one thread is one function call. The same way main()
is a thread function, there can be others. So, if inside the main function, we spawn a
new thread by "calling" its function, the only difference between that and a normal
call is that the program doesn't wait until that function ends, but rather continues
execution while another stream of commands starts running in parallel.

This is the essence of multi-threading and there isn't a lot to add to it. To do
this branching in execution, SFML provides sf::Thread. This class implies that
you have to link a sf::Thread object to a function on its constructor, such as
sf::Thread(&myFunc) for a global function or sf::Thread(&MyClass::myFunc,
myClassObject) for a member function of a class.

When you call sf::Thread::launch(), all it does is to call the linked function in a
separate thread.

Once that function returns, the thread is also shut down automatically. Destroying
the sf::Thread object while its thread is still running results in an abrupt
termination of the thread.

Seems easy, right? Well, there are some more things to have in consideration. Using
threads is very straightforward but there are concerns we must always have in mind
when working with them.

Concurrency
When two threads are running in parallel, everything will go smoothly if they don't
touch the same data at the same time. Anyway, it is very normal that two or more
threads want to read/write to the same variables, if not for more, to communicate
between them.

It probably goes without saying that if the processor is reading and writing to the
same memory address at the same time, we are going to have a nice crash or an
undefined behavior in our program, which can be troublesome to debug and correct.

But then, how to guarantee that multiple threads operate on shared data at turns,
with proper synchronization? This is a very delicate topic that must not be taken
lightly; however, there are mechanisms in SFML that help us achieve this!

Diverting the Game Flow – State Stack

[134]

Here, we introduce you to sf::Mutex and sf::Lock. These are incredible tools to
protect shared data when working with multi-threading. We won't be explaining in
depth how they work internally, but rather try to apply it directly and understand it
by example, by looking at the ParallelTask class implementation.

Task implementation
The code for this implementation is as follows:

class ParallelTask
{
 public:
 ParallelTask();
 void execute();
 bool isFinished();
 float getCompletion();

 private:
 void runTask();

 private:
 sf::Thread mThread;
 bool mFinished;
 sf::Clock mElapsedTime;
 sf::Mutex mMutex;
};

By taking a look at the ParallelTask declaration, you can see that the API used by
LoadingState exposed. Besides that, you can see the runTask() function, which is
the actual thread function that is launched in parallel execution.

Then, in its members, we can see the expected sf::Thread, the sf::Clock to count
the elapsed time, and a Boolean variable to check if the task is done yet or not. The
sf::Mutex object is meant to protect both the mClock and mFinished variables from
concurrent access, as you will see in the following sample:

bool ParallelTask::isFinished()
{
 sf::Lock lock(mMutex);
 return mFinished;
}

Chapter 5

[135]

The first line in the function's body is what we call locking variables. If you noticed,
isFinished() is called by LoadingState::update(), which is the main thread
while mFinished can be changed by the task thread as well, immediately when it
finishes. This could randomly cause a simultaneous read and write by two threads,
which would result in bad luck for us as programmers. We say randomly because
there is nothing controlling the synchronization of the two threads, the simultaneous
access can either happen or not.

By locking the sf::Mutex object before touching sensitive data, we ensure that if
a thread tries to lock an already locked resource, it will wait until the other thread
unlocks it. This creates synchronization between threads because they will wait in
line to access shared data one at a time.

Because sf::Lock is a RAII compliant class, as soon as it goes out of scope and is
destructed, the sf::Mutex object automatically unlocks.

To finalize, here is the actual thread function of our task:

void ParallelTask::runTask()
{
 // Dummy task - stall 10 seconds
 bool ended = false;
 while (!ended)
 {
 sf::Lock lock(mMutex); // Protect the clock
 if (mElapsedTime.getElapsedTime().asSeconds() >= 10.f)
 ended = true;
 }

 { // mFinished may be accessed from multiple threads, protect
 sf::Lock lock(mMutex);
 mFinished = true;
 }
}

You may have noticed that there is a lock in every read or write of the shared
variables. The extra brackets are just a way of releasing that same lock as soon as
possible, so the variable is then available for other threads to access.

All this function does is it remains in a while loop until the clock has ticked for ten
seconds and then lets the thread finish after setting mFinished to true.

Diverting the Game Flow – State Stack

[136]

Summary
Here we conclude the fifth chapter of the book. Through its pages, we tried to pass
on a lot of useful information about state managing and game flow. We talked
about states and stacks of states, both in concept and in implementation. Also, we
saw how to implement a handful of screens that we usually see in games, using our
StateStack system to our advantage. Navigation between states was also covered
and we even talked about functionality we don't use in the game, but that will
certainly come handy in the future! Better to know and not need it, than to need it
and not know about it!

As you noticed, this chapter is of extreme importance not only to this game, but
every game you might make. All the code written from this chapter and on will be
compliant with the state architecture which makes it a good reason to grasp these
concepts the best you can!

The next chapter will concern the graphical user interface of the game. We will
discuss how to implement a basic version of a widget hierarchy containing buttons
and labels.

Waiting and Maintenance
Area – Menus

Most games have menus and it's something the player expects when opening up a
new game. Even in its simplest form, there is a user interface that responds to the
user, and gives him the information he needs to enjoy the game. You might have
noticed that we implemented a simple menu in the previous chapter, but it's a prime
example where you should refactor and extract into its own class. This is what we
will do in this chapter:

•	 Design a user interface components hierarchy
•	 Implement the base component class
•	 Implement containers, labels, and buttons
•	 Create a proper title screen
•	 Create a settings screen

What we aim in this chapter is to give you a fundamental understanding of creating
a graphical user interface (GUI). GUI design is a huge topic that deserves its own
book, but we will do a crash course together.

Normally, in a GUI you use the mouse as an input source; you click on a button and
something happens. But for our examples we keep it simple by having you navigate
by the keyboard. The difference lies in complexity of the methods: one does not
exclude the other. But the focus of this chapter is the components of the hierarchy.

Waiting and Maintenance Area – Menus

[138]

The GUI hierarchy, the Java way
The architecture for the GUI framework will resemble a lot of other toolkits such as
Java's Swing/AWT library as it's a well working concept. Note that it is not exactly
reproduced, rather is used as a source of inspiration. In the end, what we aim to
achieve is a working menu state based on this design, but without pumping the state
full of boilerplate GUI code.

We create a namespace GUI in order to make the distinction clear to other parts
of our game, since a lot of the names such as "component" are generic, and can be
misinterpreted easily. We start with one core base class, which the entire hierarchy
rests on. We call it Component and in our case it is quite small. It defines the interface
that we will be using regularly besides setting up the objects. The class defines a
couple of virtual functions, one of which is the handleEvent() function. We let the
Component class inherit from sf::Drawable for the same reason as the scene nodes.
To have an interface for drawing to an SFML window:

Chapter 6

[139]

namespace GUI
{
class Component : public sf::Drawable
 , public sf::Transformable
 , private sf::NonCopyable
{
 public:
 typedef std::shared_ptr<Component> Ptr;
 public:
 Component();
 virtual ~Component();
 virtual bool isSelectable() const = 0;
 bool isSelected() const;
 virtual void select();
 virtual void deselect();
 virtual bool isActive() const;
 virtual void activate();
 virtual void deactivate();
 virtual void handleEvent(const sf::Event& event) = 0;
 private:
 bool mIsSelected;
 bool mIsActive;
};
}

You might be wondering about the pure virtual isSelectable() function and
the other virtual ones. They exist for buttons and containers. For the moment,
you can just assume that isSelectable() returns false, and that the virtual ones
are based on the two variables with similar names. The core for the GUI is the
Component::handleEvent() function because this is where the magic happens.
The typedef of a shared pointer of Component to the name Component::Ptr is
for convenience purposes. You don't need it, but it makes code more readable, by
simplifying the name we use.

Waiting and Maintenance Area – Menus

[140]

The class template std::shared_ptr is a C++11 smart pointer. In
contrast to std::unique_ptr, multiple pointers share an object.
Reference counting ensures that the object remains alive as long as any
shared_ptr points to it. If an object is not referenced anymore, it will be
destroyed.
While unique pointers result in zero performance and memory overhead,
shared pointers are rather expensive because of reference counting
semantics and thread safety. Therefore, they should be used with care—
shared ownership is rarely required.
The function template std::make_shared() allows construction
of shared pointer objects. Instead of the first statement with the new
operator, you can use the second. This enables an internal optimization
(object and reference counter are stored together).

std::shared_ptr<T> s(new T(a, b));
auto s = std::make_shared<T>(a, b);

The reason for using a shared pointer, instead of the unique pointer we have been
so diligent in using before, is because it is more flexible. We want to give you a
bare-bones setup for developing GUI on which you can extend upon. On one hand,
std::shared_ptr allows users of GUI components to hold a std::weak_ptr which
becomes invalid as soon as the Component is destroyed. But more importantly, a
component can be shared in different places. If two different containers (maybe
in different application states) use exactly the same component with the same
attributes, they can share it.

The function for handling events is virtual because its implementation is
different for every class inheriting from Component. Further classes we define
are GUI::Container, GUI::Button, and GUI::Label. These are the most basic
components that you will need, and it will be easy to expand the system with more
components later.

So we start with containers. What is the purpose of a container? Well, obviously
to bind other components together logically. But remember, since we are using a
shared pointer, it doesn't mean that the container owns the components. It is also
responsible for selecting one of the components inside its list, in order to highlight
it. This is to know when you try to activate a button, which button should it activate.
So let's look at the implementation of the Container class. We start with the public
interface which consists of the following functions:

Container::Container()
: mChildren()
, mSelectedChild(-1)
{
}

Chapter 6

[141]

void Container::pack(Component::Ptr component)
{
 mChildren.push_back(component);
 if (!hasSelection() && component->isSelectable())
 select(mChildren.size() - 1);
}
bool Container::isSelectable() const
{
 return false;
}

Nothing is really exciting here. We have our list with children, and we can pack a
new component into this list. The only special thing is that we check if we have a
currently selected child. If not, we check if the incoming child is selectable, and if it
is, we select it. Lastly, a container is not a selectable component.

Now to the exciting part:

void Container::handleEvent(const sf::Event& event)
{
 if (hasSelection() && mChildren[mSelectedChild]->isActive())
 {
 mChildren[mSelectedChild]->handleEvent(event);
 }
 else if (event.type == sf::Event::KeyReleased)
 {
 if (event.key.code == sf::Keyboard::W
 || event.key.code == sf::Keyboard::Up)
 {
 selectPrevious();
 }
 else if (event.key.code == sf::Keyboard::S
 || event.key.code == sf::Keyboard::Down)
 {
 selectNext();
 }
 else if (event.key.code == sf::Keyboard::Return
 || event.key.code == sf::Keyboard::Space)
 {
 if (hasSelection())
 mChildren[mSelectedChild]->activate();
 }
 }
}

Waiting and Maintenance Area – Menus

[142]

Now this is, as said before, where the magic happens. Depending on the current state
of the container and what input we get from the events, the action that is performed
is different. Let's go through the function.

First we check if we have a valid selection through the helper function
hasSelection(), and whether the component is active. All the helper function
does is; check if the mSelectedChild variable is a valid index, zero, or more. If
both conditions are true, then the active component is the one that should receive
the events instead of the container managing it. This gives a possibility to have a
composite hierarchy in the GUI. In our simple example, this feature is not used,
but it would be extremely useful when you implement an input box, or any kind of
component that needs to capture input.

So, what if the container is the one in focus for the input? Then we provide ways for
the user to simply navigate the container and activate any selected component. In
order to make the code easier to read, we use helper functions instead of having a
large function with a lot of logic in it.

void Container::select(std::size_t index)
{
 if (mChildren[index]->isSelectable())
 {
 if (hasSelection())
 mChildren[mSelectedChild]->deselect();
 mChildren[index]->select();
 mSelectedChild = index;
 }
}

void Container::selectNext()
{
 if (!hasSelection())
 return;
 // Search next component that is selectable
 int next = mSelectedChild;
 do
 next = (next + 1) % mChildren.size();
 while (!mChildren[next]->isSelectable());
 // Select that component
 select(next);
}
void Container::selectPrevious()
{
 if (!hasSelection())
 return;

Chapter 6

[143]

 // Search previous component that is selectable
 int prev = mSelectedChild;
 do
 prev = (prev + mChildren.size() - 1) % mChildren.size();
 while (!mChildren[prev]->isSelectable());
 // Select that component
 select(prev);
}

The helper functions don't have too much logic in it, and thus aren't so complex. The
first one takes care of the book-keeping needed with the selection, to make sure only
one component is marked as selected. The selectPrevious() and selectNext()
functions only implement the stepping to find the next selectable component and the
looping of the menu selection.

The Container acts as the root for the GUI we want to show. You create a GUI
object at the top in your state, and then you pack other components into it. Here is a
demonstration using labels:

auto demoLabel = std::make_shared<GUI::Label>(
 "This is a demonstration!", *getContext().fonts);
mGUIContainer.pack(demoLabel);

// Later in code...
mWindow.draw(mGUIContainer);
while(mWindow.pollEvent(event))

mGUIContainer.handleEvent(event);

You see in the states code how this simplifies a lot of problems, and makes the code a
lot cleaner and nicer to read. Label is a very small class, as all it does is simply show
some text on the screen.

Label::Label(const std::string& text, const FontHolder& fonts)
: mText(text, fonts.get(Fonts::Label), 16)
{
}

bool Label::isSelectable() const
{
 return false;
}
void Label::draw(sf::RenderTarget& target, sf::RenderStates states)
const
{

Waiting and Maintenance Area – Menus

[144]

 states.transform *= getTransform();
 target.draw(mText, states);
}
void Label::setText(const std::string& text)
{
 mText.setString(text);
}

The only thing to note is that labels are not selectable. They are just a bunch of text,
so there is no reason to be able to select them.

Let's get to the interesting part that we want in the GUI buttons. Fortunately,
together with the logic already implemented in containers and components, buttons
themselves don't need a lot of logic, other than the data they require for rendering
and execution on activation.

So what do buttons add to their class? First we have the sprite and the text that a
button renders. But most often, we want a button to execute something when it is
pressed. Instead of querying the button if it has been pressed, we go with callbacks
using the handy std::function class. When the button is activated by the GUI
container, we execute the callback.

However, the callback functionality is not favorable in every scenario, so we also
support the poll method where you ask the button if it is held down. In our system,
we call it toggle, that is, the button remains in a pressed state until explicitly told to
change. Normally, the button deactivates itself after the callback has been fired. If the
button can be toggled on the other hand, it will not deactivate; this must be explicitly
done by the user.

In the context of a button, the terms "activate" and "deactivate" refer to the two states
pressed and released. We call them "activate" and "deactivate" because these are
generalized terms for GUI design. Another case when we would like to activate but
are not pressing the actual object could be, for instance, a selected item in a list box.

Button::Button(const FontHolder& fonts, const TextureHolder& textures)
// ...
{
 mSprite.setTexture(mNormalTexture);
 mText.setPosition(sf::Vector2f(mNormalTexture.getSize() / 2u));
}

bool Button::isSelectable() const
{
 return true;
}

Chapter 6

[145]

void Button::select()
{
 Component::select();
 mSprite.setTexture(mSelectedTexture);
}

void Button::deselect()
{
 Component::deselect();
 mSprite.setTexture(mNormalTexture);
}

void Button::activate()
{
 Component::activate();
 if (mIsToggle)
 mSprite.setTexture(mPressedTexture);
 if (mCallback)
 mCallback();
 if (!mIsToggle)
 deactivate();
}

void Button::deactivate()
{
 Component::deactivate();
 if (mIsToggle)
 {
 if (isSelected())
 mSprite.setTexture(mSelectedTexture);
 else
 mSprite.setTexture(mNormalTexture);
 }
}

We only have to book-keep the current texture of the sprite and its activation/
deactivation scheme, thanks to the code we have written in the previous classes.
And the callback makes it very easy to hook in your own code to be run.

Waiting and Maintenance Area – Menus

[146]

Updating the menu
So, let's see our code in actual use. Do you remember MenuState from the
previous chapter? There we implemented some menu logic, so you could choose
between two options. Now this can be cleaned up a lot; as a result the menu state
shrinks drastically.

MenuState::MenuState(StateStack& stack, Context context)
: State(stack, context)
, mGUIContainer()
{
 ...
 auto playButton = std::make_shared<GUI::Button>(
 *context.fonts, *context.textures);
 playButton->setPosition(100, 250);
 playButton->setText("Play");
 playButton->setCallback([this] ()
 {
 requestStackPop();
 requestStackPush(States::Game);
 });
 mGUIContainer.pack(playButton);
}

The constructor initializes the buttons and packs them into the Container. As you
can see, the lambda expression we give to the Button is the place where we actually
describe the action we want the button to do. The rest of the functions are changed to
use the GUI container to render and handle events.

void MenuState::draw()
{
 sf::RenderWindow& window = *getContext().window;
 window.setView(window.getDefaultView());
 window.draw(mBackgroundSprite);
 window.draw(mGUIContainer);
}
bool MenuState::update(sf::Time)
{
 return true;
}
bool MenuState::handleEvent(const sf::Event& event)
{
 mGUIContainer.handleEvent(event);
 return false;
}

Chapter 6

[147]

This gives us much cleaner code than what we had in the previous chapter. Now
we also don't have any risk of code duplication if we would like to have a menu in
another place, such as the pause state. The pause menu looks very similar to this
code, so we won't go through that as well.

The promised key bindings
We implement a new state; the SettingsState which you access through a
button on the menu. What is the purpose for the SettingsState in our example?
Currentlywe have the key bindings inside there. Everything we need has already
been implemented with the GUI, so we only have to define the actual state.

The constructor of the SettingsState class one is pretty big so we snip it.

SettingsState::SettingsState(StateStack& stack, Context context)
: State(stack, context)
, mGUIContainer()
{
 mBackgroundSprite.setTexture(
 context.textures->get(Textures::TitleScreen));
 mBindingButtons[Player::MoveLeft] =
 std::make_shared<GUI::Button>(...);
 mBindingLabels[Player::MoveLeft] =
 std::make_shared<GUI::Label>(...);
 ... // More buttons and labels
 updateLabels();
 auto backButton = std::make_shared<GUI::Button>(...);
 backButton->setPosition(100, 375);
 backButton->setText("Back");
 backButton->setCallback([this] ()
 {
 requestStackPop();
 });
 mGUIContainer.pack(mBindingButtons[Player::MoveLeft]);
 mGUIContainer.pack(mBindingLabels[Player::MoveLeft]);
 ...
 mGUIContainer.pack(backButton);
}

Waiting and Maintenance Area – Menus

[148]

We have put all the binding buttons and the associated labels in a static array, and
associate to them the action they bind for. This means we don't have to duplicate a
lot of callbacks, which you may have notice are missing. Instead, we have marked
the button as one that toggles. We also have an updateLabels() function call. It's a
helper function to make sure the labels are writing out the correct name for the key.

void SettingsState::updateLabels()
{
 Player& player = *getContext().player;
 for (std::size_t i = 0; i < Player::ActionCount; ++i)
 {
 sf::Keyboard::Key key =
 player.getAssignedKey(static_cast<Player::Action>(i));
 mBindingLabels[i]->setText(toString(key));
 }
}

Thanks to having it in an array, it's easy to loop through the labels and update them.
Now moving on to the handleEvent() function, where we actually do something
with the buttons.

bool SettingsState::handleEvent(const sf::Event& event)
{
 bool isKeyBinding = false;
 for (std::size_t action = 0; action < Player::ActionCount;
++action)
 {
 if (mBindingButtons[action]->isActive())
 {
 isKeyBinding = true;
 if (event.type == sf::Event::KeyReleased)
 {
 getContext().player->assignKey
(static_cast<Player::Action>(action), event.key.code);
 mBindingButtons[action]->deactivate();
 }
 break;
 }
 }

 if (isKeyBinding)
 updateLabels();
 else
 mGUIContainer.handleEvent(event);
 return false;
}

Chapter 6

[149]

So how do we do this? If a button is pressed, then it will be activated, and since it's a
button that toggles, it will stay active until we tell it to deactivate. So we loop through
the array of buttons and check if anyone of them is active. If they are, then we are
currently binding a key. When we get a key released event, then we change that
binding on the player to the new key with the specified action before we deactivate
the button again. After the loop, we update the labels, such that they have the correct
name for everything. If no button is active, then we are not currently trying to bind a
key, and should pass the event to the GUI container instead.

When we are done, the result should look like, as shown in the following screenshot:

Waiting and Maintenance Area – Menus

[150]

Summary
So, in this chapter we implemented the foundation for a GUI library that can
easily be extended upon. Even without extending the classes, it provided a
functional user interface.

Implementing a nice and simple composite GUI library, along with handling its
events and rendering were some of the skills attained in the chapter. Also, we have
shown how to integrate such a system into what we already had, making the menu
and the settings state richer than ever.

Now it is time to keep going into the next chapter, where we will handle gameplay
mechanics. This means adding a fun factor to the game we are making, by adding
enemies, projectiles, and other gameplay rules, which define a game's quality more
prominently than other systems do. After all, who would want to play the best
graphically accurate game if it weren't fun?

Warfare Unleashed –
Implementing Gameplay

In Chapter 5, Diverting the Game Flow – State Stack and Chapter 6, Waiting and
Maintenance Area – Menus, you have seen how to handle menus and states, now
it is time to return to the actual game. Up till now, we have built a world that can
contain various entities, and implemented the basic interaction mechanisms through
updates, drawing, and commands. However, this is not particularly interesting as
long as the world is empty.

In this chapter, we are going to populate the world, and implement the core part of
the game; the actual gameplay with enemies, weapons, battles, and goodies. We are
going to cover the following topics:

•	 Enemy aircraft controlled by a simple artificial intelligence
•	 Projectiles such as a machine gun or missiles
•	 Pickups that improve the player's equipment
•	 Collision detection and response between entities in the scene graph
•	 The world's update cycle and automatic removal of entities

Equipping the entities
You have heard about entities for the first time in Chapter 3, Forge of the Gods –
Shaping Our World, where we built the World class and the scene graph. As a quick
reminder, the SceneNode base class was inherited by the Entity class. Entities
are the central part of this chapter. It's all about the interaction between entities of
different kinds. Before starting to implement all those interactions, it is reasonable to
think about crucial properties our entities need to have.

Warfare Unleashed – Implementing Gameplay

[152]

Introducing hitpoints
Since, we are preparing our airplanes for the battlefield, we need to provide them
with new specific attributes. To our class definition of Entity, we add a new
member variable that memorizes the current hitpoints. Hitpoints (HP) are a measure
for the hull integrity of an entity; the entity is destroyed as soon as the hitpoints
reach or fall below zero.

In addition to the member variable, we provide member functions that allow the
modification of the hitpoints. We do not provide direct write access, however,
the hitpoints can be decreased (the plane is damaged) or increased (the plane is
repaired). Also, a destroy() function instantly destroys the entity.

class Entity : public SceneNode
{
 public:
 explicit Entity(int hitpoints);
 void repair(int points);
 void damage(int points);
 void destroy();

 int getHitpoints() const;
 bool isDestroyed() const;

 ...
 private:
 int mHitpoints;
 ...
};

The implementation is as expected: repair() adds the specified hitpoints, damage()
subtracts them, and destroy() sets them to zero.

Storing entity attributes in data tables
In our game, there are already two different airplanes with different attributes. For
this chapter, we introduce a third one to make the game more interesting. With an
increasing amount of new aircraft types, attributes such as speed, hitpoints, used
texture, or fire rate may vary strongly among them. We need to think of a way to
store those properties in a central place, allowing easy access to them.

What we clearly want to avoid are case differentiations in every Aircraft method,
since this makes the local logic code less readable, and spreads the attributes across
different functions. Instead of if/else cascades or switch statements, we can store the
attributes in a central table, and just access the table every time we need an attribute.

Chapter 7

[153]

Let's define the type of such a table entry in the case of an airplane. We choose the
simplest way, and have a structure AircraftData with all members public. This
type is defined in the file DataTables.hpp.

struct AircraftData
{
 int hitpoints;
 float speed;
 Textures::ID texture;
};

While AircraftData is a single table entry, the whole table is represented as a
sequence of entries, namely std::vector<AircraftData>.
Next, we write a function that initializes the table for different aircraft types.
We begin to define a vector of the correct size (Aircraft::TypeCount is the last
enumerator of the enum Aircraft::Type, it contains the number of different aircraft
types). Since the enumerators are consecutive and begin at zero, we can use them
as indices in our STL container. We thus initialize all the attributes for different
airplanes, and eventually return the filled table.

std::vector<AircraftData> initializeAircraftData()
{
 std::vector<AircraftData> data(Aircraft::TypeCount);

 data[Aircraft::Eagle].hitpoints = 100;
 data[Aircraft::Eagle].speed = 200.f;
 data[Aircraft::Eagle].texture = Textures::Eagle;

 data[Aircraft::Raptor].hitpoints = 20;
 data[Aircraft::Raptor].speed = 80.f;
 data[Aircraft::Raptor].texture = Textures::Raptor;
 ...

 return data;
}

The global function initializeAircraftData() is declared in DataTables.hpp
and defined in DataTables.cpp. It is used inside Aircraft.cpp, to initialize a
global constant Table. This constant is declared locally in the .cpp file, so only the
Aircraft internals can access it. In order to avoid name collisions in other files, we
use an anonymous namespace.

namespace
{
const std::vector<AircraftData> Table = initializeAircraftData();
}

Warfare Unleashed – Implementing Gameplay

[154]

Inside the Aircraft methods, we can access a constant attribute of the own plane
type using the member variable mType as index. For example, Table[mType].
hitpoints denotes the maximal hitpoints of the current aircraft.

Data tables are only the first step of storing gameplay constants. For more flexibility,
and to avoid recompiling the application, you can also store these constants externally,
for example, in a simple text file or using a specific file format. The application initially
loads these files, parses the values, and fills the data tables accordingly.

Nowadays, it is very common to load gameplay information from
external resources. There are text-based formats such as YAML or XML,
as well as, many application-specific text and binary formats. There are
also well-known C++ libraries such as Boost.Serialize (www.boost.
org) that help with loading and saving data structures from C++.
One possibility that has recently gained popularity consists of using
script languages, most notably Lua (www.lua.org), in addition to
C++. This has the advantage that not only constant data, but dynamic
functionality can be outsourced and loaded during runtime.

Displaying text
We would like to add some text on the display, for example, to show the hitpoints or
ammunition of different entities. Since this text information is supposed to be shown
next to the entity, it stands to reason to attach it to the corresponding scene node.
We therefore, create a TextNode class which inherits SceneNode as shown in the
following code:

class TextNode : public SceneNode
{
 public:
 explicit TextNode(const FontHolder& fonts,
 const std::string& text);
 void setString(const std::string& text);

 private:
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 sf::Text mText;
};

The implementation of the functions is not complicated. The SFML class sf::Text
provides most of what we need. In the TextNode constructor, we retrieve the font
from the resource holder and assign it to the text.

Chapter 7

[155]

TextNode::TextNode(const FontHolder& fonts, const std::string& text)
{
 mText.setFont(fonts.get(Fonts::Main));
 mText.setCharacterSize(20);
 setString(text);
}

The function to draw the text nodes just forwards the call to the SFML render target,
as you know it from sprites.

void TextNode::drawCurrent(sf::RenderTarget& target, sf::RenderStates
states) const
{
 target.draw(mText, states);
}

For the interface, mainly the following method is interesting. It assigns a new string
to the text node, and automatically adapts to its size. centerOrigin() is a utility
function we wrote; it sets the object's origin to its center, which simplifies positioning
a lot.

void TextNode::setString(const std::string& text)
{
 mText.setString(text);
 centerOrigin(mText);
}

In the Aircraft constructor, we create a text node and attach it to the aircraft itself.
We keep a pointer mHealthDisplay as a member variable and let it point to the
attached node.

std::unique_ptr<TextNode> healthDisplay(new TextNode(fonts, ""));
mHealthDisplay = healthDisplay.get();
attachChild(std::move(healthDisplay));

In the method Aircraft::update(), we check for the current hitpoints, and convert
them to a string, using our custom toString() function. The text node's string and
relative position are set. Additionally, we set the text node's rotation to the negative
aircraft rotation, which compensates the rotation in total. We do this in order to have
the text always upright, independent of the aircraft's orientation.

mHealthDisplay->setString(toString(getHitpoints()) + " HP");
mHealthDisplay->setPosition(0.f, 50.f);
mHealthDisplay->setRotation(-getRotation());

Warfare Unleashed – Implementing Gameplay

[156]

Creating enemies
Enemies are other instances of the Aircraft class. They appear at the top of the
screen and move downwards, until they fly past the bottom of the screen. Most
properties are the same for the player and enemies, so we only explain the new
aircraft functionality.

Movement patterns
By default, enemies fly downwards in a straight line. But it would be nice if different
enemies moved differently, giving the feeling of a very basic artificial intelligence
(AI). Thus, we introduce specific movement patterns. Such a pattern can be
described as a sequence of directions to which the enemy airplane heads. A direction
consists of an angle and a distance.

struct Direction
{
 Direction(float angle, float distance);
 float angle;
 float distance;
};

Our data table for aircraft gets a new entry for the sequence of directions as shown in
following code:

struct AircraftData
{
 int hitpoints;
 float speed;
 Textures::ID texture;
 std::vector<Direction> directions;
};

Let's implement a zigzag movement pattern for the Raptor plane. First, it steers for
80 units in 45 degrees direction. Then, the angle changes to -45 degrees, and the
plane traverses 160 units back. Last, it moves again 80 units in +45 degrees direction,
until it arrives at its original x position.

data[Aircraft::Raptor].directions.push_back(Direction(45, 80));
data[Aircraft::Raptor].directions.push_back(Direction(-45, 160));
data[Aircraft::Raptor].directions.push_back(Direction(45, 80));

For the Avenger plane, we use a slightly more complex pattern: it is essentially a zigzag,
but between the two diagonal movements, the plane moves straight for 50 units.

Chapter 7

[157]

data[Aircraft::Avenger].directions.push_back(Direction(+45, 50));
data[Aircraft::Avenger].directions.push_back(Direction(0, 50));
data[Aircraft::Avenger].directions.push_back(Direction(-45, 100));
data[Aircraft::Avenger].directions.push_back(Direction(0, 50));
data[Aircraft::Avenger].directions.push_back(Direction(+45, 50));

The following figure shows the sequence of directions for both planes; the Raptor
plane is located on the left, Avenger on the right:

This way of defining movement is very simple, yet it enables a lot of possibilities.
You can let the planes fly in any direction (also sideward or backwards); you can
even approximate curves when using small intervals.

Now, we look at the logic we have to implement to follow these movement patterns.
To the Aircraft class, we add two member variables: mTravelledDistance, which
denotes the distance already travelled for each direction, and mDirectionIndex, to
know which direction the plane is currently taking.

First, we retrieve the aircraft's movement pattern and store it as a reference to const
named directions. We only proceed if there are movement patterns for the current
type (otherwise the plane flies straight down).

void Aircraft::updateMovementPattern(sf::Time dt)
{
 const std::vector<Direction>& directions
 = Table[mType].directions;
 if (!directions.empty())
 {

Warfare Unleashed – Implementing Gameplay

[158]

Second, we check if the current direction has already been passed by the plane (that
is, the travelled distance is higher than the direction's distance). If so, the index is
advanced to the next direction. The modulo operator allows a cycle; after finishing
the last direction, the plane begins again with the first one.

 float distanceToTravel
 = directions[mDirectionIndex].distance;
 if (mTravelledDistance > distanceToTravel)
 {
 mDirectionIndex
 = (mDirectionIndex + 1) % directions.size();
 mTravelledDistance = 0.f;
 }

Now, we have to get a velocity vector out of the angle. First, we turn the angle
by 90 degrees (by default, 0 degrees points to the right), but since our planes fly
downwards, we work in a rotated coordinate system, such that we can use a minus
to toggle between left/right. We also have to convert degrees to radians, using our
function toRadian().

The velocity's x component is computed using the cosine of the angle multiplied
with the maximal speed; analogue for the y component, where the sine is used.
Eventually, the travelled distance is updated:

 float radians
 = toRadian(directions[mDirectionIndex].angle + 90.f);
 float vx = getMaxSpeed() * std::cos(radians);
 float vy = getMaxSpeed() * std::sin(radians);
 setVelocity(vx, vy);
 mTravelledDistance += getMaxSpeed() * dt.asSeconds();
 }
}

Note that if the distance to travel is no multiple of the aircraft
speed, the plane will fly further than intended. This error is usually
small, because there are many logic frames per second, and hardly
noticeable, since each enemy will only be in the view for a short time.

Spawning enemies
It would be good if enemies were initially inactive, and the world created them
as soon as they come closer to the player. By doing so, we do not need to process
enemies that are relevant in the distant future; the scene graph can concentrate on
updating and drawing active enemies.

Chapter 7

[159]

We create a structure nested inside the World class that represents a spawn point for
an enemy.

struct SpawnPoint
{
 SpawnPoint(Aircraft::Type type, float x, float y);

 Aircraft::Type type;
 float x;
 float y;
};

A member variable World::mEnemySpawnPoints of type
std::vector<SpawnPoint> holds all future spawn points. As soon as an enemy
position enters the battlefield, the corresponding enemy is created and inserted to the
scene graph, and the spawn point is removed.

The World class member function getBattlefieldBounds(), returns
sf::FloatRect to the battlefield area, similar to getViewBounds(). The battlefield
area extends the view area by a small rectangle at the top, inside which new
enemies spawn before they enter the view. If an enemy's y coordinate lies below the
battlefield's top member, the enemy will be created at its spawn point. Since enemies
face downwards, they are rotated by 180 degrees.

void World::spawnEnemies()
{
 while (!mEnemySpawnPoints.empty()
 && mEnemySpawnPoints.back().y
 > getBattlefieldBounds().top)
 {
 SpawnPoint spawn = mEnemySpawnPoints.back();

 std::unique_ptr<Aircraft> enemy(
 new Aircraft(spawn.type, mTextures, mFonts));
 enemy->setPosition(spawn.x, spawn.y);
 enemy->setRotation(180.f);

 mSceneLayers[Air]->attachChild(std::move(enemy));

 mEnemySpawnPoints.pop_back();
 }
}

Warfare Unleashed – Implementing Gameplay

[160]

Now, let's insert the spawn points. addEnemy() effectively calls
mEnemySpawnPoints.push_back(), and interprets the passed coordinates relative to
the player's spawn position. After inserting all spawn points, we sort them by their
y coordinates. By doing so, spawnEnemies() needs to check only the elements at the
end of the sequence instead of iterating through it every time.

void World::addEnemies()
{
 addEnemy(Aircraft::Raptor, 0.f, 500.f);
 addEnemy(Aircraft::Avenger, -70.f, 1400.f);
 ...

 std::sort(mEnemySpawnPoints.begin(), mEnemySpawnPoints.end(),
 [] (SpawnPoint lhs, SpawnPoint rhs)
 {
 return lhs.y < rhs.y;
 });
}

Here is an example of the player facing four Avenger enemies. Above each, you see
how many hitpoints it has left.

Chapter 7

[161]

Adding projectiles
Finally, time to add what makes a game fun. Shooting down stuff is essential for
our game. The code to interact with the World class is already defined, thanks to the
actions in Player and to the existing Entity base class. All that's left is to define the
projectiles themselves.

We start with the Projectile class. We have normal machine gun bullets and
homing missiles represented by the same class. This class inherits from the Entity
class and is quite small, since it doesn't have anything special that differentiates it
from other entities apart from collision tests, which we will talk about later.

class Projectile : public Entity
{
 public:
 enum Type
 {
 AlliedBullet,
 EnemyBullet,
 Missile,
 TypeCount
 };

 public:
 Projectile(Type type,
 const TextureHolder& textures);

 void guideTowards(sf::Vector2f position);
 bool isGuided() const;

 virtual unsigned int getCategory() const;
 virtual sf::FloatRect getBoundingRect() const;
 float getMaxSpeed() const;
 int getDamage() const;

 private:
 virtual void updateCurrent(sf::Time dt,
 CommandQueue& commands);
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

Warfare Unleashed – Implementing Gameplay

[162]

 private:
 Type mType;
 sf::Sprite mSprite;
 sf::Vector2f mTargetDirection;
};

Nothing fun or exciting here; we add some new helper functions such as the one to
guide the missile towards a target. So let's have a quick look at the implementation.
You might notice, we use the same data tables that we used in the Aircraft class to
store data.

Projectile::Projectile(Type type, const TextureHolder& textures)
: Entity(1)
, mType(type)
, mSprite(textures.get(Table[type].texture))
{
 centerOrigin(mSprite);
}

The constructor simply creates a sprite with the texture we want for the projectile.
We will check out the guide function when we actually implement the behavior of
missiles. The rest of the functions don't hold anything particularly interesting. Draw
the sprite and return a category for the commands and other data needed.

To get an overview of the class hierarchy in the scene graph, here is an inheritance
diagram of the current scene node types. The data table structures which are
directly related to their corresponding entities are shown at the bottom of the
following diagram:

SceneNode

TextNodeEntitySpriteNode

PickupAircraftProjectile

PickupDataAircraftDataProjectileData

Chapter 7

[163]

Firing bullets and missiles
So let's try and shoot some bullets in the game. We start with adding two new
actions in the Player class: Fire and LaunchMissile. We define the default key
bindings for these to be the Space bar and M keys.

Player::Player()
{
 // Set initial key bindings
 mKeyBinding[sf::Keyboard::Left] = MoveLeft;
 mKeyBinding[sf::Keyboard::Right] = MoveRight;
 mKeyBinding[sf::Keyboard::Up] = MoveUp;
 mKeyBinding[sf::Keyboard::Down] = MoveDown;
 mKeyBinding[sf::Keyboard::Space] = Fire;
 mKeyBinding[sf::Keyboard::M] = LaunchMissile;

 // ...
}

void Player::initializeActions()
{
 // ...
 mActionBinding[Fire].action = derivedAction<Aircraft>(
 std::bind(&Aircraft::fire, _1));
 mActionBinding[LaunchMissile].action =derivedAction<Aircraft>(
 std::bind(&Aircraft::launchMissile, _1));
}

So when we press the keys bound to those two actions, a command will be fired
which calls the aircraft's fire() and launchMissile() functions. However, we
cannot put the actual code that fires the bullet or missile in those two functions. The
reason is, because if we could, we would have no concept of how much time has
elapsed. We don't want to fire a projectile for every frame. We want there to be some
cool down until the next time we fire a bullet, to accomplish that we need to use the
delta time passed in the aircraft's update() function.

Instead, we mark what we want to fire by setting the Boolean flags mIsFiring
or mIsLaunchingMissile to true in the Aircraft::fire() and the
Aircraft::launchMissile() functions, respectively. Then we perform the actual
logic in the update() function using commands. In order to make the code clearer to
read, we have extracted it to its own function.

void Aircraft::checkProjectileLaunch(sf::Time dt, CommandQueue&
commands)
{
 if (mIsFiring && mFireCountdown <= sf::Time::Zero)

Warfare Unleashed – Implementing Gameplay

[164]

 {
 commands.push(mFireCommand);
 mFireCountdown += sf::seconds(1.f / (mFireRateLevel+1));
 mIsFiring = false;
 }
 else if (mFireCountdown > sf::Time::Zero)
 {
 mFireCountdown -= dt;
 }

 if (mIsLaunchingMissile)
 {
 commands.push(mMissileCommand);
 mIsLaunchingMissile = false;
 }
}

We have a cool down for the bullets. When enough time has elapsed since the
last bullet was fired, we can fire another bullet. The actual creation of the bullet is
done using a command which we will look at later. After we spawn the bullet, we
reset the countdown. Here, we use += instead of =; with a simple assignment, we
would discard a little time remainder in each frame, generating a bigger error as
time goes by. The time of the countdown is calculated using a member variable
mFireCountdown in Aircraft. Like that, we can improve the aircraft's fire rate easily.
So if the fire rate level is one, then we can fire a bullet every half a second, increase
it to level two, and we get every third of a second. We also have to remember to
keep ticking down the countdown member, even if the user is not trying to fire.
Otherwise, the countdown would get stuck when the user released the Space bar.

Next is the missile launch. We don't need a countdown here, because in the Player
class, we made the input an event-based (not real-time based) input.

bool Player::isRealtimeAction(Action action)
{
 switch (action)
 {
 case MoveLeft:
 case MoveRight:
 case MoveDown:
 case MoveUp:
 case Fire:
 return true;

Chapter 7

[165]

 default:
 return false;
 }
}

Since the switch statement does not identify LaunchMissile as a real-time input,
the user has to release the M key before he can shoot another missile. The user wants
to save his missiles for the moment he needs them.

So, let's look at the commands that we perform, in order to actually shoot the
projectiles. We define them in the constructor in order to have access to the texture
holder. This shows one of the strengths of lambda expressions in C++11.

Aircraft::Aircraft(Type type, const TextureHolder& textures)
{
 mFireCommand.category = Category::SceneAirLayer;
 mFireCommand.action =
 [this, &textures] (SceneNode& node, sf::Time)
 {
 createBullets(node, textures);
 };

 mMissileCommand.category = Category::SceneAirLayer;
 mMissileCommand.action =
 [this, &textures] (SceneNode& node, sf::Time)
 {
 createProjectile(node, Projectile::Missile, 0.f, 0.5f,
 textures);
 };
}

Now, we can pass the texture holder to the projectiles without any extra difficulty,
and we don't even have to keep an explicit reference to the resources. This makes the
Aircraft class and our code a lot simpler, since the reference does not need to exist
in the update() function.

The commands are sent to the air layer in the scene graph. This is the node where we
want to create our projectiles. The missile is a bit simpler to create than bullets, that's
why we call directly Aircraft::createProjectile(). So how do we create bullets
then?

void Aircraft::createBullets(SceneNode& node, const TextureHolder&
textures) const
{
 Projectile::Type type = isAllied()
 ? Projectile::AlliedBullet : Projectile::EnemyBullet;

Warfare Unleashed – Implementing Gameplay

[166]

 switch (mSpreadLevel)
 {
 case 1:
 createProjectile(node, type, 0.0f, 0.5f, textures);
 break;

 case 2:
 createProjectile(node, type, -0.33f, 0.33f, textures);
 createProjectile(node, type, +0.33f, 0.33f, textures);
 break;

 case 3:
 createProjectile(node, type, -0.5f, 0.33f, textures);
 createProjectile(node, type, 0.0f, 0.5f, textures);
 createProjectile(node, type, +0.5f, 0.33f, textures);
 break;
 }
}

For projectiles, we provide different levels of fire spread in order to make the game
more interesting. The player can feel that progress is made, and that his aircraft
becomes more powerful as he is playing. The function calls createProjectile()
just as it was done for the missile.

So how do we actually create the projectile and attach it to the scene graph?

void Aircraft::createProjectile(SceneNode& node,
Projectile::Type type, float xOffset, float yOffset,
const TextureHolder& textures) const
{
 std::unique_ptr<Projectile> projectile(
 new Projectile(type, textures));

 sf::Vector2f offset(
 xOffset * mSprite.getGlobalBounds().width,
 yOffset * mSprite.getGlobalBounds().height);
 sf::Vector2f velocity(0, projectile->getMaxSpeed());

 float sign = isAllied() ? -1.f : +1.f;
 projectile->setPosition(getWorldPosition() + offset * sign);
 projectile->setVelocity(velocity * sign);
 node.attachChild(std::move(projectile));
}

Chapter 7

[167]

We create the projectile with an offset from the player and a velocity required by
the projectile type. Also, depending on if this projectile is shot by an enemy or the
player, we will have different directions. We do not want the enemy bullets to go
upwards like the player's bullets or the other way around.

Implementing gunfire for enemies is now a tiny step; instead of calling fire() when
keys are pressed, we just call it always. We do this by adding the following code to
the beginning of the checkProjectileLaunch() function:

if (!isAllied())
 fire();

Now we have bullets that fly and split the sky.

Homing missiles
What would a modern aircraft be if it hadn't got an arsenal of homing missiles?
This is where we start to add intelligence to our missiles; they should be capable of
seeking enemies autonomously.

Let's first look at what we need to implement on the projectile site. For homing
missiles, the functions guideTowards() and isGuided(), as well as the variable
mTargetDirection are important. Their implementation looks as follows:

bool Projectile::isGuided() const
{
 return mType == Missile;
}

void Projectile::guideTowards(sf::Vector2f position)
{
 assert(isGuided());
 mTargetDirection = unitVector(position - getWorldPosition());
}

The function unitVector() is a helper we have written. It divides a vector by its
length, thus, always returns a vector of length one. The target direction is therefore a
unit vector headed towards the target.

In the function updateCurrent(), we steer our missile. We change the current
missile's velocity by adding small contributions of the target direction vector to it. By
doing so, the velocity vector continuously approaches the target direction, having the
effect that the missile flies along a curve towards the target.

Warfare Unleashed – Implementing Gameplay

[168]

approachRate is a constant that determines, to what extent the target direction
contributes to the velocity. newVelocity, which is the weighted sum of the two
vectors, is scaled to the maximum speed of the missile. It is assigned to the missile's
velocity, and its angle is assigned to the missile's rotation. We use +90 here, because
the missile texture points upwards (instead of right).

void Projectile::updateCurrent(sf::Time dt,
CommandQueue& commands)
{
 if (isGuided())
 {
 const float approachRate = 200.f;

 sf::Vector2f newVelocity = unitVector(approachRate
 * dt.asSeconds() * mTargetDirection + getVelocity());

 newVelocity *= getMaxSpeed();
 float angle = std::atan2(newVelocity.y, newVelocity.x);

 setRotation(toDegree(angle) + 90.f);
 setVelocity(newVelocity);
 }

 Entity::updateCurrent(dt, commands);
}

Note that there are many possibilities to guide a missile. Steering
behaviors define a whole field of AI; they incorporate advanced
mechanisms such as evasion, interception, and group behavior.
Don't hesitate to search on the internet if you're interested.

Now, we have guided the missile to a certain position, but how to retrieve that position?
We want our missile to pursuit the closest enemy. For this, we switch from Projectile
to the World class, where we write a new function. First, we store all currently active
(that is, already spawned and not yet destroyed) enemies in the member variable
mActiveEnemies. With the command facility, this task is almost trivial:

void World::guideMissiles()
{
 Command enemyCollector;
 enemyCollector.category = Category::EnemyAircraft;
 enemyCollector.action = derivedAction<Aircraft>(
 [this] (Aircraft& enemy, sf::Time)

Chapter 7

[169]

 {
 if (!enemy.isDestroyed())
 mActiveEnemies.push_back(&enemy);
 });

Next, we have to find the nearest enemy for each missile. We set up another
command, now for projectiles, that iterates through the active enemies to find the
closest one. Here, distance() is a helper function that returns the distance between
the centers of two scene nodes.

 Command missileGuider;
 missileGuider.category = Category::AlliedProjectile;
 missileGuider.action = derivedAction<Projectile>(
 [this] (Projectile& missile, sf::Time)
 {
 // Ignore unguided bullets
 if (!missile.isGuided())
 return;

 float minDistance = std::numeric_limits<float>::max();
 Aircraft* closestEnemy = nullptr;

 FOREACH(Aircraft* enemy, mActiveEnemies)
 {
 float enemyDistance = distance(missile, *enemy);

 if (enemyDistance < minDistance)
 {
 closestEnemy = enemy;
 minDistance = enemyDistance;
 }
 }

In case we found a closest enemy, we let the missile chase it.

 if (closestEnemy)
 missile.guideTowards(
 closestEnemy->getWorldPosition());
 });

After defining the second command, we push both to our queue, and reset the
container of active enemies. Remember that the commands are not yet executed, they
wait in the queue until they are invoked on the scene graph in World::update().

 mCommandQueue.push(enemyCollector);
 mCommandQueue.push(missileGuider);

Warfare Unleashed – Implementing Gameplay

[170]

 mActiveEnemies.clear();
}

That's it, now we are able to fire and forget!

The result looks as follows:

Picking up some goodies
Now we have implemented enemies and projectiles. But even if the player shot
enemy airplanes down, and had exciting battles, he wouldn't remark that his success
changes anything. You want to give the player the feeling that he is progressing in
the game. Usual for this game genre are power-ups that the enemies drop when they
are killed. So let's go ahead and implement that in our game.

Now this is the same story as with the projectile. Most of the things we need have
already been implemented; therefore, this will be quite easy to add. What we want
is only an entity that, when the player touches it, applies an effect to the player and
disappears. Not much work with our current framework.

Chapter 7

[171]

class Pickup : public Entity
{
 public:
 enum Type
 {
 HealthRefill,
 MissileRefill,
 FireSpread,
 FireRate,
 TypeCount
 };

 public:
 Pickup(Type type,
 const TextureHolder& textures);

 virtual unsigned int getCategory() const;
 virtual sf::FloatRect getBoundingRect() const;

 void apply(Aircraft& player) const;

 protected:
 virtual void drawCurrent(sf::RenderTarget& target,
 sf::RenderStates states) const;

 private:
 Type mType;
 sf::Sprite mSprite;
};

So, let's start looking at a few interesting parts. As usual, we have a data table,
create a sprite and center it, so the constructor looks just as you would expect
it. Let's investigate the apply() function, and how the data table is created. In
apply(), a function object stored in the table is invoked with player as argument.
The initializePickupData() function initializes the function objects, using
std::bind() that redirects to the Aircraft member functions.

void Pickup::apply(Aircraft& player) const
{
 Table[mType].action(player);
}

Warfare Unleashed – Implementing Gameplay

[172]

std::vector<PickupData> initializePickupData()
{
 std::vector<PickupData> data(Pickup::TypeCount);

 data[Pickup::HealthRefill].texture = Textures::HealthRefill;
 data[Pickup::HealthRefill].action
 = std::bind(&Aircraft::repair, _1, 25);

 data[Pickup::MissileRefill].texture = Textures::MissileRefill;
 data[Pickup::MissileRefill].action
 = std::bind(&Aircraft::collectMissiles, _1, 3);

 data[Pickup::FireSpread].texture = Textures::FireSpread;
 data[Pickup::FireSpread].action
 = std::bind(&Aircraft::increaseSpread, _1);

 data[Pickup::FireRate].texture = Textures::FireRate;
 data[Pickup::FireRate].action
 = std::bind(&Aircraft::increaseFireRate, _1);

 return data;
}

The pickups call already defined functions on the player aircraft that let us modify its
state. These functions may repair it, refill it with missiles, or improve its firepower.
It's nice when things just work out of the box.

That's how the scene looks when two pickups (health and fire rate) are floating in the
air. You may notice that the player's Eagle plane shoots two bullets at once, which is
the result of a previously collected fire spread pickup.

Chapter 7

[173]

Collision detection and response
Now that our world is full of entities, let's implement interactions between them.
Most interactions occur in the form of a collision; two airplanes collide and explode,
projectiles of the player's Gatling gun perforate an enemy, and a pickup is collected
by the player, and so on.

First, we write a function that computes the bounding rectangle of an entity.
This is the smallest possible rectangle that completely contains the entity.
As such, it represents an approximation of the entity's shape, which makes
computations simpler. Here is an example implementation: getWorldTransform()
multiplies the sf::Transform objects from the scene root to the leaf.
sf::Transform::transformRect() transforms a rectangle, and may enlarge
it if there is a rotation (since the rectangle has to remain axis-aligned).
sf::Sprite::getGlobalBounds() returns the sprite's bounding rectangle relative
to the aircraft.

Warfare Unleashed – Implementing Gameplay

[174]

sf::FloatRect Aircraft::getBoundingRect() const
{
 return getWorldTransform()
 .transformRect(mSprite.getGlobalBounds());
}

To get a better imagination of the bounding rectangle, take a look at SceneNode.cpp
in the online code base. You can uncomment the call to drawBoundingRect() inside
SceneNode::draw().

For our collision, we write a function that checks whether a collision between two
entities occurs. Here, we simply check bounding rectangles of the entities for an
overlap. This approach is not extremely accurate, but easily implemented, and good
enough for many purposes.

There is a wide range of more elaborated collision detection
algorithms. A popular algorithm is the Separating Axis
Theorem, which checks for collisions between two
convex polygons. You can read more about it at www.
metanetsoftware.com/technique/tutorialA.html.

Our function is implemented using the SFML method
sf::FloatRect::intersects() which checks for rectangle intersection.

bool collision(const SceneNode& lhs, const SceneNode& rhs)
{
 return lhs.getBoundingRect()
 .intersects(rhs.getBoundingRect());
}

Note that we wrote the function for SceneNode and not
Entity. This is because collision occurs inside the scene
graph, so we avoid the downcasts. Scene nodes that do not
have a physical representation have an empty bounding
rectangle, which does not intersect with others.

Finding the collision pairs
Given the collision() function, we can determine in each frame, which pairs of
entities collide. We store the pointers to the entities in std::pair<SceneNode*,
SceneNode*>, for which we have created the SceneNode::Pair typedef. All collision
pairs are stored in a std::set instance.

Chapter 7

[175]

Basically, we need to compare every scene node with every other scene node to
determine if a collision between the two occurs. To do this in a recursive way, we use
two methods. The first one, checkNodeCollision(), evaluates a collision between
*this with its children, and the function argument node.

The first three lines check if a collision occurs, and if the nodes are not identical
(we do not want an entity to collide with itself). By calling isDestroyed(), we
exclude entities that have already been destroyed, and that are no longer part of
the gameplay. If the four conditions are true, we insert the pair to our set. The STL
algorithm std::minmax() takes two arguments and returns a pair with first being
the smaller, and second being the greater of the two arguments (where smaller
means lower address in this case). Thus, std::minmax(a,b) and std::minmax(b,a)
return always the same pair. This comes in very handy in our case—together with
the sorted set, we automatically ensure that a collision between entities A and B is
inserted only once (and not twice as A-B and B-A pairs).

void SceneNode::checkNodeCollision(SceneNode& node, std::set<Pair>&
collisionPairs)
{
 if (this != &node && collision(*this, node)
 && !isDestroyed() && !node.isDestroyed())
 collisionPairs.insert(std::minmax(this, &node));

 FOREACH(Ptr& child, mChildren)
 child->checkNodeCollision(node, collisionPairs);
}

The second part invokes the function recursively for all children of *this.

Now, we have checked the whole scene graph against one node, but we want to
check the whole scene graph against all nodes. This is where our second function
checkSceneCollision() comes into play. For the argument and all its children,
a collision between the current node *this and the argument node sceneGraph is
evaluated.

void SceneNode::checkSceneCollision(SceneNode& sceneGraph,
std::set<Pair>& collisionPairs)
{
 checkNodeCollision(sceneGraph, collisionPairs);

 FOREACH(Ptr& child, sceneGraph.mChildren)
 checkSceneCollision(*child, collisionPairs);
}

Warfare Unleashed – Implementing Gameplay

[176]

Reacting to collisions
What we have seen now is how collision detection works. The other part is collision
response, where collisions result in gameplay actions.

For every frame, we store all collided scene nodes in a set. Now we can iterate
through this set of SceneNode* pairs, and dispatch on the categories of each collision
partner. First, we write a helper function that returns true if a given pair matches two
assumed categories. For example, we want to check if a pair represents a collision
between the player aircraft and a dropped pickup. We do not want the order of the
parameters type1 and type2 to influence the result, that's why we check if the first
node matches the first category and the second node the second category, as well as
vice versa. In the vice versa case, we swap the node pointers so that their order is the
same as the arguments' order. Because the first parameter colliders is passed by
reference, the caller will then have a consistent ordering (colliders.first matches
type1 and colliders.second matches type2).

bool matchesCategories(SceneNode::Pair& colliders,
 Category::Type type1, Category::Type type2)
{
 unsigned int category1 = colliders.first->getCategory();
 unsigned int category2 = colliders.second->getCategory();

 if (type1 & category1 && type2 & category2)
 {
 return true;
 }
 else if (type1 & category2 && type2 & category1)
 {
 std::swap(colliders.first, colliders.second);
 return true;
 }
 else
 {
 return false;
 }
}

Our actual dispatch function is now rather simple. We check the whole scene graph
for collisions, and fill the set with collision pairs. Then, we iterate through the set and
differentiate between the collisions categories.

Chapter 7

[177]

void World::handleCollisions()
{
 std::set<SceneNode::Pair> collisionPairs;
 mSceneGraph.checkSceneCollision(mSceneGraph, collisionPairs);

 FOREACH(SceneNode::Pair pair, collisionPairs)
 {
 if (matchesCategories(pair,
 Category::PlayerAircraft, Category::EnemyAircraft))
 {
 ... // React to player-enemy collision
 }
 }
}

We have four combinations of categories which trigger a collision, as shown in the
following diagram:

Correspondingly, we need four calls to matchesCategories() in order to react to all
possible combinations. Note that the argument pair is passed by reference—possibly
its members are swapped to match the category order. Therefore, we can be sure about
the pointer's categories, and safely downcast from SceneNode* to the concrete entity.

Warfare Unleashed – Implementing Gameplay

[178]

We begin with the collision between the two airplanes. In this case, we always
destroy the enemy, and deal damage to the player, depending on the enemy's
current hitpoints.

if (matchesCategories(pair,
 Category::PlayerAircraft, Category::EnemyAircraft))
{
 auto& player = static_cast<Aircraft&>(*pair.first);
 auto& enemy = static_cast<Aircraft&>(*pair.second);

 player.damage(enemy.getHitpoints());
 enemy.destroy();
}

Next, we handle the case where the player's aircraft collects a pickup by touching it.
We apply the effect to the player and destroy the pickup.

else if (matchesCategories(pair,
 Category::PlayerAircraft, Category::Pickup))
{
 auto& player = static_cast<Aircraft&>(*pair.first);
 auto& pickup = static_cast<Pickup&>(*pair.second);

 pickup.apply(player);
 pickup.destroy();
}

Last, we react to the collision between projectiles and aircraft. We only consider
player projectiles that hit the enemy airplanes, and enemy projectiles that hit the
player's airplane. Since the reaction is the same for both cases, we can unify them.
We destroy the projectile, and deal the corresponding damage to the aircraft.

else if (matchesCategories(pair,
 Category::EnemyAircraft, Category::AlliedProjectile)
 || matchesCategories(pair,
 Category::PlayerAircraft, Category::EnemyProjectile))
{
 auto& aircraft = static_cast<Aircraft&>(*pair.first);
 auto& projectile = static_cast<Projectile&>(*pair.second);

 aircraft.damage(projectile.getDamage());
 projectile.destroy();
}

Chapter 7

[179]

Very straightforward, isn't it? You can easily implement new interactions by adding
another if clause. Want to intercept enemy missiles? No problem; add a case for
Category::AlliedProjectile and Category::EnemyProjectile. Allow friendly
fire, and see enemy planes taking each other down? Just write a collision for two
entities of category Category::EnemyAircraft.

An outlook on optimizations
Since we test all possible scene node combinations, the number of collision checks
increases quadratically (by a power of two) with the number of scene nodes. This can
become a performance bottleneck if we have very many entities. There are several
ways to cope with this issue.

First, needless comparisons can be reduced. Recursion can be replaced with iteration;
one possible solution is to write an iterator class that traverses scene graphs. This
would avoid checking each combination twice, and checking a scene node for
collision with itself.

for (SceneNode::iterator left = mSceneGraph.begin();
 left != mSceneGraph.end(); ++left)
{
 for (SceneNode::iterator right = std::next(left);
 right != mSceneGraph.end(); ++right)
 {
 ... // Collision detection
 }
}

By storing pointers to entities that are interesting for collisions (instead of all
scene nodes) in a separate container, we would reduce unnecessary checks too.
We could even go further and directly store the entities with their full type.
For example, we might have std::vector<Aircraft*> for the enemies and
std::vector<Projectile*> for the allied bullets, so there would be no need for
category dispatching.

Those approaches are a good start, but the time complexity is still quadratic. In a big
world, it is clearly meaningless to check every possible pair of entities for collisions,
since most of them are too far away. An optimization would base on locality. We
only check entities that are close to each other. In order to achieve this, the world
could be divided into a grid of equally sized cells. Each entity is assigned to a cell.
For collision detection, only entities inside the same cell and the neighbor cells are
checked, which drastically reduces the amount of required comparisons. Going this
way further would lead to data structures such as quadtrees.

Warfare Unleashed – Implementing Gameplay

[180]

Concerning collision response, if there are many cases to consider, the dispatching
could be done using a two-dimensional lookup table. The categories of both partners
would serve as indices, and the table entries are function objects that implement the
collision response for a concrete collider pair.

As nice as these optimizations sound, there is a price to pay—the implementation
becomes more complicated. A decent amount of book keeping is required to keep
everything synchronous, for example, the grid. Each time an entity moves, it might
move to another cell, so we have to keep track of it. Newly created entities must be
inserted, and destroyed entities must be removed from the right cell.

In conclusion, such optimizations are not only nice to have, but a bare necessity when
the world and the number of entities grow. However, the implied book-keeping
overhead does not pay off for smaller scenarios, which is a reason why we kept things
simple in our game.

An interacting world
A lot of game logic has been implemented in the different entities, now we look at
functionality that is defined in the World class. You have already seen the collision in
the last section.

Cleaning everything up
During the game, entities are destroyed in battle, and have to be removed from the
scene graph. We do not remove them instantly. Once in a frame, we iterate through
the scene graph, check which nodes have been destroyed, and detach them from
their parents. To find out whether a node has been destroyed, we write the virtual
function SceneNode::isDestroyed(). By default, it returns false. A derived entity
may specify a condition under which it returns true. Usually, this will be the case
when the hitpoints are zero or less (that is, the entity is destroyed).

bool Entity::isDestroyed() const
{
 return mHitpoints <= 0;
}

In addition, we add a virtual function that checks if a scene node should be removed
from the scene graph. By default, this is true as soon as the node is destroyed.

bool SceneNode::isMarkedForRemoval() const
{
 return isDestroyed();
}

Chapter 7

[181]

However, this need not always be the case. Imagine an entity that has been
destroyed, but still needs to reside for some time in the world, in order to drop
a pickup, show an explosion animation, or similar. While isDestroyed() tells
whether entities are logically dead and therefore, don't interact with the world
anymore, isMarkedForRemoval() tells whether the scene node can be removed
from the scene graph. The Aircraft class itself delays removal after destruction,
to let enemies drop their pickups in the update() function. There, a special flag
determines the return value.

bool Aircraft::isMarkedForRemoval() const
{
 return mIsMarkedForRemoval;
}

The removal is performed by the following method. In the first part, std::remove_
if() rearranges the children container, so that all active nodes are at the beginning,
and the ones to remove at the end. The call to erase() actually destroys these
SceneNode::Ptr objects. In the second part, the function is recursively called for all
child nodes. std::mem_fn() creates a function object which returns true, if and only
if, the member function passed as argument returns true.

void SceneNode::removeWrecks()
{
 auto wreckfieldBegin = std::remove_if(mChildren.begin(),
 mChildren.end(), std::mem_fn(&SceneNode::isMarkedForRemoval));
 mChildren.erase(wreckfieldBegin, mChildren.end());

 std::for_each(mChildren.begin(), mChildren.end(),
 std::mem_fn(&SceneNode::removeWrecks));
}

This function can now be called in World::update(), and we automatically get rid
of all nodes that request their removal.

Out of view, out of the world
Most entities that leave the current view become meaningless. Launched projectiles
that have missed their enemy unwaveringly follow their path in the endless void.
Enemies that fly past the screen continue to fly, although the player will never see
them again, which can be costly performance-wise.

Warfare Unleashed – Implementing Gameplay

[182]

In order to reduce the amount of unnecessary entities, especially having our collision
algorithm in mind, we want to remove entities that are located outside the view.
Remember that getBattlefieldBounds() returns sf::FloatRect, which is slightly
bigger than getViewBounds(). It also contains the area beyond the view, inside
which the enemies spawn. We create a command that destroys all entities, of which
the bounding rectangle doesn't intersect with the battlefield's bounding rectangle
(that is, they are outside).

void World::destroyEntitiesOutsideView()
{
 Command command;
 command.category = Category::Projectile
 | Category::EnemyAircraft;
 command.action = derivedAction<Entity>(
 [this] (Entity& e, sf::Time)
 {
 if (!getBattlefieldBounds()
 .intersects(e.getBoundingRect()))
 e.destroy();
 });

 mCommandQueue.push(command);
}

The final update
A lot of new logic code has found its way into the World class; the different functions
are invoked from World::update(), which currently looks as follows. The function
names are self-explanatory.

void World::update(sf::Time dt)
{
 mWorldView.move(0.f, mScrollSpeed * dt.asSeconds());
 mPlayerAircraft->setVelocity(0.f, 0.f);

 destroyEntitiesOutsideView();
 guideMissiles();

 while (!mCommandQueue.isEmpty())
 mSceneGraph.onCommand(mCommandQueue.pop(), dt);
 adaptPlayerVelocity();

Chapter 7

[183]

 handleCollisions();
 mSceneGraph.removeWrecks();
 spawnEnemies();

 mSceneGraph.update(dt, mCommandQueue);
 adaptPlayerPosition();
}

Victory and defeat
Equipped with the Eagle aircraft, you can accept the challenge to maneuver through
a mission. Depending on your skill, you may reach the end of the level and become a
pilot legend. Or you fall victim to the enemy fleet and die in a horrible plane crash.

Anyway, the player should be informed by the game about his fate. In most games,
there are victory and defeat conditions. In our airplane game, a mission is complete if
you cross the level's border at the end. A mission is failed if your plane is destroyed.
To display this information, we have written GameOverState that displays an
appropriate message. Of course, this can be extended to show high scores, statistics,
or save the game between multiple missions. But the basic principle remains
the same. We reuse the states and GUI from the previous chapters. Since their
implementation should be clear, we do not paste their code here. However, you are
free to look at the original code base at any time.

Summary
This was probably the most difficult chapter up to now, as it combines all the game-
related features we have developed in earlier chapters: resources, world, entities,
input, and commands. Despite all the things to consider, it became apparent that the
existing framework made a lot of new tasks simple to achieve.

In this chapter, you learned about essential gameplay mechanics and their
interaction. We added projectiles to represent bullets and homing missiles. We let
enemies spawn, follow certain movement patterns, fire in regular intervals, and
drop pickups upon destruction. Collision detection and response was implemented,
and we discussed performance considerations. Eventually, we managed the world's
update cycle, and cleaned up destroyed entities.

Now that the game foundation has been built, we are ready to add more graphical
content. In the next chapter, we are going to add a variety of visual effects to improve
the appearance of our game.

Every Pixel Counts – Adding
Visual Effects

Throughout the previous chapters, we have constantly been adding functionality.
We finally reached a point where our game is playable, where all the game
mechanisms are implemented. With a bit of creativity, you should already be able
to write your own small game. Nevertheless, we are not going to quit now—a game
is more than just gameplay. A very important part of games are the graphics. Be
it cutting-edge 3D scenes in the newest real-time strategy game or the nostalgic
atmosphere of a pixel-art indie title, graphics determine to a big extent how the
player feels.

In this chapter, we are going to look behind the scenes of rendering. We are going to
cover various techniques that are used in modern games to create graphical effects of
different kinds. To mention a few:

•	 Texture atlases and how different objects can be stored in one texture
•	 Texture mapping and vertex arrays
•	 Particle systems to create effects such as fire or smoke
•	 Animations that show an object in motion
•	 Render textures as an alternative to render windows
•	 Shaders to give the whole scene a distinct look

While the previous chapter concerned gameplay and therefore didn't work a lot with
SFML, this one will introduce many new features of its Graphics module.

Every Pixel Counts – Adding Visual Effects

[186]

Defining texture atlases
A texture atlas describes the concept of a single texture that contains multiple
objects. You may also encounter other terms, such as sprite sheet, or tile set in the
case of squared tiles put together. Texture atlases allow having fewer image files,
which decreases the amount of switches between different textures at runtime. Since
texture switching is a rather slow operation on the graphics card, using texture
atlases may result in notable speedups. Till now, we used separate textures for each
object: one for each aircraft, pick-up, projectile, button, and background. Every
texture was stored in its own PNG file. The code design looked as follows:

•	 Textures were stored inside TextureHolder, our container storing
sf::Texture objects.

•	 We had an enum Textures::ID to identify the different textures in a
TextureHolder. By that, we could easily refer to different textures without
knowing the actual sf::Texture object or the filename.

•	 The textures used in the scene were loaded in World::loadTextures().
•	 They were bound to sprites in the specific entity classes such as Aircraft.

For a given entity, data tables stored the texture ID it used.

The SFML sprite class sf::Sprite offers the possibility to set a texture rectangle
(or texture rect for short), containing the pixel coordinates of a specific object inside
the texture. You already came across this functionality when we implemented the
tiling background for our world in Chapter 3, Forge of the Gods – Shaping Our World.
The rectangle is of type sf::IntRect and stores four integral values: the x and
y coordinates of the left-upper pixel (members left and top) as well as the size
(members width and height).

For example, the following texture rectangle rect begins at (0, 15) and has a width
of 30 and height of 20. The size excludes the last pixel; the pixel with coordinates
(30, 35) is outside the rectangle.

sf::IntRect rect(0, 15, 30, 20);

Given a texture and a rectangle, you can initialize a sprite using the constructor, or
you can set the attributes later with the corresponding methods.

sf::Texture texture = ...;
sf::IntRect rect = ...;

Chapter 8

[187]

sf::Sprite sprite(texture, rect);

sf::Sprite sprite2;
sprite2.setTexture(texture);
sprite2.setTextureRect(rect);

If no rectangle is specified, the sprite will assume that the whole texture is used. This
is what we have always done so far.

Adapting the game code
We need to extend a few parts of our code to work with texture rects instead of
whole textures. First, we must remove many of our resource identifiers. All the
aircraft, projectile and pickup textures will be merged to one texture, with an ID
of Entities. The texture containing the three buttons is accessible via Buttons.
Eventually, we only have the following identifiers:

namespace Textures
{
 enum ID
 {
 Entities,
 Jungle,
 TitleScreen,
 Buttons,
 Explosion,
 Particle,
 FinishLine,
 };
}

In case you wonder, Jungle is the new background we will paint. It is much bigger
and far more interesting than the desert we had before. FinishLine is a texture used
to mark the end of the level, instead of the black void. It is embedded to the scene
graph using SpriteNode. Explosion and Particle are going to be introduced soon.

Every Pixel Counts – Adding Visual Effects

[188]

With the new image files in our Media folder, the method World::loadTextures()
can be adapted accordingly. We also modify our data tables to store a texture
rectangle in addition to the texture ID. The rectangle coordinates are hardcoded in
the initialization functions.

struct AircraftData
{
 Textures::ID texture;
 sf::IntRect textureRect;
 ...
};

std::vector<AircraftData> initializeAircraftData()
{
 std::vector<AircraftData> data(Aircraft::TypeCount);

 data[Aircraft::Eagle].texture = Textures::Entities;
 data[Aircraft::Eagle].textureRect = sf::IntRect(0, 0, 48, 64);
 ...

 return data;
}

The last part to extend is the entities that use the textures. Now, we initialize the
sprite with both texture and texture rect:

namespace
{
const std::vector<AircraftData> Table = initializeAircraftData();
}

Aircraft::Aircraft(Type type, const TextureHolder& textures,
 const FontHolder& fonts)
: mSprite(
 textures.get(Table[type].texture), // sf::Texture
 Table[type].textureRect) // sf::IntRect
, ...
{
 centerOrigin(mSprite);
 ...
}

Analogous steps have been applied for textures other than the one for the Eagle
aircraft. That's pretty much it; the new code should now directly work with texture
atlases! Visually, there will be no difference to what we had before.

Chapter 8

[189]

Low-level rendering
Besides the high-level convenience classes sf::Sprite, sf::Text and sf::Shape,
SFML provides a low-level graphics API which is more complicated to use, but
allows more flexibility. In the next section, we are going to look behind the scenes of
rendering and discuss corresponding techniques as they are implemented in SFML.

OpenGL and graphics cards
The graphics card architecture consists of many components. Notable are the
graphics processing unit (GPU), which performs computations on the graphics
card, and the video memory, which stores data such as textures. In contrast to their
counterparts CPU and RAM, graphics cards' components are highly optimized to
process 2D and 3D graphics.

SFML is built on top of the Open Graphics Library (OpenGL). OpenGL is, like
DirectX, a specification of an interface to the graphics card. Operating systems
provide an API written in C that allows applications to access graphic card
functionality. Newer graphics cards support higher OpenGL versions and thus have
the benefit of more modern features.

The way SFML is designed is heavily influenced by the underlying OpenGL
functionality. SFML itself uses an object-oriented approach and abstracts low-level
accesses away; therefore users can work with the library without even knowing
OpenGL. It is, however, advantageous to be aware of basic underlying techniques,
in order to see the whole picture. For specific requirements, it is also possible to mix
SFML and OpenGL.

Understanding render targets
A render target defines the place where 2D objects such as sprites, texts, or shapes
are rendered. In SFML, this boils down to the abstract base class sf::RenderTarget.
Apart from clear() and draw() methods, the class provides functionality to
manipulate the current view.

A render window is a concrete implementation of a render target. Render windows
represent application windows to which you can render graphical objects. In
addition, they provide facilities for input handling and configurations such as
V-Sync. The class sf::RenderWindow, which we have been using all the time,
inherits sf::RenderTarget and sf::Window.

Every Pixel Counts – Adding Visual Effects

[190]

A render texture is another realization of the render target concept. Here, you do not
draw objects to a window, but to a texture. Render textures can be used to render a
scene that is not immediately displayed, but can be further processed—for example,
saved to a file or edited as a whole. SFML provides the class sf::RenderTexture
which derives from sf::RenderTarget. Notable is the method getTexture() which
returns const sf::Texture& with the render texture's current contents. As with
render windows, you must call display() before you can actually use that texture.
This step is often forgotten.

Texture mapping
We have worked a lot with textures in the game, but not explained how they are
actually displayed on the screen. Texel (texture element) is the term used for pixels
in texture space. The case where every texel in the texture corresponds to a pixel on
the window is an exception. In general, transforms of the graphical object and the
view affect the way how pixels are displayed on the screen.

Every graphical object on the screen consists of vertices. A vertex is a point that
defines the geometry of the object. Multiple vertices are grouped to geometric
primitives such as lines, triangles, rectangles, and so on. In most cases, we have
rectangular objects (such as sf::Sprite) that have four vertices, namely the four
corners of the rectangle. Polygons (modeled by sf::Shape) allow a different number
of vertices.

Each vertex consists of target coordinates (the position of the point on the render
target, in world units) and texture coordinates (the position in the source texture, in
texels). Texture coordinates are sometimes also called UV coordinates, because the
variables u and v are often used instead of x and y. The process of texture mapping
specifies how target coordinates are mapped onto texture coordinates, in order
to know which pixels have to be drawn where. This mapping is clarified in the
following figure:

Chapter 8

[191]

This figure only shows an aligned rectangle in the texture, the proportions of which
are evenly maintained in the render target. In fact, you have a lot of freedom to
place your vertices. This may result in distorted textures, but, you should just
experiment yourself.

SFML provides the class sf::Vertex that represents a vertex of the geometric object.
It has the following public member variables:

•	 sf::Vector2f position: the target coordinates (x, y)
•	 sf::Vector2f texCoords: the texture coordinates (u, v)
•	 sf::Color color: used to colorize the vertex

Vertex arrays
All geometric primitives except points consist of more than one vertex. A vertex array
is a collection of vertices that are drawn together. A vertex array need not necessarily
represent a single geometric object; it may also store the vertices of many objects.

In SFML, the class sf::VertexArray is used to model vertex arrays. It is a thin
wrapper around std::vector<sf::Vertex> and derives from sf::Drawable. We
can add new vertices to the end of the array, and access existing vertices using the
index operator.

The primitive type determines how the vertices are interpreted to form a geometric
primitive. For example, the primitive type sf::Triangles interprets three
subsequent vertices as one triangle, the next three vertices as another triangle, and so
on. sf::Quads interprets four subsequent vertices as a quadrilateral. When we work
with rectangles, we will be using the sf::Quads primitive type.

A small, incomplete example should give you a rough idea how vertices, vertex
arrays and render targets interact:

sf::Vertex v;
v.position = sf::Vector2f(x, y);
v.texCoords = sf::Vector2f(u, v);
v.color = sf::Color::Blue;

sf::VertexArray vertices;
vertices.setPrimitiveType(sf::Quads);
vertices.append(v);
...

Every Pixel Counts – Adding Visual Effects

[192]

sf::RenderTarget& target = ...;
target.draw(vertices);

The main reason to use sf::VertexArray instead of high-level classes such as
sf::Sprite is performance. The rendering performance primarily depends on the
number of draw calls, that is, the number of times the CPU invokes a draw routine
on the graphics card. While sprites are easier to use and good enough for many
cases, there are situations where we need to exploit the possibilities of vertex arrays.

Particle systems
Visual effects such as fire, rain, or smoke have one thing in common: they have a
continuously changing nature and cannot be meaningfully described using a single
sprite. Even an animated sprite is too limited for many cases, because such effects
should come with certain randomness. Fire may have sparks flying in arbitrary
directions; smoke may be blown away by the wind.

This is why we need another model to visualize these sorts of effects: particles. A
particle is a tiny object that makes up a part of the whole effect; you can imagine it as
a small sprite. Each particle by itself looks boring, only in combination do they lead
to an emergent visual pattern such as fire.

A particle system is a component that manages the behavior of many particles to
form the desired effect. Emitters continuously create new particles and add them
to the system. Affectors affect existing particles with respect to motion, fade-out,
scaling, and many other properties.

Given a particle texture, we could model each particle as a sprite; the particle
system could contain std::vector<sf::Sprite>. The problem with this approach
is that we have to draw each sprite separately. Since particle systems may easily
consist of many thousands of particles, thousands of draw calls on the GPU are not
unrealistic—per frame. Now consider that not only one effect must be rendered;
depending on the game, the screen may contain dozens of particle systems. Clearly,
we need a technique to reduce the amount of draw calls.

This is where vertex arrays come into play. We model each particle as an object with
four vertices. The vertices of all particles are inserted into a single vertex array. This
gives us a method to draw everything with only one draw call.

Chapter 8

[193]

Particles and particle types
In our game, we want to create an effect for the burned propellant and the emitted
smoke of homing missiles. Both can be handled in a similar way, the main difference
is the color. Of course, it would also be possible to use different textures. The final
result is shown in the following screenshot. You don't recognize the single particles
anymore, the trace of the missiles looks like a continuous stream.

Every Pixel Counts – Adding Visual Effects

[194]

We define a class for particles that stores the position, color, and the time until the
particle disappears. The Particle::Type data type is used to differ between smoke
and propellant effects.

struct Particle
{
 enum Type
 {
 Propellant,
 Smoke,
 ParticleCount
 };

 sf::Vector2f position;
 sf::Color color;
 sf::Time lifetime;
};

We also create data tables for particles, in order to easily change their attributes in a
central place. The required structure is shown here, the rest is as you know it, from
the entity data tables:

struct ParticleData
{
 sf::Color color;
 sf::Time lifetime;
};

Particle nodes
To render the particles on screen, they need to be part of the scene graph. We will to
create a class ParticleNode, which can be inserted into the scene and which acts as a
particle system. The class definition looks as follows:

class ParticleNode : public SceneNode
{
 public:
 ParticleNode(
 Particle::Type type,
 const TextureHolder& textures);
 void addParticle(
 sf::Vector2f position);
 Particle::Type getParticleType() const;
 virtual unsigned int getCategory() const;
 ...

Chapter 8

[195]

 private:
 std::deque<Particle> mParticles;
 const sf::Texture& mTexture;
 Particle::Type mType;

 mutable sf::VertexArray mVertexArray;
 mutable bool mNeedsVertexUpdate;
};

Many methods for drawing and updating are already known from other
SceneNode definitions, thus not listed here. getCategory() returns
Category::ParticleSystem, a separate category. getParticleType() returns the
particle type (smoke or propellant) which is stored in mType.
A new addition is addParticle(), which looks up the data table and inserts a
particle into the system:

void ParticleNode::addParticle(sf::Vector2f position)
{
 Particle particle;
 particle.position = position;
 particle.color = Table[mType].color;
 particle.lifetime = Table[mType].lifetime;

 mParticles.push_back(particle);
}

In the update method, we first remove all particles of which the lifetime has
expired. Since all particles have the same initial lifetime, older particles are stored
at the beginning of the container. Therefore, it is enough to remove the front element
of mParticles as long as its lifetime is smaller or equal to zero (this is also the reason
why we employed std::deque). In the middle part of the function, we decrease
the lifetime of each particle by the current frame time. Finally, every time the
particle container is modified, we enable a flag to express that the render geometry
must be recomputed:

void ParticleNode::updateCurrent(sf::Time dt, CommandQueue&)
{
 while (!mParticles.empty()
 && mParticles.front().lifetime <= sf::Time::Zero)
 mParticles.pop_front();

 FOREACH(Particle& particle, mParticles)
 particle.lifetime -= dt;

 mNeedsVertexUpdate = true;
}

Every Pixel Counts – Adding Visual Effects

[196]

The rendering part is shown next. The mVertexArray member is declared
mutable, since it is not a part of the object's logical state. This allows optimizations:
we only rebuild the vertex array if something has changed, and directly before
drawing (instead of after each update). This way, if the particle system is updated
multiple times in a row before being drawn, we do not needlessly compute the
vertices each time.

After checking whether we need to recompute the vertices, we set the
sf::RenderStates texture to our particle texture and draw the vertex array:

void ParticleNode::drawCurrent(sf::RenderTarget& target,
sf::RenderStates states) const
{
 if (mNeedsVertexUpdate)
 {
 computeVertices();
 mNeedsVertexUpdate = false;
 }

 states.texture = &mTexture;
 target.draw(mVertexArray, states);
}

The rebuild of the vertex array is shown in the following code snippet. First, we save
the texture's full and half sizes in variables, to determine the vertex positions more
easily. For size, the constructor syntax is used rather than =, because a sf::Vector2i
(vector of integers) is converted to sf::Vector2f (vector of floats). We clear the vertex
array, removing all vertices in it, but keeping the memory allocated:

void ParticleNode::computeVertices() const
{
 sf::Vector2f size(mTexture.getSize());
 sf::Vector2f half = size / 2.f;

 mVertexArray.clear();

For each particle, we compute the ratio between the remaining and total lifetime—
this ratio in [0, 1] is used to set the particle's alpha value in [0, 255]. The alpha value
determines the transparency; therefore our particles fade out continuously until they
are completely invisible:

FOREACH(const Particle& particle, mParticles)
{
 sf::Vector2f pos = particle.position;
 sf::Color c = particle.color;

Chapter 8

[197]

 float ratio = particle.lifetime.asSeconds()
 / Table[mType].lifetime.asSeconds();
 c.a = static_cast<sf::Uint8>(255 * std::max(ratio, 0.f));

Now the interesting part: we add four vertices for each particle, one in every corner
of our rectangle. The first two arguments denote the target coordinates; the next two
denote the texture coordinates. The fifth argument is the vertex color. Since we need
no gradient inside a particle, the color is uniform for all four vertices.

 addVertex(pos.x - half.x, pos.y - half.y, 0.f, 0.f, c);
 addVertex(pos.x + half.x, pos.y - half.y, size.x, 0.f, c);
 addVertex(pos.x + half.x, pos.y + half.y, size.x, size.y, c);
 addVertex(pos.x - half.x, pos.y + half.y, 0.f, size.y, c);
}

The function to add vertices itself is not very interesting—it builds sf::Vertex and
adds it to sf::VertexArray:

void ParticleNode::addVertex(float worldX, float worldY,
 float texCoordX, float texCoordY,
 const sf::Color& color) const
{
 sf::Vertex vertex;
 vertex.position = sf::Vector2f(worldX, worldY);
 vertex.texCoords = sf::Vector2f(texCoordX, texCoordY);
 vertex.color = color;

 mVertexArray.append(vertex);
}

Emitter nodes
Because particles should be emitted in the places where the missiles are located, it
stands to reason that emitters should be attached to missiles. Once more, our scene
graph comes in very handy: we can create a new scene node EmitterNode for
emitters and attach it to the Projectile node of the missile.

EmitterNode is rather simple, its class definition is shown in the following code
snippet:

class EmitterNode : public SceneNode
{
 public:
 explicit EmitterNode(Particle::Type type);
 ...

Every Pixel Counts – Adding Visual Effects

[198]

 private:
 sf::Time mAccumulatedTime;
 Particle::Type mType;
 ParticleNode* mParticleSystem;
};

The pointer mParticleSystem points to the ParticleNode into which the
EmitterNode emits particles. Initially, it is nullptr. In the update function, we
emit particles if the particle system has already been initialized. Otherwise, we
need to find the system corresponding to the emitter. "Corresponding" means both
use the same particle type, for example, Particle::Smoke. We send a command
through the scene graph to find the right particle system. It sets the member variable
mParticleSystem to the found ParticleNode:

void EmitterNode::updateCurrent(sf::Time dt,
 CommandQueue& commands)
{
 if (mParticleSystem)
 {
 emitParticles(dt);
 }
 else
 {
 auto finder = [this] (ParticleNode& container, sf::Time)
 {
 if (container.getParticleType() == mType)
 mParticleSystem = &container;
 };

 Command command;
 command.category = Category::ParticleSystem;
 command.action = derivedAction<ParticleNode>(finder);

 commands.push(command);
 }
}

After the emitter has been linked to a particle system, the method to emit particles
becomes interesting. We set an emission rate and try to achieve it as closely as
possible. Since this is not usually equal to our logic frame rate, the amount of emitted
particles per frame differs. To cope with that problem, we again use accumulators,
as we did for the logic game loop in Chapter 1, Making a Game Tick. We emit particles
as long as the emission interval still fits into the current frame. The remaining time is
stored in mAccumulatedTime and is carried over to the next frame.

Chapter 8

[199]

void EmitterNode::emitParticles(sf::Time dt)
{
 const float emissionRate = 30.f;
 const sf::Time interval = sf::seconds(1.f) / emissionRate;

 mAccumulatedTime += dt;

 while (mAccumulatedTime > interval)
 {
 mAccumulatedTime -= interval;
 mParticleSystem->addParticle(getWorldPosition());
 }
}

Why do we separate EmitterNode and ParticleNode? Emitters can be considered
purely logical scene nodes that emit particles into particle systems. They are not
directly related to rendering. A particle system, however, manages the update and
rendering of particles. With our current design, we can have multiple emitters
that emit into a single particle system. We only need one ParticleNode instance
per effect, even with dozens of emitters. Furthermore, both scene nodes can have
different transforms. An EmitterNode is attached to a missile, emitting particles that
take the missile's transform into account. As soon as particles have been emitted,
they are managed by the ParticleNode, which uses the global coordinate system. It
is reasonable that particles, once created, are no longer influenced by the orientation
of the object that created them.

Affectors
As a counterpart to emitters, we also mentioned affectors that affect particles during
their lifetime. Affectors can be modeled as functions that are applied to each particle
every frame—a meaningful abstraction might therefore be:

std::function<void(Particle&, sf::Time)>

This function takes the particle to affect and the frame time as parameters. The
ParticleNode would store a list of affectors and apply them to the particles during
its update. We have not implemented affectors in our code since we don't need their
functionality at the moment, but you are free to extend the system however you like!

Every Pixel Counts – Adding Visual Effects

[200]

Embedding particles in the world
That was it for the definition of emitters and particle systems. We now add these
nodes to the scene graph. First the emitter in the Projectile constructor; we set its
position to the tail of the missile (which is half the height away from the center):

if (isGuided()) // if this projectile is a missile
{
 std::unique_ptr<EmitterNode> smoke(
 new EmitterNode(Particle::Smoke));
 smoke->setPosition(0.f, getBoundingRect().height / 2.f);
 attachChild(std::move(smoke));
}

The particle system is attached to a layer node directly under the scene graph's root.
Because we want particles and projectiles to appear below the airplanes, we split the
existing scene layer Air into two layers LowerAir and UpperAir. In the following,
you see an excerpt of World::buildScene():

std::unique_ptr<ParticleNode> smokeNode(
 new ParticleNode(Particle::Smoke, mTextures));
mSceneLayers[LowerAir]->attachChild(std::move(smokeNode));

So far we have only considered the smoke effect, but the propellant fire works
in exactly the sameway. By adding the fire particle system after the smoke, it is
rendered later, so the burning propellant is still visible and not covered by smoke.

Animated sprites
Alright, now we have got particles, let's accompany them with an animated
explosion. So far our aircraft have just disappeared when you shot them down.
That's not satisfying. When you destroy something like an aircraft, you expect a huge
explosion, don't you?

Chapter 8

[201]

We already had a look at texture rectangles and sprite sheets. This knowledge will
be used to build our animation. An animation consists of several frames, and we
represent these frames as separate rectangles inside one larger texture, similar to
what we now do with entities. Do not confuse animation frames with the game loop
frames—the former represents just a state of an animation, which usually lasts for
many game loop iterations.

This is the sprite sheet we use for the animation. How does it work? As time elapses,
we move the texture rect from one frame to the other, until the animation is finished.
We do not define the animation class as a scene node but only as a drawable and a
transformable object. It can then be used by whatever scene node we want, which
gives a little more flexibility when and where we can use it.

class Animation : public sf::Drawable, public sf::Transformable
{
 public:
 ...

 private:
 ...

 sf::Sprite mSprite;
 sf::Vector2i mFrameSize;
 std::size_t mNumFrames;
 std::size_t mCurrentFrame;
 sf::Time mDuration;
 sf::Time mElapsedTime;
 bool mRepeat;
};

Every Pixel Counts – Adding Visual Effects

[202]

We will have a look at the functions later. As you can see we use internally a sprite.
We could do without a sprite if we so desired, but it defines a lot of functions that
we want to use, making our lives easier. After that comes the frame size, this vector
defines the size of one frame for us. We have the values concerning frames, how
many frames and what frame we are currently drawing. Lastly we have the time for
the animation, the total duration, and the elapsed time since the last frame change.

So let us start looking at the actual implementation. Most of our logic is performed
in the Animation::update() function, so it grows quite big. Because of that the
function is explained in the following sections.

void Animation::update(sf::Time dt)
{
 sf::Time timePerFrame = mDuration /
static_cast<float>(mNumFrames);
 mElapsedTime += dt;

 sf::Vector2i textureBounds(mSprite.getTexture()->getSize());
 sf::IntRect textureRect = mSprite.getTextureRect();

 if (mCurrentFrame == 0)
 textureRect = sf::IntRect(0, 0, mFrameSize.x,
mFrameSize.y);

In the previous code, we already have the sprite sheet divided per frame and we
know how big one frame is. We have to calculate how much time needs to elapse
before we progress to the next frame. If we are on the first frame, then our texture
rect should start at the beginning of the animation sprite sheet:

 while (mElapsedTime >= timePerFrame && (mCurrentFrame <=
mNumFrames || mRepeat))
 {

So while time has elapsed since we last updated, and is enough to count as a new
frame, and we haven't reached the end of the animation, we perform an iteration:

 textureRect.left += textureRect.width;

 if (textureRect.left + textureRect.width > textureBounds.x)
 {
 textureRect.left = 0;
 textureRect.top += textureRect.height;
 }

 mElapsedTime -= timePerFrame;
 if (mRepeat)

Chapter 8

[203]

 {
 mCurrentFrame = (mCurrentFrame + 1) % mNumFrames;

 if (mCurrentFrame == 0)
 textureRect = sf::IntRect(0, 0, mFrameSize.x,
mFrameSize.y);
 }
 else
 {
 mCurrentFrame++;
 }
 }

 mSprite.setTextureRect(textureRect);
}

In each iteration, we move the resulting texture rect quite easily. We move it a step
to the right, all the way until we reach the end, if that occurs we move the rect down
one line and start again from the start. Lastly is just some book-keeping for what
frame we are on, so we know if we have reached the end of the animation.

This is the core of the animation and covers everything we need. It's very much
packed together in the update function, but it is all required.

So we add it now to the aircraft such that it explodes when destroyed. Let's start with
the Aircraft constructor.

mExplosion.setFrameSize(sf::Vector2i(256, 256));
mExplosion.setNumFrames(16);
mExplosion.setDuration(sf::seconds(1));

centerOrigin(mExplosion);

Here we set up our explosion. We define the size of one frame of the animation,
the number of frames and the duration we want it to run for. We also center the
animation sprite's origin, so that it is easier to position.

We will have to branch in our code to render either the normal aircraft or the
explosion. It's not much but we still have to do it:

if (isDestroyed() && mShowExplosion)
 target.draw(mExplosion, states);
else
 target.draw(mSprite, states);

Every Pixel Counts – Adding Visual Effects

[204]

We cannot simply check for isDestroyed(), because we have no way of
distinguishing between airplanes that are shot down or that leave the screen. We
only want the former to explode—hence the Boolean variable mShowExplosion.

Also we have to remember that the animation must be updated or else it
won't progress. The return statement prevents destroyed aircraft from further
logic processing:

if (isDestroyed())
{
 checkPickupDrop(commands);
 mExplosion.update(dt);
 return;
}

This would run perfectly, except that right now the aircraft would be removed
before the explosion would even be shown. We have to make sure the entity stays
alive until the animation is over. We mark an aircraft for removal, as soon as it
is destroyed, and either no explosion is shown (when it leaves the screen) or the
explosion is finished:

bool Aircraft::isMarkedForRemoval() const
{
 return isDestroyed()
 && (mExplosion.isFinished() || !mShowExplosion);
}

And now we finally have our properly exploding planes, which give much more
immersion to the game.

The Eagle has rolled!
It would be nice if the player's aircraft, the Eagle, turned around its roll axis (from
nose to tail) when moving sideways. If the player moves left or right, the plane's
inclination will change. Here, we don't need a full-fledged animation. It is enough to
check whether the X velocity is negative (flying left) or positive (flying right), and to
set the texture rect accordingly.

In the aircraft data table, we store for each plane a Boolean denoting whether it
supports a roll animation. We assume that if it does, there are two texture rectangles
located to right of the original rect, with the same size.

void Aircraft::updateRollAnimation()
{
 if (Table[mType].hasRollAnimation)

Chapter 8

[205]

 {
 sf::IntRect textureRect = Table[mType].textureRect;

 // Roll left: Texture rect offset once
 if (getVelocity().x < 0.f)
 textureRect.left += textureRect.width;

 // Roll right: Texture rect offset twice
 else if (getVelocity().x > 0.f)
 textureRect.left += 2 * textureRect.width;

 mSprite.setTextureRect(textureRect);
 }
}

Post effects and shaders
You know those big budget games with dedicated graphics programmers on them?
One of the techniques they use is something called post rendering or post effects. It's
an effect that is applied after the scene has already been rendered. Using that data,
we perform whatever visual effect we want on it. One way to create effects is using
shaders, which we will delve into later.

The first thing to cover is how to perform a post effect, how it works, and then we
will actually create an effect called bloom using shaders.

Fullscreen post effects
Well, the effect has to be applied to the whole screen, otherwise it is pretty useless.
That is why we define a specific PostEffect class in order to make this a bit easier.

class PostEffect
{
 public:
 virtual ~PostEffect();
 virtual void apply(const sf::RenderTexture& input,
 sf::RenderTarget& output) = 0;

 static bool isSupported();

 protected:
 static void applyShader(const sf::Shader& shader,
 sf::RenderTarget& output);
};

Every Pixel Counts – Adding Visual Effects

[206]

This is an abstract class with some helper functions. apply() is the virtual
function we have to define our effect code in. The isSupported() function
checks if the graphics card supports post effects. This is only an alias for
sf::Shader::isAvailable(); unless your GPU is ancient, it should be supported.
The last function is applyShader(), and it is just a simple helper used internally by
the derived class, so you don't have to bother with making sure you render over the
entire output.

Now you might notice that the input argument to the post effect is a render texture.
But up until now we have rendered everything to a render window. As you might
remember, the post effect is applied on the resulting scene of the game. So we have
to render the game graphics to an immediate buffer.

So in our World class, we create a render texture that we can use as this scene buffer:

mSceneTexture.create(mTarget.getSize().x, mTarget.getSize().y);

Not so very different than from creating a window, simpler even. We'll have to
change our rendering code in the world, but thanks to the sf::RenderTarget
interface this is an easy task. In this code, we also apply the check to see if post
effects work on this computer:

void World::draw()
{
 if (PostEffect::isSupported())
 {
 mSceneTexture.clear();
 mSceneTexture.setView(mWorldView);
 mSceneTexture.draw(mSceneGraph);
 mSceneTexture.display();
 mBloomEffect.apply(mSceneTexture, mTarget);
 }
 else
 {
 mTarget.setView(mWorldView);
 mTarget.draw(mSceneGraph);
 }
}

Chapter 8

[207]

We will get to the bloom effect later. We still have the PostEffect::applyShader()
function left. This is where we perform the actual rendering, using a shader we will
explain shortly:

void PostEffect::applyShader(const sf::Shader& shader,
sf::RenderTarget& output)
{
 sf::Vector2f outputSize = static_cast<sf::Vector2f>(output.
getSize());

 sf::VertexArray vertices(sf::TrianglesStrip, 4);
 vertices[0] = sf::Vertex(sf::Vector2f(0, 0),
sf::Vector2f(0, 1));
 vertices[1] = sf::Vertex(sf::Vector2f(outputSize.x, 0),
sf::Vector2f(1, 1));
 vertices[2] = sf::Vertex(sf::Vector2f(0, outputSize.y),
sf::Vector2f(0, 0));
 vertices[3] = sf::Vertex(sf::Vector2f(outputSize),
sf::Vector2f(1, 0));

 sf::RenderStates states;
 states.shader = &shader;
 states.blendMode = sf::BlendNone;

 output.draw(vertices, states);
}

What we perform here is that we setup a quad using two triangles. This quad covers
the entire target output. Here you see us define an instance of the sf::RenderStates
class. The purpose of this class is to convey settings to the draw() call: the shader
member sets the shader we want to use, while blendMode specifies the way how
colors of the object and the render target are blended. With sf::BlendNone, we choose
not to blend the colors, but to override all previous pixels in the render target.

You might notice that we are using sf::TriangleStrip, but
still create a quad from it. Triangles are most often in favor as the
primitive type quad has been declared obsolete in later versions of
OpenGL. Luckily it is still backwards compatible, so you can use it
in SFML if you want to get something up and running fast. For the
difference between sf::Triangle and sf::TriangleStrip
please look at the SFML documentation.

Every Pixel Counts – Adding Visual Effects

[208]

Shaders
So what is this word we have mentioned, but not really explained? Shaders
themselves deserve their own book in order to be explained fully.
Previously the graphics pipeline has always been fixed. You put in vertices and you
got out a fixed result based on that, you could only manipulate a very limited set of
data and operations on the vertices.
Eventually came the programmable pipeline, for which there are a lot of details we
unfortunately cannot cover. A shader in this pipeline is a program that is executed
on the data you provide to the pipeline: vertices, textures, and much more. The
key with shaders that makes them so desirable to use is that these operations are
performed on the GPU, which is highly optimized. The CPU can then be used for
other computations at the same time.
There are several different shader types, each with different purposes; however,
SFML provides support for only vertex and fragment shaders. Since the API uses
OpenGL as its backend, it also uses OpenGL shaders so the language used for
writing the shaders is GL Shading Language (GLSL). We are afraid that this book
won't be able to cover this language, but the resources on OpenGL's own webpage
www.opengl.org are very helpful for this endeavor.

The bloom effect
Bloom is an effect which tries to mimic a defect in our eyes and cameras.

Chapter 8

[209]

The effect has been a bit exaggerated in this demonstration picture, but this is what
we are going for. When really strong light enters our eyes, it bleeds out over other
parts that are not actually lit by the light. This is a visual artifact that actually does
not exist in reality.

So how will we do this by using shaders? We are achieving the bloom effect in
multiple shader passes. The output of a shader program can only be used as input in
the next pass, which limits the possible operations per pass. Our bloom shader will
consist of multiple steps; each step is implemented in its own GLSL program.

Let us start by defining a source image that we have as input to our bloom effect.

Every Pixel Counts – Adding Visual Effects

[210]

The first shader is the brightness pass; we filter out what is bright and what is not
bright in the image by a simple threshold. The resulting image is mostly black:

Here we can see the different bright colors that should receive the bloom effect.
Mostly, it is the bullets that we have made white just for this purpose.

Chapter 8

[211]

If we simply added these colors to the scene colors, we wouldn't get the bloom effect.
We would just get a very bright screen. That's not enough. We have to smooth out
the texture. This is done by scaling down the texture and performing a Gaussian
blur on it. This is done twice, so we end up with a result that is a quarter size of the
original texture.

Every Pixel Counts – Adding Visual Effects

[212]

Now it's starting to look like something. What we do next is to add the blurred
textures together, and add those to the original scene that we received at the start.
For demonstration purposes, we cranked up the effect to make it impossible to miss.
Normally you would want this effect to be more subtle.

Even the fire exhaust particles on the missile get some love from the post effect. After
some further tweaking, you have a game that can really stand out.

So let's finally look at the code that is used to implement this effect. We are sorry that
we will not be able to cover the shaders for you. But each one of them does one thing,
so it's easy to get a grasp about what is happening in those files if you read them.

We define a class called BloomEffect that inherits and implements the abstract
PostEffect class. We override the virtual function apply():

void BloomEffect::apply(const sf::RenderTexture& input,
sf::RenderTarget& output)
{
 prepareTextures(input.getSize());

Chapter 8

[213]

 filterBright(input, mBrightnessTexture);

 downsample(mBrightnessTexture, mFirstPassTextures[0]);
 blurMultipass(mFirstPassTextures);

 downsample(mFirstPassTextures[0], mSecondPassTextures[0]);
 blurMultipass(mSecondPassTextures);

 add(mFirstPassTextures[0], mSecondPassTextures[0],
 mFirstPassTextures[1]);
 mFirstPassTextures[1].display();
 add(input, mFirstPassTextures[1], output);
}

Here is the whole effect in its glory, well simplified. It goes through each step
we talked about before. The only thing out of the ordinary here is the
prepareTextures() function. This function sets up and creates the render textures
we will need internally to create the effect. Of course, this could have been moved to
the constructor, but this way the effect will always adapt to the size of the input.

void BloomEffect::prepareTextures(sf::Vector2u size)
{
 if (mBrightnessTexture.getSize() != size)
 {
 mBrightnessTexture.create(size.x, size.y);
 mBrightnessTexture.setSmooth(true);

 mFirstPassTextures[0].create(size.x / 2, size.y / 2);
 mFirstPassTextures[0].setSmooth(true);
 mFirstPassTextures[1].create(size.x / 2, size.y / 2);
 mFirstPassTextures[1].setSmooth(true);

 mSecondPassTextures[0].create(size.x / 4, size.y / 4);
 mSecondPassTextures[0].setSmooth(true);
 mSecondPassTextures[1].create(size.x / 4, size.y / 4);
 mSecondPassTextures[1].setSmooth(true);
 }
}

We have different texture sizes because the down sample process is the scaling down
of the texture. So the texture itself has to be smaller as well. The rest of the functions
perform the steps we explained before.

Every Pixel Counts – Adding Visual Effects

[214]

Here, you see the sf::Shader class in action. A reference to it is retrieved from a
resource holder dedicated to shaders. The method sf::Shader::setParameter()
passes values from C++ to the GLSL program. In the shader, you can access these
values. applyShader() eventually performs the rendering and display() updates
the render target.

void BloomEffect::filterBright(const sf::RenderTexture& input,
sf::RenderTexture& output)
{
 sf::Shader& brightness = mShaders.get(Shaders::BrightnessPass);

 brightness.setParameter("source", input.getTexture());
 applyShader(brightness, output);
 output.display();
}

void BloomEffect::blurMultipass(RenderTextureArray& renderTextures)
{
 sf::Vector2u textureSize = renderTextures[0].getSize();

 for (std::size_t count = 0; count < 2; ++count)
 {
 blur(renderTextures[0], renderTextures[1], sf::Vector2f(0.f, 1.f /
textureSize.y));
 blur(renderTextures[1], renderTextures[0], sf::Vector2f(1.f /
textureSize.x, 0.f));
 }
}

void BloomEffect::blur(const sf::RenderTexture& input,
sf::RenderTexture& output, sf::Vector2f offsetFactor)
{
 sf::Shader& gaussianBlur = mShaders.get(Shaders::GaussianBlurPass);

 gaussianBlur.setParameter("source", input.getTexture());
 gaussianBlur.setParameter("offsetFactor", offsetFactor);
 applyShader(gaussianBlur, output);
 output.display();
}

void BloomEffect::downsample(const sf::RenderTexture& input,
sf::RenderTexture& output)
{
 sf::Shader& downSampler = mShaders.get(Shaders::DownSamplePass);

Chapter 8

[215]

 downSampler.setParameter("source", input.getTexture());
 downSampler.setParameter("sourceSize", sf::Vector2f(input.
getSize()));
 applyShader(downSampler, output);
 output.display();
}

void BloomEffect::add(const sf::RenderTexture& source, const
sf::RenderTexture& bloom, sf::RenderTarget& output)
{
 sf::Shader& adder = mShaders.get(Shaders::AddPass);

 adder.setParameter("source", source.getTexture());
 adder.setParameter("bloom", bloom.getTexture());
 applyShader(adder, output);
}

If you find shaders interesting we recommend you read up on them. There is a lot of
good information available on the subject, and it's a great tool to have to hand. Also
definitely have a look at the shaders we have written.

Here's an example of a good and popular tutorial on GLSL:

http://www.lighthouse3d.com/tutorials/glsl-tutorial

Summary
Meanwhile, our aircraft shooter now deserves the name "game", as it is no longer
some half-hearted sprites put together. We have seen a lot of modern graphical and
rendering techniques and how they fit in our game. After an in-depth look at the
rendering process (render targets, textures, vertices), we integrated a particle system
for the missile, an animation for the explosion, and a shader for the bloom effect on
the whole scene.

Note that there exist already implementations for many of the techniques shown in
this chapter. In case you don't want to reinvent the wheel, you could have a look at
the Thor library, which is developed by one of the authors of this book. Thor extends
SFML by providing fully configurable particle systems and animations. Other
features include color gradients, input and resource handlers, timer utilities, and
much more. The library is available at www.bromeon.ch/libraries/thor.

In the next chapter we will cover how to play audio using SFML's Audio module.
We will go through both streaming music and sound effects.

Cranking Up the
Bass – Music and

Sound Effects
Since the beginning of video games, sound has been a central media in games.
Many games can be recognized only by listening to them. In the last few years,
game industries have chosen to neglect audio in favor of better graphics; yet audio
takes a very important part in a wide range of games. Independent studios in
particular often put a huge effort in making games unique in their art style, which
includes audio, graphics, and story. If used appropriately, music themes and sounds
can have a tremendous impact on the atmosphere conveyed by a game.

In this chapter, we are going to cover the technical background of embedding audio
into a game, taking the opportunity to have a closer look at SFML's Audio module.
We are going to do the following:

•	 Play different music themes in the background
•	 Play sound effects that correspond to game events such as explosions
•	 Position sound effects in the 2D world to convey a feeling of spatial sound

Cranking Up the Bass – Music and Sound Effects

[218]

Music themes
First, we want to play background music depending on the state we are currently in.
We have prepared two themes: One for the menu, and one for the game itself. We'll
define a corresponding enum:

namespace Music
{
 enum ID
 {
 MenuTheme,
 MissionTheme,
 };
}

We'll then create a class that has an interface dedicated to music playing:

class MusicPlayer : private sf::NonCopyable
{
 public:
 MusicPlayer();

 void play(Music::ID theme);
 void stop();

 void setPaused(bool paused);
 void setVolume(float volume);

 private:
 sf::Music mMusic;
 std::map<Music::ID, std::string> mFilenames;
 float mVolume;
};

The method names should be self-explanatory. We have a single sf::Music instance
that represents the currently-played music. The mFilenames variable maps music
IDs to filenames and is initialized in the constructor. The volume takes a value
between 0 and 100; we'll initialize it to full volume. As SFML does not support
the MP3 format, we'll use OGG for our files. If you are wondering how to convert
between different formats, one possibility is the Audacity software (http://
audacity.sourceforge.net).

MusicPlayer::MusicPlayer()
: mMusic()
, mFilenames()
, mVolume(100.f)
{
 mFilenames[Music::MenuTheme] = "Media/Music/MenuTheme.ogg";
 mFilenames[Music::MissionTheme] = "Media/Music/MissionTheme.ogg";
}

Chapter 9

[219]

Loading and playing
SFML uses the sf::Music class to deal with music themes. As already mentioned
in Chapter 2, Keeping Track of Your Textures – Resource Management, this class behaves
differently from other resource classes. Since music themes are usually long and may
require a lot of memory, they are not loaded at once into RAM. Instead, sf::Music
streams them from the source media, usually the hard disk. This means that only
a short chunk is kept in memory at one time, with new ones loaded as the theme
progresses. As a result, the source media must be available for as long as the music
is played. For files, this means that you should not unplug an external storage device
with the music on it. You can also load resources from different sources such as the
RAM; in the case of music, you are responsible for their constant availability.

In the MusicPlayer::play() method, the path of the desired music is looked up in
the map. The theme is loaded and possible loading errors are checked. The streaming
nature is also the reason why the method of sf::Music to open a theme from the
hard disk is named openFromFile() and not loadFromFile().

void MusicPlayer::play(Music::ID theme)
{
 std::string filename = mFilenames[theme];

 if (!mMusic.openFromFile(filename))
 throw std::runtime_error("Music " + filename + " could not be
loaded.");

 mMusic.setVolume(mVolume);
 mMusic.setLoop(true);
 mMusic.play();
}

At the end, you can see some new statements. The setVolume() method sets the
music's volume to a value in the range [0, 100], with 0 being mute and 100 being
the maximum volume. The setLoop() method specifies whether the theme is played
again as soon as its end is reached; background themes are usually looped. The
play() method eventually starts the music. Since music and sound effects use their
own threads in SFML, you don't have to update them continuously. However, you
have to keep the sf::Music object alive as long as the music is being played.

Cranking Up the Bass – Music and Sound Effects

[220]

Music themes can be stopped or paused; for this purpose, sf::Music provides the
stop() and pause() methods. If a theme is paused, you can resume it from the time
where it was paused. A stopped music, in contrast, is replayed from the beginning. If
we call openFromFile(), the music will automatically be stopped. The getStatus()
method can be used to check which state the music is in. It returns one of the three
enumerators in the sf::Music scope: Playing, Paused, or Stopped.

void MusicPlayer::stop()
{
 mMusic.stop();
}

void MusicPlayer::setPaused(bool paused)
{
 if (paused)
 mMusic.pause();
 else
 mMusic.play();
}

Use case – In-game themes
We have seen that using music themes with SFML is very simple. We are now going
to invoke the MusicPlayer routines in the different states of our game. First, the
Application class gets a MusicPlayer instance and the State::Context class gets
a new pointer, named music, to the music player.

In the menu state's constructor, we play the menu theme:

MenuState::MenuState(StateStack& stack, Context context)
: State(stack, context)
, ...
{
 ...
 context.music->play(Music::MenuTheme);
}

We proceed analogously towards the game state, where we play the mission theme:

GameState::GameState(StateStack& stack, Context context)
: State(stack, context)
, ...
{
 ...
 context.music->play(Music::MissionTheme);
}

Chapter 9

[221]

If the application switches to one of these two states, the MusicPlayer::play()
function will be called. This stops the current theme and results in a new theme
being played.

When the user pauses the game, we would like the music to be paused as well.
This can be handled in the PauseState constructor. We also define the PauseState
destructor which resumes the music. As soon as the pause state is over, the music
shall no longer pause.

PauseState::PauseState(StateStack& stack, Context context)
: State(stack, context)
, ...
{
 getContext().music->setPaused(true);
}

PauseState::~PauseState()
{
 getContext().music->setPaused(false);
}

At this point, playing different music themes in our game is completely
operational. There are many ways to extend the current functionality: Playlists
that play a sequence of themes in order; or smooth theme transitions implemented
by continuous adaption of the music volume. Some modern games play different
channels of a theme depending on the situation: In a passage where you have to pay
attention, the music builds up tension; during an action scenario, the bass kicks in.

Sound effects
We have many gameplay events that can be represented by sounds: Fired machine
guns, launched missiles, explosions, collection of pickups, and so on. Unlike
music, sound effects are mostly very short. As a consequence, they can be loaded
completely into memory, and we can also use the raw WAV format for these files
without wasting too much memory. We are going to use the sf::SoundBuffer
resource class to store the audio samples for our sound effects.

Cranking Up the Bass – Music and Sound Effects

[222]

The following enumeration of sound effects is used in our game. We'll also create a
typedef for the resource holder of sf::SoundBuffer.

namespace SoundEffect
{
 enum ID
 {
 AlliedGunfire,
 EnemyGunfire,
 Explosion1,
 Explosion2,
 LaunchMissile,
 CollectPickup,
 Button,
 };
}

typedef ResourceHolder<sf::SoundBuffer, SoundEffect::ID>
SoundBufferHolder;

We implement a class for the sound effects, one similar to the MusicPlayer class:

class SoundPlayer : private sf::NonCopyable
{
 public:
 SoundPlayer();

 void play(SoundEffect::ID effect);
 void play(SoundEffect::ID effect,
 sf::Vector2f position);

 void removeStoppedSounds();
 void setListenerPosition(sf::Vector2f position);
 sf::Vector2f getListenerPosition() const;

 private:
 SoundBufferHolder mSoundBuffers;
 std::list<sf::Sound> mSounds;
};

The class contains a resource holder for the sound buffers and a list of currently
active sound effects. Since more than one sound effect may be active at the same
time, we need a container.

Chapter 9

[223]

Loading, inserting, and playing
In the constructor, we load all of the sound effects. We do this by calling the
SoundBufferHolder::load() function, in a similar fashion to the textures and fonts
we loaded in earlier chapters. The first argument we pass is a SoundEffect::ID
enumerator, the second is the filename:

SoundPlayer::SoundPlayer()
: mSoundBuffers()
, mSounds()
{
 mSoundBuffers.load(SoundEffect::AlliedGunfire,
 "Media/Sound/AlliedGunfire.wav");
 mSoundBuffers.load(SoundEffect::EnemyGunfire,
 "Media/Sound/EnemyGunfire.wav");
 ...
}

How do we play a sound? First, we have to look up the correct sound buffer by
calling SoundBufferHolder::get(). We add a new sf::Sound instance that uses
this sound buffer to the list of sounds. Then, we obtain a reference to the sound and
call sf::Sound::play() to play the sound:

void SoundPlayer::play(SoundEffect::ID effect)
{
 mSounds.push_back(sf::Sound(mSoundBuffers.get(effect)));
 mSounds.back().play();
}

Instead of the sf::Sound constructor, you can also use the setBuffer() method to
initialize the sound buffer.

You might wonder why we took the std::list STL container. The problem with
std::vector is that it may relocate existing sounds as we add new ones, thus
invalidating them mid-play. Also, we cannot efficiently remove random elements from
a std::vector container without changing the element order. It is also important that
we first insert the sound and then play it. Otherwise, a copy would be inserted, and the
local sound object would stop playing as soon as it left scope.

Cranking Up the Bass – Music and Sound Effects

[224]

Removing sounds
As soon as a sound effect has finished playing, there is no point of keeping it in the
list any longer. We therefore provide a removeStoppedSounds() method which
removes all sounds that have stopped. As soon as sf::Sound finishes playing, it
automatically switches to the Stopped state. The method is written in a simple way,
thanks to the std::list::remove_if() method and lambda expressions:

void SoundPlayer::removeStoppedSounds()
{
 mSounds.remove_if([] (const sf::Sound& s)
 {
 return s.getStatus() == sf::Sound::Stopped;
 });
}

Use case – GUI sounds
Our SoundPlayer object is instantiated as a member of the Application class,
similar to MusicPlayer. It is also added to the State::Context structure:

class State
{
 public:
 struct Context
 {
 ...
 MusicPlayer* music;
 SoundPlayer* sounds;
 };
};

If a button is clicked, we would like to play an appropriate sound effect. We'll add a
member SoundPlayer& mSounds to the Button class. We'll then adapt its constructor
to take an entire Context object and initialize the reference to the
sound player:

Button::Button(State::Context context)
: ...
, mSounds(*context.sounds)
{
 ...
}

Chapter 9

[225]

In the Button::activate() method, which is called when a button is clicked, we'll
play the corresponding sound:

void Button::activate()
{
 ...
 mSounds.play(SoundEffect::Button);
}

Several Button objects are instantiated in their corresponding state classes. As a
short reminder, here is an excerpt of the constructor of such a state class. The context
is passed to the buttons, which extracts the sound player from it. Additionally, the
music theme is played in that constructor:

MenuState::MenuState(StateStack& stack, Context context)
: State(stack, context)
, ...
{
 auto playButton = std::make_shared<GUI::Button>(context);
 auto settingsButton = std::make_shared<GUI::Button>(context);
 auto exitButton = std::make_shared<GUI::Button>(context);
 ...

 context.music->play(Music::MenuTheme);
}

Now you'll hear a sound every time you activate a button.

Sounds in 3D space
The most interesting part about sound effects is yet to come. An immersive
atmosphere only builds up if sounds are properly located within the game world.
Like graphical objects, sounds can have a position.

The coordinate system for sounds is three-dimensional. SFML's sound API works
with the sf::Vector3f type, a 3D vector with the members x, y, and z. SFML
internally uses Open Audio Library (OpenAL), an interface for low-level audio
functionality, which is also the origin of the sound spatialization concepts we are
going to discuss here. Spatializing sounds means nothing more than to locate them
in the 3D space, that is, to give them a spatial representation.

Cranking Up the Bass – Music and Sound Effects

[226]

The listener
The audition of spatial sound effects depends on the listener. A useful analogy is to
compare the listener with your head. The listener's location and orientation can be
described with the following three 3D vectors:

•	 Position: This vector describes where the listener is located in 3D space.
•	 Up: This vector tells where the top of the head points to. In SFML 2.0, the up

vector is hardcoded to (0, 1, 0), thus "up" lies always in the +Y direction.
•	 Direction: This vector expresses where the listener is "looking". It is a relative

vector, not a position in space. SFML uses a default direction of (0, 0, -1),
meaning that the listener is headed towards the negative Z axis. It must be
linearly independent from the up vector, so don't choose a direction with both
X and Z axes set to zero. The direction vector need not have a unit length.

up

position
direction

Y

Z

X

The orientation of the listener determines how sounds are perceived. If a sound
is played on the right-hand side of the listener, the user will hear it in its right
headphone. If you have a surround system, you will also be able to differentiate
between front and rear sounds.

SFML provides the sf::Listener class which has the setPosition() and
setDirection() methods to set the corresponding attributes. The sf::Listener
class contains only static methods, it is not intended to be instantiated.

Chapter 9

[227]

Attenuation factor and minimum distance
Close sounds are perceived louder than distant ones. The sound's volume is
inversely proportional to its distance from the listener (we have a 1/distance
relationship, also known as the inverse distance model).

The attenuation factor determines how fast a sound is attenuated depending on the
distance. The higher the factor, the weaker the sound becomes for a given distance or
the closer the sound has to get to be played at a given volume.

The minimum distance is the distance between the listener and the sound at which
100 percent volume is achieved. If the sound comes closer, the volume will not
increase anymore. If the sound goes further away, it will be attenuated.

The following figure should give you a better understanding of the perceived sound
volume depending on its distance to the listener. There are two cases: Distances
smaller than the minimum distance yield a constant volume of 100%, bigger
distances lead to attenuated sounds depending on the attenuation factor.

min distance
Distance

attenuated volume

100% volume

Gain

Attenuation factor and minimum distance are specific to each sound. SFML
provides the setAttenuation() and setMinDistance() methods in the sf::Sound
class. For sound spatialization, the setPosition() method is required to position a
sound in space.

Positioning the listener
Our sounds are located in the plane of the monitor, thus their Z coordinate is always

Cranking Up the Bass – Music and Sound Effects

[228]

0. But how do we place the listener? It is tempting to set the listener's Z coordinate to
0, just like the sounds. This is wrong. When you do this, a sound moving from left to
right will pass directly through the listener. As a result, you first hear the sound only
in the left ear, and only afterwards in the right ear. Even if the sound is very close,
you will not hear it in both ears.

To get around this issue, we place the listener in a plane different than the
sound—just like your head is in front of the monitor, and not inside it. The
listener's Z coordinate therefore has a value greater than zero.

Let's say the 2D minimum distance is the number of world units between the
listener's place in the 2D world and the sound. Since the listener itself resides outside
the 2D world plane, the effective 3D minimum distance has to be computed with the
Pythagorean theorem, as shown in the following figure:

listener

3D min distancelistener z

2D min distance

3D audio coordinates

z

x

y

sound

y

x

2D graphics coordinates

Playing spatial sounds
An important fact to keep in mind: To enable audio spatialization, the sound
effects must have a single channel (mono). Stereo sounds are played at full volume,
regardless of their position in space.

Chapter 9

[229]

In SoundPlayer.cpp, we create an anonymous namespace for a few constants
representing the measures discussed before. Don't hesitate to experiment with
these values!

namespace
{
 const float ListenerZ = 300.f;
 const float Attenuation = 8.f;
 const float MinDistance2D = 200.f;
 const float MinDistance3D =
 std::sqrt(MinDistance2D*MinDistance2D + ListenerZ*ListenerZ);
}

Now we need to connect the 3D audio coordinate system with our 2D graphics
coordinate system. Both coordinate systems are completely unrelated; how to map
one onto another depends on the use case. In the previous figure, you see how the
axes of both coordinate systems are aligned.

We implement the remaining functions of the sound player, beginning with the
listener's position. The X coordinate is the same in both graphics and audio system.
The Y coordinate needs to be negated, as the audio up vector is in the +Y direction,
but on the screen, the Y axis points downwards. For the Z coordinate, we take the
constant distance between the listener and the screen plane:

void SoundPlayer::setListenerPosition(sf::Vector2f position)
{
 sf::Listener::setPosition(position.x, -position.y, ListenerZ);
}

Next, we define the second overload of the play() function, which takes a 2D
graphics position. To compute the 3D audio position, we again need to negate Y, but
here we use Z=0. We also set the attenuation and minimum distance for the sound.
Finally, the sound is played:

void SoundPlayer::play(SoundEffect::ID effect, sf::Vector2f position)
{
 mSounds.push_back(sf::Sound());
 sf::Sound& sound = mSounds.back();

 sound.setBuffer(mSoundBuffers.get(effect));
 sound.setPosition(position.x, -position.y, 0.f);
 sound.setAttenuation(Attenuation);
 sound.setMinDistance(MinDistance3D);

 sound.play();
}

Cranking Up the Bass – Music and Sound Effects

[230]

Now, we must make sure that non-spatialized sounds (such as a button click) are
still played correctly. If we move the listener, all sounds will be affected, which is
not always what we want. In our first play() overload, we make sure the sound
is played directly in front of the listener, so it will have maximum volume. The
getListenerPosition() function transforms the 3D listener position back to 2D
graphics coordinates:

void SoundPlayer::play(SoundEffect::ID effect)
{
 play(effect, getListenerPosition());
}

Use case – In-game sound effects
That was a lot of theory; let's get back to the interesting stuff. We want to embed
sound effects in our game and play them whenever appropriate. Before we can do
that, we need access to the sound player; we let GameState pass a SoundPlayer
reference to our World class.

Inside the world, we would like to have a dedicated scene node for sounds, so that
we can use our command system to play sounds. We'll add a SoundNode class, which
is a simple adapter to the SoundPlayer class:

class SoundNode : public SceneNode
{
 public:
 explicit SoundNode(SoundPlayer& player);
 void playSound(SoundEffect::ID sound,
 sf::Vector2f position);

 virtual unsigned int getCategory() const;

 private:
 SoundPlayer& mSounds;
};

The function definitions are not particularly interesting. The getCategory() method
returns a new SoundEffect category, while playSound() forwards its arguments
to the mSounds sound player. The sound node is inserted into the scene graph in
World::buildScene().

Chapter 9

[231]

Anyway, this allows us to define a playLocalSound() method for entities, which
sends a command to the sound node. As all of our current sound effects are related
to airplanes, we define playLocalSound() in the Aircraft class; but it would also
be possible to have it in the Entity or SceneNode base classes:

void Aircraft::playLocalSound(CommandQueue& commands, SoundEffect::ID
effect)
{
 Command command;
 command.category = Category::SoundEffect;
 command.action = derivedAction<SoundNode>(
 std::bind(&SoundNode::playSound,
 _1, effect, getWorldPosition()));

 commands.push(command);
}

The std::bind() call might look more confusing than it actually is. It converts the
SoundNode::playSound() function to a functor, using the following parameters:

•	 _1: This is the first parameter of Command::action (namely SceneNode&),
which is interpreted as the this pointer of SoundNode::playSound()

•	 effect: This is the sound effect ID
•	 getWorldPosition(): This is the position where the sound is played

Now we've written this method once, so we don't have to fiddle with commands
every time we want to play a sound. Next, we implement the sound effects for
launching a missile and firing the machine gun. In the case of the machine gun, we
create different sound effects for the player and enemies. In total, we only have to
add two playLocalSound() calls:

void Aircraft::checkProjectileLaunch(sf::Time dt, CommandQueue&
commands)
{
 ...
 if (mIsFiring && mFireCountdown <= sf::Time::Zero)
 {
 playLocalSound(commands, isAllied() ?
 SoundEffect::AlliedGunfire : SoundEffect::EnemyGunfire);
 ...
 }

 if (mIsLaunchingMissile)
 {
 playLocalSound(commands, SoundEffect::LaunchMissile);
 ...
 }
}

Cranking Up the Bass – Music and Sound Effects

[232]

For the explosions, the approach is very similar. In order to add variety, we
randomly choose one of two possible sound effects. For the pickup collection,
which is performed in World::handleCollisions(), we proceed in a slightly
different manner. Since we are in the World class and not a scene node, we invoke
playLocalSound() on the player's aircraft:

else if (matchesCategories(pair, Category::PlayerAircraft,
Category::Pickup))
{
 auto& player = static_cast<Aircraft&>(*pair.first);
 auto& pickup = static_cast<Pickup&>(*pair.second);

 pickup.apply(player);
 pickup.destroy();
 player.playLocalSound(mCommandQueue, SoundEffect::CollectPickup);
}

Because we are in the World class, we could directly call SoundPlayer::play();
however, we still use SoundNode for symmetry reasons. If the implementation
of Aircraft::playLocalSound() or SoundNode::playSound() changes, the
modifications will still be applied to all spatial sound effects.

The last thing we need to do is to update the listener and remove the sounds that
have finished playing. We'll set the listener to the player's aircraft position, so
that the player shares the audial position of its pilot. We'll add a function which is
invoked in World::update():

void World::updateSounds()
{
 mSounds.setListenerPosition(
 mPlayerAircraft->getWorldPosition());
 mSounds.removeStoppedSounds();
}

Chapter 9

[233]

Summary
In this chapter, we have covered the basic topics for dealing with audio in 2D games.
We saw how the concepts are implemented using SFML classes and functions. In
particular, we played different music themes depending on the application state.
We also created sound effects for various in-game events, and positioned them in
the world in order to enable a spatial audition.

With this knowledge, you are now able to incorporate audio into your game; a
crucial component for creating an immersive gaming experience. As you have
seen during this chapter, SFML makes the implementation very simple. The actual
challenge is the fine-tuning and the combination of suitable sound effects and music
themes in order to create a unique atmosphere.

The audio functionality completes the attempt to create a playable game that uses
different sources of media. However, so far, only one player can play it. In the next
chapter, we are going to improve the situation by adding multiplayer support.

Company Atop the
Clouds – Co-op Multiplayer

After a long journey through to the book, with lots of lessons learned, we have
now arrived at the last chapter. This is where we will handle a topic with growing
importance in the modern times—networking. This subject shall not be overlooked
as it can be very difficult to learn and implement. It is complicated enough for people
to actually dedicate their careers on dealing exclusively with it. Usually network
programmers are very experienced and good at it, so they can do it efficiently and
provide a good multiplayer gameplay to the end users.

Obviously, even if we wanted to, we couldn't teach every single thing about
network programming, good practices, and different implementations. However, we
try to pass on some knowledge on how to achieve a multiplayer experience, keeping
things as simple as possible. Based on the game we've built so far throughout
the book, we now add two new concepts: local cooperation and actual network
gameplay over the Internet.

The following is what this chapter has to teach essentially:

•	 Network sockets
•	 Client-server architecture
•	 Creating a protocol for communication
•	 Applying the concepts to our game
•	 Short introduction on latency problems
•	 Tips and tricks on cheating prevention

Let's now immerse ourselves in this complicated topic with a short introduction.

Company Atop the Clouds – Co-op Multiplayer

[236]

Playing multiplayer games
We've seen multiplayer games since computer games emerged—decades ago.
We are used to calling friends and family to play games with us, sometimes in a
co-operative mode with common goals and other times for a competitive experience.
The point is that playing with someone else is usually lots of fun!

There was a time when the Internet barely existed, or simply put, people's
connections were too slow to actually have a good online experience. By then, it
was very usual for games to have a local multiplayer mode. This allowed a big trend
for split screen and other types of local multiplayer gameplay. Local Area Network
(LAN) multiplayer was also implemented as a way to make the experience more
cooperative to players, and as a result, you could actually cooperate or fight with
your friends over a cable or wireless network. Unfortunately, as time passed and the
Internet became more powerful, the local multiplayer modes became less and less
used, and actual online multiplayer modes started to be the dish of the day. Either
mode is not extinguished or anything close to that, but the game market seems to
mark a tendency for online games.

For the purpose of this book, and to cover the networking field of programming,
we will be not be focusing on local modes, but rather will implement a fully-
networked concept. However, fear not! We will show you a concept that game
developers use a lot these days which allows you to actually have local co-op on
top of a networked architecture!

Interacting with sockets
First of all, in order to go deeper in to network programming, we need to understand
how computers communicate with each other. This is the technological base that
everyone should know before trying to do anything with networking.

This topic is not simple by itself, but it can be approached more easily without the
need to understand the deeper concepts, with the help of SFML's socket classes.

A socket is essentially a gateway for data. You can visualize it as a link between
two applications. These applications are virtual, in the sense, they only matter in the
network, but are not necessarily different application processes, because you can
use sockets to connect an application to itself, as we do in this chapter. These sockets
are the base of all networked programs; therefore, they are extremely important. As
sockets are a rather complicated concept, SFML provides classes to manage them.

There are the following two main ways of communicating between multiple machines:

Chapter 10

[237]

TCP
Transmission Control Protocol (TCP) is a network convention for transferring
data between computers. This means that any operating system or platform that is
connected to the Internet and therefore uses the Internet Protocol (IP), which TCP is
built on top of, is able to communicate in a uniform way. This is why in a networked
application, we don't care who we are "talking" to, as long as the remote peer can
"speak" TCP/IP, communication is possible.

For example, when you use your Internet browser, some websites will be hosted in
Linux machines while others will be in Windows. Because they all use TCP/IP, it
is not relevant what the operating system is, the website will be transferred to our
browser and we will be able to visualize it just the same.

SFML provides two cross-platform classes for using TCP sockets: sf::TcpSocket
and sf::TcpListener, which are exactly what we will use to achieve an online
gameplay in this chapter. The sf::TcpSocket class initiates TCP connections, while
the sf::TcpListener class listens on a certain port for an incoming connection.

Please note that TCP/IP is a high-level protocol in your operating system. When you
use it, many things are being managed by the OS, which takes some weight out of
your back.

The TCP protocol comes with the following features by default:
•	 Packet ordering: It will ensure packet ordering so you can assume

that your data will arrive to the destination in the same order you
sent it.

•	 Packet restructuring: It also provides packet restructuring
facilities, completely built in. This means that if a packet is too
big, it will be split into smaller ones to make the network transfer
possible while still arriving at the destination in a seamless way.

•	 Reliability: It is another strong aspect of this protocol. It
will ensure every that packet gets to the destination, without
exceptions. If one packet fails to arrive, the protocol just stalls and
is assumed to have lost its connection. However, before a packet is
assumed to be impossible to transfer, it is re-sent many times in an
attempt to eventually deliver it successfully.

Company Atop the Clouds – Co-op Multiplayer

[238]

In order to exchange data between computers, this protocol demands that a
connection or a tunnel is made first. This means that before sending or receiving
data, both machines must "shake hands" and create a tunnel of information between
them. This is done when one of them enters a listening state on a specific port, using
sf::TcpListener, and the other uses sf::TcpSocket to connect to that port. Once
that connection is successfully established, data is free to roam!

A network port is an integer number, normally ranging from 0 to
65535, which defines a "gateway" in your network where data and
connections can pass through to your application's sockets. You are
free to pick what port(s) your game will use for communication as long
as you do the following:

•	 Be careful not to pick reserved ports by your operating system.
•	 Avoid picking ports that are commonly used by other programs,

which will cause a conflict. For example, port 80 is used very often
by web servers, remote desktop apps, and others. As a general
rule, avoid using ports below 1024.

•	 Make sure both the client and the server know the same port so
communication can happen.

Besides the obligation to establish a connection in order to communicate, this
protocol offers advantages such as, ordered arrival of data and reliable data sending.
The first means that the order in which you send your bytes to the remote peer
matters because they will get there in the same order! The latter means that the data
is guaranteed to arrive at the destination. This is very good for many uses, even
essential, but unfortunately, it adds an extra overhead to the network performance
that some real-time games cannot cope with. Imagine you send packet A, B, and C,
in order. Let's say your Internet connection isn't in its best shape and packet B keeps
getting lost before arriving at the remote peer. This means that A will get to the
destination, but B and C won't until B is sent successfully.

That said, we can conclude that this protocol is very adequate for file transfers and
other reliable data transfers, as well as for smaller games which are less hungry for
network performance. But it may be too slow for some real-time action games, which
have higher speed requirements.

UDP
User Datagram Protocol (UDP) is another often used tool for network programming.
Communicating data to another computer means simply pushing an array of bytes
to the network, so it is very similar to TCP/IP in this matter; however, UDP has a
very different set of rules.

Chapter 10

[239]

The first important thing about this protocol is to know that it is connectionless.
You can't establish a tunnel of reliable data. You just take your data and send it
somewhere and it either gets there or not, and you are not notified of it.

This may seem strange at first. You may think "Why would I want to send data
that may not even get there?" and it is normal to be suspicious about the utility of
such a network protocol at first, but you'll understand how powerful it can become
if made right.

The strong aspect about this protocol is that data is sent fast and there is no
overhead on ensuring packet ordering or arrival. So, people usually implement
a custom protocol on top of UDP that allows sending some data reliably, by
sending data continuously until a confirmation of arrival is received, while other
data is sent unreliably.

Another important key difference of UDP and TCP is that UDP will not split a
packet into smaller parts when it exceeds the maximum limit of data size; you have
to take care of that manually. While in TCP you can neglect such things, in UDP, it's
important to keep packets small and efficient.

To use such sockets, SFML provides sf::UdpSocket. You just need to create an
object of this type, bind to a port with the sf::UdpSocket::bind() function,
and then either send data through it or check if anything was received using the
sf::UdpSocket::send() and sf::UdpSocket::receive() functions respectively.

We won't be covering UDP sockets in the chapter, but the SFML documentation
and tutorials on www.sfml-dev.org should provide what you need in order to
understand them in detail.

Socket selectors
Another facility that SFML provides is the sf::SocketSelector class. This one is
not used in the book's game, but it is very useful and will make your life easier if you
choose to use it.

This class will act as an observer for your sockets. It will hold pointers
to every socket you choose to register in it. Then, you may simply call
sf::SocketSelector::wait() and it will return when one or more of the sockets
receive some data. Once this happens, you handle the data somehow and call the
function again. This will ensure you always are notified of packets and handle them
in a simple and centralized manner.

You can call sf::SocketSelector::add() for any type of socket and listener:
sf::TcpListener, sf::TcpSocket, or sf::UdpSocket.

Company Atop the Clouds – Co-op Multiplayer

[240]

It is this simple; you create the sockets, add them to the selector, and then call
sf::SocketSelector::wait(). When it returns, you know one of the sockets
received something or a new peer has been connected. You just check who that was
by using sf::SocketSelector::isReady(socket) and then act upon it.

Custom protocols
We've talked about TCP and UDP so far, which are two socket types that are used
widely. Programmers don't usually program anything that is "lower-level" than
those two, but very often build custom protocols on top of them.

It is very useful to create such protocols as they allow us to abstract the more
complex tasks of networking, and orient a network system into being more focused
on a specific task. For a quick example, we can look at the FTP protocol. It allows
sending files in a quick and simple way, because it has abstracted the more complex
process of actually transferring that file over a lower-level protocol.

A custom protocol is merely a set of rules set in stone of how communication needs
to happen. When a custom protocol is created, it either sits on top of TCP or UDP
or even both; but it automatically absorbs all advantages and limitations of the
underlying protocol.

There are many custom protocols that are used widely. For example, HTTP and FTP
are two protocols that are used worldwide and are implemented on top of TCP/
IP. You use them all the time without knowing; for example, when you open a web
page in your Internet browser, it was received through the TCP/IP network protocol,
more specifically with the rules of the HTTP protocol.

As if SFML's basic socket support weren't good enough, it also implements
sf::Http and sf::Ftp, which you can use to communicate with any machine that is
implementing them too! This is a fantastic tool that you can use to your advantage,
for example, to directly transfer files to FTP servers, or to request web pages from
remote hosts using HTTP. We won't cover such classes, as they go out of the scope
of the book, but to bring up your curiosity, you could use sf::Http to send some
data to a website that would handle it and do something useful with it. For example,
that website could receive a high score information and immediately list it online for
everyone to see!

We will be implementing one custom protocol as well in the upcoming section
Creating the structure for multiplayer. It will be our own set of rules that are specific to
our own game. It will lie on top of the TCP/IP protocol and you will just see how it
can be used to make multiple instances of our game understand each other.

Chapter 10

[241]

Data transport
We already know some things about how sockets behave and their inner workings,
but we only talked about sending and receiving data in an abstract way. We referred
to the data as arrays of bytes, which we simply send and receive, but how is it done?

Indeed, what is passed on through the network is merely a block of data, a collection
of raw bytes. Therefore, it must be sent in a way that can be read again by the remote
machine. Your data could be anything, text, numbers, images, sound, or pretty much
anything that is digital.

For this, we pack and unpack our data into a byte array when sending/receiving
it! When we use the term packet, we refer to a collection of bytes, which contain
one or more primitives (integers, floats, and others). This is very efficient from the
perspective that we don't have additional overhead for sending multiple primitives;
they all go at once in the same byte array. However, we have a per-packet overhead,
namely the packet headers that are required by the lower-level protocols (most
notably IP and TCP/UDP).

Packing and unpacking is not a complicated thing to do, but can be troublesome to
get right when done from scratch.

To add complexity to this task, you can't make assumptions on what byte ordering
system the target machine is using. There are big-endian and little-endian operating
systems, which mean a different ordering of bytes in memory. You can look at it as
reversing the order of the bits of a variable. Therefore, for example, the number 3
in a little-endian system, when transferred to a big-endian one is not the number 3
anymore, as the bits were reversed. This needs to be taken into account.

Luckily, SFML has also solved this! You can and should use the sf::Packet class to
address this issue. It is very simple to work with and it will make your life easier in
every way, as opposed to implementing it all from scratch. If properly understanding
the socket functionality is half of the work, understanding packets would be the
other half into making a good networked application.

The following code shows how to pack some data and send it:

sf::Packet packet;
std::string myString = "Hello Sir!";
sf::Int32 myNumber = 20;
sf::Int8 myNumber2 = 3;
packet << myString << myNumber << myNumber2;
mySocket.send(packet);

Company Atop the Clouds – Co-op Multiplayer

[242]

This is as easy as it gets. You should notice the use of the operator <<. SFML
implemented it to make it more simple and readable, allowing to chain many
items in a single line, all being packed correctly within sf::Packet.

Then, on the other end of the network, the following code shows to unpack that
same data:

sf::Packet packet;
std::string myString;
sf::Int32 myNumber;
sf::Int8 myNumber2;
mySocket.receive(packet);
packet >> myString >> myNumber >> myNumber2;

Easy enough, isn't it? Now we know to use sockets, send and receive data; but how
do we know what data are we reading? An application will most likely want to act
differently upon receiving different packets, right? This is where it comes handy to
implement a custom protocol—a way to understand what the data really is for and
what to do with it.

Network architectures
Regardless of socket types and protocols, games take different approaches in the
architecture of the multiplayer mode.

We call the playable game application a client, network-wise, and this part of
the book concerns how clients communicate with each other and who they
communicate with.

There are at least two major approaches to a networked simulation.

Peer-to-peer
This architecture was and still is used in online games; however, it fits a very specific
set of purposes and is used less widely than its counterpart client-server architecture.

Nevertheless, its importance should be noticed and mentioned every time
networking is the topic. What defines this architecture is essentially the fact that
every game client in the simulation connects to each other. You can see it in the
following figure:

Chapter 10

[243]

Peer

Peer

Peer Peer

These inter-connections between all the clients, which somehow resemble a spider's
web, mean that every client has a connection with every client. This way, they
effectively communicate correctly, allowing chatting with each other, seeing each
other's movements, and other actions. When a client means to do something, such as
when the jump key is pressed and the character should jump, it notifies every other
client of this, so they can see it happen too.

However, while this approach can be efficient, as the network processing is done
among all clients, it introduces a nasty set of disadvantages that unfortunately can't
be avoided.

The major problem with the technique is that cheating cannot be prevented. A client
will just do whatever it wants to do and notify all the others of it. Players can and
they will exploit your game's weaknesses whenever there are any and destroy the
fun of the game to other players.

So, how will we make sure the clients can't do anything outside of the allowed
actions? That's where the other network architecture kicks in!

Client-server architecture
Alright, this is a very, very important subject. This is nearly the standard as far
as multiplayer gaming goes. Learn this concept well and you're gold. This will
be particularly useful for nearly all networking tasks you will be doing and not
exclusively games.

Company Atop the Clouds – Co-op Multiplayer

[244]

Why is it so important? First, because it allows a central instance to control
everything, and therefore provides the possibility to implement means of security.
The following figure shows how computers are laid in such architecture:

Server

Peer PeerPeer

Here, you see there is a central server, or group of servers (distributed systems)
that communicate with all the clients. Now, a client does not know, under any
circumstances, about other client's address or information. The server acts as a proxy,
or a bridge between the client's communications. However, saying the server is
merely a bridge for communication is a reductive view of what it really does.

Authoritative servers
In reality, having one server manage all of the clients and be in charge of all their
communications easily puts the server application under a heavy processing and
networking load. It is hard to develop and maintain efficient and fast servers that can
hold many clients at once. However, this cost is easily compensated by the advantages
this architecture inherently gives us. The most notable feature is the authority of the
server, entirely preventing the cheating and exploiting by the players.

How is this achieved, you may ask? It is easy to explain and a bit harder to get
right while developing, but what happens, in essence, is that the server holds the
true and absolute state of the simulation, and only the data being simulated in the
server application is considered valid. This way, each client will only receive valid
state information about the server and will always have correct and proper values in
the simulation.

On the other hand, the server may check for every packet received from clients, and
easily deduce what is possible to do under the constraints of the simulation. When
the server checks a client input, it is possible to analyze it in order to know if that
input is valid or is an attempt at cheating. If the server is programmed well to do
these checks, its internal state remains valid and accurate. A player may modify
its client to do weird things that were not programmed that way initially, that we
cannot prevent, but as long as the input that comes from that client is checked, the
other players won't even notice a difference, because what the cheating client sees is
merely a local version and the server, which is still intact.

Chapter 10

[245]

This is the basis for all cheat prevention in online servers. It works effectively and
is an important area that must never be neglected. For the sake of simplicity, in our
implementation, the server is not entirely authoritative, so cheating would be possible.

Creating the structure for multiplayer
You must be fed up with networking theory by now, and you actually want to
see some code! Right, it is now time to start the concrete implementation of our
game server.

In order to extend our game and add an online mode to it, we went ahead and
created a new state MultiplayerGameState, which is very similar to GameState
at first. In the following code snippet, you see the important parts of the class
definition. As you see, the three typical state-related methods to draw, update, and
handle events are again there, as well as the variables for the world, window, and
texture holder. Several variables are new related to the management of different
players and socket connections:

class MultiplayerGameState : public State
{
 public:
 MultiplayerGameState(StateStack& stack,
 Context context, bool isHost);

 virtual void draw();
 virtual bool update(sf::Time dt);
 virtual bool handleEvent(const sf::Event& event);
 ...

 private:
 void updateBroadcastMessage(
 sf::Time elapsedTime);
 void handlePacket(sf::Int32 packetType,
 sf::Packet& packet);

 private:
 typedef std::unique_ptr<Player> PlayerPtr;

 private:
 World mWorld;
 sf::RenderWindow& mWindow;
 TextureHolder& mTextureHolder;

Company Atop the Clouds – Co-op Multiplayer

[246]

 std::map<int, PlayerPtr> mPlayers;
 std::vector<sf::Int32> mLocalPlayerIdentifiers;
 sf::TcpSocket mSocket;
 bool mConnected;
 std::unique_ptr<GameServer> mGameServer;
 sf::Clock mTickClock;

 std::vector<std::string> mBroadcasts;
 sf::Text mBroadcastText;
 sf::Time mBroadcastElapsedTime;
 ...
}

We changed the main menu appropriately to accommodate the newly created Host
and Join options. To avoid creating one state for each of those options, we created
a custom constructor for MultiplayerGameState, which takes a parameter clearly
stating whether this state will be hosting or just joining. You can see those changes in
StateStack.cpp. Because both modes are almost equal, it wouldn't even make sense
to have another state. The only difference is that if the state is the host, it will launch
a background server in its constructor and shut it down again in its destructor!
By this logic, we can say that MultiplayerGameState is the client-side of our
application and GameServer is the server-side.

Working with the Server
Now it is time to put our hands on the actual server! We will be dissecting the
GameServer class to understand properly what is going on.

Server thread
To begin with, we decided to put the server in a separate thread. This is very useful
in many ways. For once, server processing can be intensive and could hurt the frame
rate on the client. On the other hand, if the server is running on a parallel thread, aside
from improving its performance, it also allows it to perform blocking calls whenever
necessary, and the game keeps running smoothly. Another plus in this approach is that
our server does not communicate programmatically with the client, it communicates
only via network; therefore, we don't even need to care about synchronization between
the two. It is just like as if server is running on a different application!

As we have already introduced sf::Thread before in Chapter 5, Diverting the
Game Flow – State Stack, we will skip that topic here. It is important to notice that
GameServer::executionThread() is the thread function and that it starts running
when GameServer gets constructed, and is stopped before it gets destructed.

Chapter 10

[247]

Now, inside GameServer::executionThread() is where all the magic happens.
First rule is that while executionThread() doesn't return a value, the parallel thread
is alive. There are three main logical steps in the server thread: initialization, the
server loop, and termination. Take a look at this pseudo-code:

void GameServer::executionThread()
{
 initialize();
 while(!timeToStop) loop();
 shutdown();
}

Not unlike the client-side of the game, we must do the appropriate things in the
proper places. In the initialization phase, just when the server thread starts, we are
going to tell the sf::TcpListener socket to start accepting new connections. This is
what allows the players to join our server. Also, we initialize some timing variables
here to be used in the server loop later. As you may notice, there isn't that much to
initialize at this point as the world is still empty without any ally or enemy aircraft,
and the basic variables are initialized by the constructor.

Then, we enter the server loop, which will simply keep executing until the while
loop ends, either by a forced termination of the thread, which is not recommended,
or by setting the timeToStop Boolean variable to true, effectively ending the while
loop at the end of the next step.

Server loop
Without a doubt, this part is the most important, and while many programmers take
different paths in the process of creating a server loop, we did it in a way that is not
unusual to see across programs. The following is the simplified anatomy of each step
in the loop:

handleIncomingPackets();
handleIncomingConnections();

while (stepTime >= stepInterval)
{
 updateLogic();
 stepTime -= stepInterval;
}
while (tickTime >= tickInterval)
{
 tick();
 tickTime -= tickInterval;
}

sf::sleep(sf::milliseconds(50));

Company Atop the Clouds – Co-op Multiplayer

[248]

The first two functions are going to respectively handle all incoming traffic from the
connected peers and accept new connections, if there are any. Then, updateLogic()
will be very similar to the client's update() functions; it will simply perform the
evolution of data over time, to keep the server's state always up-to-date. The next
function, tick(), is very similar to the previous update step, but usually executes
fewer times and is used to send a snapshot of the server's state to the clients. In our
case, we send updates to the clients 20 times per second. We may call this frequency
the tick rate.

Just to be clear, the main reason tick() and updateLogic() functions are not
merged is because they run at different rates. This is to save processing time and
network bandwidth, as sending too many packets too often would just put a
heavy load on the network with no benefits. Ideally, we want to send as little data
as possible but making sure it is enough to accomplish the gameplay demands.
This way, updateLogic() runs a lot faster to always keep the data as refreshed as
possible, while tick() only performs as few times as necessary to make sure the
client has an accurate version of the server state locally at all times.

Finally, the call to sf::sleep() is entirely optional; however, it is not a bad idea to
tell the thread to sleep a bit and let the client's thread take the processor for itself for
a little while. The bigger time you pass to sf::sleep(), the less time will be spent on
server's tasks. It will be fine just until the server has too many tasks to perform and
too little time to do them.

Before heading to the depths of these functions, let's rest a bit by looking at the data
structures we will use, and how they are laid out.

Peers and aircraft
The multiplayer version of our game is a little different than its single-player
counterpart. Now, each client can have one or two local aircraft objects, but many
clients can be connected simultaneously. Though, one client is always one peer in the
eyes of the server. A peer by itself can contain multiple aircraft. Therefore the server
always knows how many clients are connected, how many aircraft are in the game
and which peers they belong to:

struct RemotePeer
{
 RemotePeer();

 sf::TcpSocket socket;
 sf::Time lastPacketTime;
 std::vector<sf::Int32> aircraftIdentifiers;
 bool ready;
 bool timedOut;
};

Chapter 10

[249]

The preceding code snippet shows the structure of RemotePeer, which is declared
inside GameServer. The constructor merely initializes the peer's data to an invalid
state, which by itself means the peer is instanced, but not yet pointing to an actual
client. The socket variable is the TCP socket we mentioned earlier in the chapter that
we will use to communicate exclusively with a specific peer. The lastPacketTime
variable always contains the timestamp of the last packet received from that peer.
This is used to deduct disconnections and timeouts by a simple rule: If the peer did
not send any data after n seconds, kick it out because something is wrong, as there
are packets that the client has to compromise to send regularly.

The aircraftIdentifiers variable is an interesting one. It holds a list of IDs of
all the planes that belong to a specific peer. There is a good reason there is only an
integer here: All the aircraft data is centralized in GameServer, and is easily referred
to in there by using this integer ID, if needed.

The ready Boolean variable refers exactly to the valid or invalid state of the peer
connection. It only becomes true after a successful connection and sending the
world state to the newly connected socket.

The timedOut variable is just a flag that is set in the server logic to tell the
handleDisconnections() function that this peer needs to be erased.

std::size_t mAircraftCount;
std::map<sf::Int32, AircraftInfo> mAircraftInfo;
std::vector<PeerPtr> mPeers;

The preceding code snippet shows where all the peers are stored, as well as
the mentioned aircraft data. mAircraftCount will always contain the total of
human-controlled aircraft in the world at a time. Their data can be queried using
mAircraftInfo, through the struct declared as follows:

// Structure to store information about current aircraft state
struct AircraftInfo
{
 sf::Vector2f position;
 sf::Int32 hitpoints;
 sf::Int32 missileAmmo;
 std::map<sf::Int32, bool> realtimeActions;
};

Yes, it is very simple. It only holds the position of the aircraft and the set of real-time
actions the player is currently performing, such as moving and shooting.

Company Atop the Clouds – Co-op Multiplayer

[250]

The size of mPeers is always the number of truly connected peers plus one. That
extra peer that is never valid exists for a single purpose: To become valid once a new
connection is established. And when that peer becomes valid, another invalid one is
created for the same purpose! This way, new peers are always added at the end and
can be removed from the middle of std::vector without problems, as the "standby"
peer is always guaranteed to be at the last position of the array. The number of truly
connected peers can be queried with mConnectedPlayers. There is a chance you are
still struggling to understand why this extra peer is kept in the vector. Well, it had
to be somewhere since sf::TcpListener::accept() requires it, so it was just a
decision as any other when designing the code. Eventually, we insert the peer to the
vector anyway, so it is reasonable to construct it there in advance.

sf::Int32 mAircraftIdentifierCounter;

The aircraft identifier counter is an integer that starts at 1 and grows by one
every time a new aircraft is added to the world. This guarantees that no matter
how many aircraft join and leave the world; new ones will always be assigned
new unique identifiers. Also, we would like to emphasize the difference between
mConnectedPlayers and mAircraftCount. While the former refers to unique
connected peers or clients, the latter refers to unique airplanes present in the game.

Hot Seat
Our approach allows the handling of multiple aircraft in a single peer. This makes
our system inherently apt to handle what the gaming community refers to as Hot
Seat multiplayer. It really only stands for local cooperative gameplay, where the
same gaming machine is used by more than one player in a single game session.

For this reason, our sample allows this mode at any time. As soon as you press the
Return key, a second aircraft will join the game, and while you're actually playing
a networked game with a real server, it will seem like one of those old-school game
sessions, where you would be the friend or foe of your friends throughout the game.

Accepting new clients
About accepting incoming connections, the responsible object to do this is
our mListenerSocket, which is of type sf::TcpListener. As long as the
mConnectedPlayers value is below mMaxConnectedPlayers, that connection is
accepted. If this condition is not met, the socket entirely stops listening for new
connections, effectively rejecting them all.

Chapter 10

[251]

The sf::TcpListener::accept() function is where the connection actually
succeeds, generating a valid tunnel for communication between the peer and the
server. It takes an already-instanced socket which is initialized in case of success.
Conveniently, we have that extra peer always allocated for this purpose! That's
exactly what we use to test if an incoming connection has arrived. The following is
what we do:

if (mListenerSocket.accept(mPeers.last()->socket) ==
 sf::TcpListener::Done)

An important remark in this situation is that sockets have two modes: blocking
and non-blocking. The main difference is that the first will hold the program from
continuing execution while waiting for incoming connections/packets/responses,
and the latter will never block execution, keeping the fluidity of the program. It
is good to remember that we set our mListenerSocket as a non-blocking socket.
This is due to having a fast execution of the server loop without any more threads.
The calls to sf::TcpListener::accept() that are constantly happening, return
immediately stating whether there are new connections or not. All other server
sockets are set to non-blocking as well for the same reason.

So, what does it mean when sf::TcpListener::accept() returns a successful
response? It means a new client is trying to join, whether it's the first or the nth,
whether it's local or in another country, we treat it the same way. There are a few
operations we must make in order to set up a new valid peer and attribute a new
aircraft to it:

// order the new client to spawn its own plane (player 1)
mAircraftInfo[mAircraftIdentifierCounter].position =
 sf::Vector2f(mBattleFieldRect.width / 2,
 mBattleFieldRect.top + mBattleFieldRect.height / 2);

sf::Packet packet;
mAircraftInfo[mAircraftIdentifierCounter].hitpoints = 100;
mAircraftInfo[mAircraftIdentifierCounter].missileAmmo = 2;

packet << static_cast<sf::Int32>(Server::SpawnSelf);
packet << mAircraftIdentifierCounter;
packet << mAircraftInfo[mAircraftIdentifierCounter].position.x;
packet << mAircraftInfo[mAircraftIdentifierCounter].position.y;

mPeers[mConnectedPlayers]
->aircraftIdentifiers.push_back(mAircraftIdentifierCounter);

broadcastMessage("New player!");
informWorldState(mPeers[mConnectedPlayers]->socket);
notifyPlayerSpawn(mAircraftIdentifierCounter++);

Company Atop the Clouds – Co-op Multiplayer

[252]

mPeers[mConnectedPlayers]->socket.send(packet);
mPeers[mConnectedPlayers]->ready = true;
mPeers[mConnectedPlayers]->lastPacketTime = now(); // prevent initial
timeouts
mAircraftCount++;
mConnectedPlayers++;

First, we use our identifier counter to get a new ID for the new aircraft, then, we bind
to it some aircraft data, namely its initial position. Then we assign that aircraft to
belong to the newly created peer, using the aircraftIdentifiers struct.

Now, there are the following four things that we send to the client:

•	 The order to spawn itself immediately
•	 The current state of the world with all the current aircraft
•	 How big the map is
•	 How much distance has been travelled already inside the map

Also, we notify every other peer that this aircraft is joining, so they are aware of a
new player. Finally, and not as a mandatory step, we use broadcastMessage() to
send a message to all previously connected peers, informing them of the new player
that just joined!

The first thing in the list is actually the last being sent for a reason: When the client
spawns the aircraft, it expects the world to be configured already with the current
state. This is where TCP sockets come in very useful, as they help us ensure the
ordering of the packet arrival, making our game logic more consistent.

To finish, we just increment the proper peer and aircraft counters, that is,
mConnectedPlayers and mAircraftCount respectively, and set the current
timestamp to the peer, so it is not prematurely disconnected by lack of activity.

After setting mPeers.last()->ready to true, we are ready to instance the new
invalid peer for the next connection. This happens if there are still available slots for
peers in the server, otherwise, the mListenerSocket socket will go back to a sleeping
state, not listening to new connections anymore. It can indeed come back to life later,
if users leave in the meanwhile.

Handling disconnections
Every time the server checks the peers for incoming packets, it makes a quick
analysis of whether a peer hasn't sent anything in a very long time. If that is the case,
we consider that peer timed out, and it is effectively kicked out of the server along
with all its aircraft.

Chapter 10

[253]

There are two main scenarios for disconnection; the first is when a user explicitly
quits the game, intentionally leaving the simulation by sending a specific packet
warning the server. The other is when something is wrong with the network, and the
packets are not arriving anymore—the situation that we know as timeout.

If in that situation, at least one peer is marked for removal by setting its mTimedOut
flag to true, handlingDisconnections() is called, and does the following:

FOREACH(sf::Int32 identifier, (*itr)->aircraftIdentifiers)
{
 sendToAll(sf::Packet() << static_cast<sf::Int32>
 (Server::PlayerDisconnect) << identifier);
 mAircraftInfo.erase(identifier);
}

mConnectedPlayers--;
mAircraftCount -= (*itr)->aircraftIdentifiers.size();

itr = mPeers.erase(itr);

// Go back to a listening state if needed
if (mConnectedPlayers < mMaxConnectedPlayers)
{
 mPeers.push_back(PeerPtr(new RemotePeer()));
 setListening(true);
}

broadcastMessage("An ally has disconnected.");

As you can see, it iterates over every peer, and for those who are flagged to be
removed, it warns every peer that those aircraft are going to disappear. Then, the
proper counters are decremented again and mAircraftInfo is partially cleared so
it doesn't contain any more data for the erased planes. The peer is then effectively
released from the mPeers list. Finally, if it's necessary, we resurrect the listener
socket to start listening again for new users and always send an "ally disconnected"
broadcast message, such that the other users are aware of what happened.

Incoming packets
We saved this part for last, as it is very important and a little more complex. We
will now inspect the behavior of sending actual packets and receiving them. We
use the exact same concepts we previously talked about for packing and unpacking
sf::Packet. However, every packet must conform to some rules in order for both
the client and the server to understand what is supposed to happen in the presence
of each packet.

Company Atop the Clouds – Co-op Multiplayer

[254]

All packets have a fixed identifier, sized as a sf::Int32 for coherence. This identifier
is what explicitly tells us what the packet contains and what it brings inside:

sf::Packet packet;
packet << static_cast<sf::Int32>(identifier);

The rest of the packet data depends on what the identifier actually is. All identifiers
we defined are under NetworkProtocol.hpp. All packets that originate in the server
are under the Server, and all the packets that come from the client are in the Client
namespace. The following is a code snippet with those identifiers:

namespace Server
{
 enum PacketType
 {
 BroadcastMessage,
 SpawnSelf,
 ...
 };
}

namespace Client
{
 enum PacketType
 {
 PlayerEvent,
 PlayerRealtimeChange,
 ...
 };
}

By making sure that both clients and server use the same "network language" by
packing and unpacking the transferred data the same way and conforming to the
specification of every packet type, we achieve a sane and logical communication
protocol, which we call the network protocol, custom-made to fit our needs! As
stated earlier in the chapter, defining such a protocol is, in many ways, similar to
how other protocols were defined, such as HTTP and FTP.

Now let's understand how packets are handled in code:

bool detectedTimeout = false;

FOREACH(PeerPtr& peer, mPeers)
{
 if (peer->ready)

Chapter 10

[255]

 {
 sf::Packet packet;
 while (peer->socket.receive(packet) == sf::Socket::Done)
 {
 // Interpret packet and react to it
 handleIncomingPacket(packet, detectedTimeout, *peer);

 peer->lastPacketTime = now();
 packet.clear();
 }

 if (now() >= peer->lastPacketTime + mClientTimeoutTime)
 {
 peer->timedOut = true;
 detectedTimeout = true;
 }
 }
}

if (detectedTimeout)
 handleDisconnections();

What we do is essentially traverse all the properly connected peers, and for each
peer, we read as many packets as there are available using the non-blocking
sf::TcpSocket::receive() function.

For each packet received, we call handleIncomingPacket() and reset the timestamp
in the corresponding peer, so it doesn't time out. After receiving the packet, we test
this timestamp against a predefined timeout limit. If no packet was received for at
least mClientTimeoutTime, then the Boolean detectedTimeout flag is set, allowing
a call to handleDisconnections(), which will remove the peer that timed out, as it
was marked for removal by setting timedOut to true on the peer.

Now, let's take a look at how we handle a packet from the client:

sf::Int32 packetType;
packet >> packetType;

switch (packetType)
{
 ...
}

Company Atop the Clouds – Co-op Multiplayer

[256]

As we mentioned, the packet identifier, which clearly states the packet type, depending
on whether it was sent by the client or the server, is fixed to be always a sf::Int32
value, so we begin by unpacking that header. Now, since that number matches directly
with the members of the corresponding enumerator, we perform a switch on it. The
preceding code snippet does not contain all cases that we handle, so we can better
understand the flow of the server logic and later analyze each packet properly.

This is exactly what defines the interaction between peers and the rules of the
gameplay in conformance with the network protocol we created. For example,
when we get a packet from the client of type Client::PlayerEvent, we already
know from the "specification" that we can find in the packet's data two sf::Int32
variables: the aircraft identifier and the action identifier that matches directly the one
in the Player.hpp file. This way, when we read such a packet, we can broadcast it
back to all peers so they all make the aircraft X perform action Y at the same time.

Studying our protocol
Let's attempt a deeper understanding of the logic of our server by checking what
each server packet exactly means.

Every packet in the Server::PacketType enum is formed by the bullet's title as its
identifier. That assumed, we explain the following packed parameters:

•	 BroadcastMessage: This takes a std::string and is used to send a message
to all clients, which they would show on the screen for some seconds.

•	 SpawnSelf: This takes a sf::Int32 value for the aircraft identifier and two
float values for its initial position. It is used to order the peer to spawn its
player one's aircraft.

•	 InitialState: This takes two float values, the world height and the initial
scrolling in it, then a sf::Int32 value with the count of aircraft in the world;
then for each, it takes a sf::Int32 identifier and two float values with the
position of the airplane.

•	 PlayerEvent: This takes two sf::Int32 variables: the aircraft identifier and
the action identifier, as declared in Player. This is used to inform all peers
that plane X has triggered an action.

•	 PlayerRealtimeChange: This is same as PlayerEvent, but for real-time
actions. This means that we are changing an ongoing state to either true or
false, so we add a Boolean value to the parameters.

•	 PlayerConnect: This is same as SpawnSelf, but indicates that an aircraft
from a different client is entering the world.

•	 PlayerDisconnect: This takes one sf::Int32 value with the aircraft
identifier to be destroyed.

Chapter 10

[257]

•	 AcceptCoopPartner: This is used to tell the client that it is free to spawn
another local plane. It takes a sf::Int32 value and two float values with the
identifier of the aircraft to be spawned and its initial position.

•	 SpawnEnemy: This takes one sf::Int32 value with the type of the aircraft as
declared in Aircraft class and two float values indicating where the enemy
should spawn.

•	 SpawnPickup: Similar to SpawnEnemy, but applies for the spawn of a pickup
in the world. The first sf::Int32 value to be packed is declared inside the
Pickup class.

•	 UpdateClientState: This takes one float value with the current scrolling of
the world in the server, and then a sf::Int32 value with the aircraft count.
For each aircraft, it packs one sf::Int32 value with the identifier and two
float values for position.

•	 MissionSuccess: This has no arguments. It is simply used to inform the
client that the game is over.

Understanding the ticks and updates
In the pseudo-code, we referred to the updateLogic(), now let's take a look at what
it actually does:

while (stepTime >= stepInterval)
{
 mBattleFieldRect.top += mBattleFieldScrollSpeed *
 stepInterval.asSeconds();
 stepTime -= stepInterval;
}

Comments are probably not needed, as fixed time steps were already explained
in Chapter 1, Making a Game Tick. All that is being actually updated in here is the
mBattleFieldRect variable, which scrolls upwards into the end of the level—an
exact replica of what happens in the client with the world view.

Simple enough, let's now look at a more important code, the ticks, which we use
to maximize the synchrony between both server and client. Let's use some
pseudo-code:

while (tickTime >= tickInterval)
{
 updateClientState();
 checkMissionEnd();
 spawnEnemies();
 spawnPickups;

 tickTime -= tickInterval;
}

Company Atop the Clouds – Co-op Multiplayer

[258]

The first step is to send to all clients the current snapshot of the server's state,
which consists of the current scrolling of the world (mBattleFieldRect.top +
mBattleFieldRect.height) and the positions of all aircraft.

About the aircraft positioning, it is important to notice that the server is not an
authority over the movement of aircraft, but rather an agent in their synchronization.
When you control your aircraft with the keys, the server will obey and register
your newly obtained positions and the client won't overwrite its own local plane
locations with the incoming server data. Therefore, we can assume that each client
is responsible for the positions of its own aircraft. The server will however dispatch
each client's positions to all others!

Then, checkMissionEnd() corresponds to the code that will check if all aircraft are
near enough to the end of the level for the Server::MissionSuccess packet to be
delivered, effectively showing a message in the client and quitting to the menu. This
check is performed by checking if all the aircraft positions are between the effective
end of the level and a given offset, provided in the endLevel constant.

After that, both spawnEnemies() and spawnPickups() functions will be responsible
for making enemies and pickups appear at random intervals and at random
locations, by using the randomInt() utility function.

Synchronization issues
If you test this chapter's sample extensively enough, you will notice clear
synchronization problems, where some things do not happen the exact same way
for all clients. This is intended and accounted for. We sacrificed a bit on the final
polish level of the networked simulation, so it could remain simple. We understand
networking is a very complex topic which might confuse even the brightest minds at
first. We could never learn everything about it in one book, let alone in one chapter.
Therefore, we went with an approach as simple as possible in this chapter. We would
rather have you focused in learning the concepts we directly teach so you can extend
them later into a fully-polished game than to have a way bigger codebase to look and
get lost in.

Taking a peek in the other end – the client
We have looked in the server extensively and have hopefully clarified all systems
and learned how they come together to form a single object that services a lot of
clients at once, and potentially even more aircraft! Now let's look at the other
end, the client, and see how we took a jump from a single-player-only game into a
fully-networked game.

Chapter 10

[259]

Let's examine the MultiplayerGameState constructor first:

sf::IpAddress ip;
if (isHost)
{
 mGameServer.reset(new GameServer());
 ip = "127.0.0.1";
}
else
{
 ip = getAddressFromFile();
}

if (mSocket.connect(ip, ServerPort, sf::seconds(5.f)) ==
 sf::TcpSocket::Done)
 mConnected = true;
else
 mFailedConnectionClock.restart();

mSocket.setBlocking(false);
...

We need to deduce which IP to communicate with, in order to successfully join
a game. If we are the host, we just connect to the loopback address 127.0.0.1,
otherwise, we need to connect to a pseudo-remote server. This means that in
practice, the server could still be running in the same machine if the user is testing
two clients in the same computer. However, if we are joining a server on another
computer, we actually need a valid IP address. We get it from a file conveniently
named ip.txt, which is created and saved in the same directory as the executable
in case it doesn't exist, already containing the loopback address. Changing this file is
the way to go if you want to pick an arbitrary IP to connect to.

The port used is 5000 and it is hardcoded both in the server and the client. If you try
the application, make sure you don't have other games or programs conflicting with
this port.

The loopback address we referred previously is simply a
widely adopted IPv4 address that points to the local host
or the machine itself where it is being used.

After attempting to connect with a timeout of five seconds, we either set the client
to a valid connected state, or we restart a clock that will timeout after another 5
seconds, in the meantime showing the error message stating that connection was
not possible.

Company Atop the Clouds – Co-op Multiplayer

[260]

Most things in MultiplayerGameState are a direct copy of how GameState used to
work. Though there are some changes and additions we would like to mention. In
the update() function, besides what was already there, we now check for incoming
packets from the server:

 sf::Packet packet;
 if (mSocket.receive(packet) == sf::Socket::Done)
 {
 sf::Int32 packetType;
 packet >> packetType;
 handlePacket(packetType, packet);
 }

The handlePacket() function is very alike to the server's handleIncomingPacket()
function.

Then we perform some logic to update the broadcast queue that shows the messages
from the server on the screen and the text that blinks prompting a second player to
join in by pressing the Return or Enter key:

updateBroadcastMessage(dt);

mPlayerInvitationTime += dt;
if (mPlayerInvitationTime > sf::seconds(1.f))
 mPlayerInvitationTime = sf::Time::Zero;

Finally, we tick the client in the same way and rate we tick in the server. Instead of
sending a snapshot of all the local states, the client sends only the positions of its
local aircraft:

if (mTickClock.getElapsedTime() > sf::seconds(1.f / 20.f))
{
 sf::Packet positionUpdatePacket;
 positionUpdatePacket << static_cast<sf::Int32>(
 Client::PositionUpdate);
 positionUpdatePacket << static_cast<sf::Int32>(
 mLocalPlayerIdentifiers.size());

 FOREACH(sf::Int32 identifier, mLocalPlayerIdentifiers)
 {
 if (Aircraft* aircraft = mWorld.getAircraft(identifier))
 positionUpdatePacket << identifier
 << aircraft->getPosition().x
 << aircraft->getPosition().y;
 }

 mSocket.send(positionUpdatePacket);
 mTickClock.restart();
}

Chapter 10

[261]

Client packets
Here's the protocol explanation for the client. The Client::PacketType enum
contains the following enumerators:

•	 PlayerEvent: This takes two sf::Int32 variables, an aircraft identifier, and
the event to be triggered as defined in the Player class. It is used to request
the server to trigger an event on the requested aircraft.

•	 Quit: This takes no parameters. It simply informs the server that the game
state is closing, so it can remove its aircraft immediately.

•	 PlayerRealtimeChange: This is the same as PlayerEvent, but additionally
takes a Boolean variable to state whether the ongoing action is active or not.

•	 RequestCoopPartner: This takes no parameters. It is sent when the user
presses the Return key to request the server a local partner. Its counterpart
AcceptCoopPartner will contain all information to actually do the spawn of
the friendly unit.

•	 PositionUpdate: This is what we saw in the client's tick code. It takes a
sf::Int32 variable with the number of local aircraft, and for each aircraft,
it packs another sf::Int32 variable for the identifier and two float values for
the position.

•	 GameEvent: This packet informs the server of a specific happening in the
client's game logic, such as enemy explosions.

Transmitting game actions via network nodes
Now, we will take a closer look at the GameEvent packet, which is sent when certain
actions in the game occur. We use it to notify about explosions of enemies in a
way that pick-up dropping is synchronized among different clients (either, a pick-
up drops at every client or not at all). However, our implementation allows you
to extend it for any game action. First, we have a GameActions namespace which
contains an enum to differ between the game actions, and a struct to store an action:

namespace GameActions
{
 enum Type { EnemyExplode };

 struct Action
 {
 Action();
 Action(Type type, sf::Vector2f position);

 Type type;
 sf::Vector2f position;
 };
}

Company Atop the Clouds – Co-op Multiplayer

[262]

In Chapter 9, Cranking Up the Bass – Music and Sound Effects, you saw that we used
a dedicated scene node class named SoundNode to build an interface between
command-based game events and another game component, in that case, the sound
player. Here, we are repeating this approach: We create a NetworkNode class that lets
objects in the scene directly send events over the network:

class NetworkNode : public SceneNode
{
 public:
 NetworkNode();

 void notifyGameAction(GameActions::Type type,
 sf::Vector2f position);
 bool pollGameAction(GameActions::Info& out);
 ...

 private:
 std::queue<GameActions::Action> mPendingActions;
};

This class holds a queue of game actions that are going to be transmitted. The
notifyGameAction() method inserts a new game action into the queue, while
pollGameAction() checks if an action is pending. If so, it pops the action from
the queue and stores it in the output parameter—just as you know it from SFML's
pollEvent() function.

Now, how does this look in practice? In the Aircraft::updateCurrent() method,
we have a check if the current airplane has just exploded and if it's an enemy. In this
case, we issue a command. The Category::Network category is the receiver category
of NetworkNode:

Command command;
command.category = Category::Network;
command.action = derivedAction<NetworkNode>(
 [position] (NetworkNode& node, sf::Time)
{
 node.notifyGameAction(GameActions::EnemyExplode, position);
});

The network node itself is placed in the World class. A World::pollGameAction()
member function acts as a pure forwarder and can be used in other parts of the game
where we only have access to the world, but not its scene and entities.

Chapter 10

[263]

One example is the MultiplayerGameState class. In its update() function, we
interpret the game action and build a packet based on it, which is then sent over
the network. We fill the packet with the Client::GameEvent packet type, the
game action type (which in our case is always GameActions::EnemyExplode) and
the position coordinates.

GameActions::Action gameAction;
while (mWorld.pollGameAction(gameAction))
{
 sf::Packet packet;
 packet << static_cast<sf::Int32>(Client::GameEvent);
 packet << static_cast<sf::Int32>(gameAction.type);
 packet << gameAction.position.x;
 packet << gameAction.position.y;

 mSocket.send(packet);
}

On the server side, in GameServer::handleIncomingPacket(), this packet is
interpreted. When the game action denotes an exploded enemy, a pick-up will
be spawned with a certain probability. This in turn leads to a packet of type
Server::SpawnPickup, which is distributed to all clients.

The new pause state
For this chapter, the pause state was slightly modified. The same PauseState class
was now modified to accept an option in its constructor to either allow or deny
underlying states from being updated. The "default" behavior didn't change, but
if we pass this parameter as true, the underlying states keep updating. This was
a necessity as there was no concept of pausing in a networked game, because the
world is persistent. However, the user may still want to access settings or go back to
the main menu!

Settings
You may now configure two sets of keys in the Settings screen! This was done
by not using an application wide Player instance anymore, rather by using a
proper KeyBinding structure, holding the keys that are later passed to Player
instances at will.

Company Atop the Clouds – Co-op Multiplayer

[264]

The new Player class
The Player class needed to be reworked quite a bit in order to support a multiplayer
mode. Players are not hardcoded anymore in a state context scope, but rather, there
is one player for each human-controlled aircraft in the world.

Every player is now identified by the same identifier that classifies one aircraft,
so they can be paired up fast. Also, the constructor of Player now looks like the
following:

Player(sf::TcpSocket* socket, sf::Int32 identifier,
 const KeyBinding* binding);

We pass on a socket instance or a nullptr, defining whether the Player class is
being used in a networked or a single-player game. This socket, if passed, is valid for
sending data to the server, which we will do next!

The identifier is exactly what you'd expect, the same that maps to an aircraft too.
Finally, we also have KeyBinding being passed here. We will be passing it three
different things: The defined keys for the player 1, player 2, and nullptr in case this
Player instance does not receive local input, but rather is controlled by the server!

As for event and input handling by the Player class, it now works a little
differently too.

Now, the real-time input is only delivered to the local player aircraft—the ones with
actual human players controlling them. In consequence, each client has total control
over its planes along with immediate responsiveness and smoothness. At the same
time, that input is sent to the server, so every client is aware of that movement.

Latency
Programming and maintaining efficient server software is already a very hard task;
however, to add even more complexity to this duty, we must deal with latency too.
This topic is very broad but we will still try to give you some starting tips on how to
deal with these issues.

Roughly, latency is the delay a network packet takes to reach its destination. The
bigger the latency, the more we get behind in the networked simulation, and in
consequence, the gameplay gets worse.

Chapter 10

[265]

This little nightmare is one of the hardest troubles to deal with in network
programming. It will make players have a different experience based on their
connection and other network conditions, that is, it will make the game very
smooth for some players while completely unplayable for others; it will be a mess.
Unfortunately, it is not in the hands of the programmer to deal with the network's
latency at all. A programmer can at best prepare the software to behave a little better
in the worst case scenarios, where the latency is high. This is usually a very hard
task to get right and is one of the main reasons game development companies need
specialized and experienced network programmers to achieve a good simulation
for all players, independently of how bad their connection is, within reasonable
limits. Latency becomes a more and more determining factor as the geographical
distance between peers increases. Already the speed-of-light delay between different
continents of the Earth amounts to a fraction of a second, router logic on the way
through the Internet may add even more. Until a peer receives an answer, data must
be sent to the other peers and back; thus, we have the delay of both ways (also called
round-trip time). Therefore, physics significantly limits the way how multiplayer
games can be played across large distances.

Latency versus bandwidth
Do not confuse latency with bandwidth: The former denotes the time delay, while
the latter denotes the capacity of the link. If you imagine a link as a pipe, the latency
is related to its length, and thus to the time the water requires to flow through it.
Bandwidth however is determined by the cross-section of the pipe; it specifies how
much water can flow through it in a certain amount of time.

You cannot make a single bit arrive faster by increasing the bandwidth. What you
can do however is to send many bits in parallel, so that a bigger chunk of data still
needs less time to be transmitted. The bandwidth determines how much data you
can send in a certain amount of time.

View scrolling compensation
The view is now simulated both in the client and the server and updated at the
same speed in both of them. However, since the updates are happening in different
threads or even different machines, some discrepancies may occur occasionally.
Also, when a new player joins the game, he has to be informed of how far the
view currently is, so it can keep up with it. In order to keep the view synchronized
between all clients and the server, the server will send the view's position in every
tick and the clients will employ a little trick to smoothly resynchronize the view.

Company Atop the Clouds – Co-op Multiplayer

[266]

The trick is simple. When the view is scrolled, we multiply the scroll offset with a
compensation factor:

mWorldView.move(0.f, mScrollSpeed * dt.asSeconds() *
 mScrollSpeedCompensation);

Now we just need to ensure that the factor is 1 when the views are in sync, and vary
it, so the view scrolls faster or slower depending on how distanced it is from the
server's view position. We do this by dividing both positions whenever we get the
update:

 mWorld.setWorldScrollCompensation(currentViewPosition /
 currentWorldPosition);

This will keep the view synchronized while never losing smoothness, unless
something is very wrong and is too far behind, which should never happen in
normal circumstances.

Aircraft interpolation
After the compensation technique, we decided to implement another little trick for
the aircraft synchronization. Again, this is a simple way to achieve synchronization
and it doesn't give the smoothest results most often. We still wrote it so you could
face different algorithms and techniques and hopefully learn from them.

Remember, that each client commands its own planes and just informs the server
of what is happening locally. With this information, the server keeps track of where
every aircraft that is located. In every tick, it sends that information to its peers so
they can synchronize with the true simulation data.

The planes would move quite accurately anyway with the real-time input
information that comes from the server, but still some desynchronization could
happen eventually. Because of this, when we get the real position of the aircraft in
every tick, we move our aircraft slowly into that position, so, at best, after some ticks
the aircraft are completely synchronized:

if (aircraft && !isLocalPlane)
{
 sf::Vector2f interpolatedPosition = aircraft->getPosition() +
 (aircraftPosition - aircraft->getPosition()) * 0.1f;
 aircraft->setPosition(interpolatedPosition);
}

Chapter 10

[267]

The logic is simple. If the aircraft belongs to a remote player, we will interpolate
its position between the current local position and the server's position
(aircraftPosition). We have hardcoded an interpolation "amount" of 0.1f, which
means that we will always move 10 percent of the distance between both positions.
This small value avoids having the aircraft "jump" from place to place, except when
the network conditions are really bad and the synchronization is suffering too much.

Cheating prevention
By now you probably are scratching your chin and asking yourself: "But is this
secure? Is a hacky player able to exploit the game to its benefit somehow?"

If you answered "No" to yourself, you are correct. By all means we would like to
explain you how to make every little thing cheat-proof. However, we don't want to
give you the fish by bloating the code with lots of validations; but rather, explicitly
writing about how you can learn how to fish.

The current game, as is, is not cheat-proof whatsoever. There are a lot of
validations that are not performed, so it will only work predictably until a clever
user starts doing packet-sniffing and sending things that are not really expected by
our protocol.

Let's try to understand how cheating could be achieved in our particular case, and
how would we prevent it by looking at a few examples:

•	 In the client's tick, we let the client decide where its planes are going to be
at. If a user with malicious intent sent this packet after modifying, he would
be able to position its aircraft in any location, effectively warping from place
to place as much as he wanted. We would fix this by not accepting the new
positions in the server without some validations first. We would need to
check if the new position is possible. Whether it could be achieved with
normal gameplay, given the aircraft velocity and previous positions. Right
here we could spot on a cheater and act upon it by banning or kicking or
simply logging what happened to a file.

•	 Another great example of how we could exploit this game is to look at the
PlayerEvent packet on the client-side. It carries an aircraft identifier and an
action to perform. However, as the server doesn't check if the identifier sent
is owned by that peer, a malicious user could effectively make other people's
planes shoot bullets and missiles.

We intentionally left such things uncovered so you could see how serious it can be
if you don't check all the data coming from a client. Users will often try to break the
server state for an in-game profit.

Company Atop the Clouds – Co-op Multiplayer

[268]

The golden rule to prevent cheating is, when handling a packet in the server,
always ask yourself if what the client is requesting is possible! Do as many
validations as possible in the server's logic. The ultimate goal for a safe online
simulation is reaching that point when there is no possible combination of data
coming from the client that will produce unpredicted results. Always remember, as
long as the server's state is sane and controlled, there is no cheating, as hard as it may
be to achieve this.

Summary
In this final chapter, you learned about basic networking concepts. We had a
look at sockets, different network architectures, and protocols. We incorporated
this knowledge to our game, and extended the existing design to cope with new
challenges of networking. By using SFML's Network module, we implemented a
mechanism to communicate with other players on the same keyboard, the local area
network, or the Internet. Although we had to make compromises in some places,
you should have learned a lot of techniques which you can eventually apply in
another game.

Along with this chapter, also ends the book! It has been a long ride all the way and
we can only thank you for reading through our pages patiently. Finally, our aircraft
top-scroller has reached a state where it is not only playable, but contains many
features to create an immersive experience. We began with rendering, resource and
input handling, and went over to shape different states and menus with a graphical
user interface. We implemented actual gameplay mechanisms, polished the
appearance using a variety of visual effects, played sound and music, and eventually
added multiplayer support. Nevertheless, there are hundreds of possibilities to
further improve our game, there are virtually no limits!

By now, you have seen many different aspects of game development—maybe a lot
of unconventional approaches—and you are certainly motivated by these ideas to
create your own work. Remember, what we showed you should only be a source of
inspiration, not the one and only truth. We made choices that other people would
handle differently. Therefore, don't be afraid of experimenting and trying out your
own ideas! Be it code design, art style, or the gameplay itself—be creative, this is the
most important attribute of any game developer. We hope you have enjoyed reading
this book and following the development of our game, and wish you good luck on
your journey!

Index
Symbols
3D space

sounds 225
3D vectors

direction 226
position 226
up 226

-s postfix 9

A
AcceptCoopPartne 257
affectors 192
Aircraft::launchMissile() function 163
Aircraft class 51, 52, 157
Aircraft constructor 155
aircraftIdentifiers variable 249
AND operator 100
animated sprites 200-204
Application class

stack, integrating 121, 122
application programming interface (API) 7
apply() function 171, 206
Artificial Intelligence (AI) 156
aspect ratio 69
assertions 42, 43
assignKey() function 110
attenuation factor 227
Audacity software

URL 218
audio 35
audio module, SFML 8

B
bandwidth

versus latency 265
view scrolling compensation 265

bloom effect 205-213
Boolean return values 41
bounding rectangle 173
BroadcastMessage 256
bullets

firing 163-166
Button::activate() method 225
Button object 225

C
C++ 10, 11
centerOrigin() function 155
checkMissionEnd() 258
checkProjectileLaunch() function 167
checkSceneCollision() function 175
circle tree 69
client

about 258, 260
game actions transmitting, network modes

used 261-263
packets 261
pause state 263
player class 264
settings screen 263

Closed event 14
CMake 8

[270]

collision
detecting 173, 174
pairs, finding 174, 175
reacting to 176-178

collision() function 174
command-based communication system 95
command execution 100
CommandQueue class 101, 106
command queues 101
commands

about 96, 97
overview 106

Component::handleEvent() function 139
component-based design 52
Component class 138
concurrency 133
container

finding 37
createProjectile() function 166
createState() method 118
culling 68
custom protocol 240

D
data tables

entity attributes, storing 152-154
data transport 241, 242
delta movement, mouse 93
delta time 21
destroy() function 152
direction, 3D vectors 226
DirectX 189
double buffering 26
draw

handling 119
draw call 68
drawCurrent() function 59, 61
draw() function 58, 65
draw() method 80

E
EmitterNode and ParticleNode

splitting 199
emitter nodes 197, 198
emitters 192

enemies
about 156
movement patterns 156-158
spawning 158-160

entities
about 50
Aircraft 51
attributes, storing in

data tables 152-154
connecting, with resources 61, 62
designs, alternative 52
drawing 61
equipping 151
text, displaying 154, 155

Entity::draw() function 53
Entity, base class 50
enum class. See strongly typed

enumerations
erase() 181
error

handling 40
events

about 86
and real-time input 92

exceptions
throwing 41, 42

executionThread() 247

F
FIFO (first in, first out) 101
file paths 25
Finite State Machine (FSM) 115
fire() function 163
fixed time step 22, 23
fonts 32
FPS 16
frames 201
Frames Per Second. See FPS
fullscreen post effects 205-207

G
game

class 13-16
developing 12

Game::handlePlayerInput() 18

[271]

Game class
integrating 81
run method 81

game code, texture atlases
adapting 187, 188

GameEvent parameter 261
game logic

implementing 107
game loop 16
GameServer::executionThread()

function 246
general-purpose communication

mechanism 108
getAssignedKey() function 110
getBattlefieldBounds() 159, 182
getCategory() function 99
get function 50
get() method 43
getOrigin() 54
getStatus() method 220
getViewBounds() 159
getWorldPosition() function 231
GL Shading Language (GLSL)

about 32, 208
URL, for tutorial 215

graphical user interface. See GUI
graphics module, SFML 8, 34
graphics processing unit (GPU) 189
GUI 138-141
guide function 162
guideTowards() function 167

H
handleEvent() function 127-148
handleEvent() method 119
handlePacket() function 260
handlePlayerInput() function 18, 92
hitpoints 152
hot seat 250

I
identifier parameter 43
image 31
initializePickupData() function 171
InitialState 256

input
handling 119
state, obtaining in real time 90-92

Internet Protocol. See IP
IP 237
isButtonPressed() function 91
isDestroyed() function 181
isGuided() function 167
isKeyPressed() function 91
isMarkedForRemoval() function 181
isSelectable() function 139
isSupported() function 206
iterator class 179

J
joystick events, SFML

sf::Event::JoystickButtonPressed 88
sf::Event::JoystickButtonReleased 88
sf::Event::JoystickConnected 88
sf::Event::JoystickDisconnected 88
sf::Event::JoystickMoved event 88

K
key bindings

about 147-149
customizing 109-111

keyboard events, SFML
sf::Event::KeyPressed 88
sf::Event::KeyReleased 89
sf::Event::TextEntered 89

L
lambda expression 57
Landscape

rendering 71
SpriteNode 71, 72
texture 73
texture, repeating 73, 74

latency
about 264
Aircraft interpolation 266
versus bandwidth 265

launchMissile() function 163, 165

[272]

layer 64
listener

3D vectors 226
about 226
positioning 227, 228

loadFromFile() call 46
loadFromStream() 30
load() function 46
LoadingState::update() 135
LoadingState class 130
load() method 44
Local Area Network (LAN) 236
low-level rendering 189

M
main() function 13, 81
main loop 16
menu

updating 146, 147
mFilenames variable 218
minimum distance 227
missiles

firing 163-167
MissionSuccess 257
mLoadingText function 131
modulo operator 158
mOptionIndex integer variable 126
mouse

delta movement 93
mouse events, SFML

sf::Event::MouseEntered 89
sf::Event::MouseLeft 89

move() function 19
movement 20
movement patterns 156-158
mSelectedChild variable 142
multiplayer games

playing 236
structure, creating 245, 246

music 33
MusicPlayer::play() method 219
music themes

about 218
loading 219, 220
playing 219, 220

N
network, architecture

about 242
authoritative servers 244, 245
client-server architecture 243, 244
peer-to-peer 242, 243

network module, SFML 8
network port 238
new operator 140
notifyGameAction() method 262
nullptr 56

O
Open Audio Library (OpenAL) 225
openFromFile() method 45
OpenGL

about 189
URL 208

OpenGL Shading Language. See GLSL
open type fonts (OTF) 32
overload function 91

P
packets 241, 253-255
ParallelTask class 130
ParallelTask. LoadingState 130
ParallelTask object 132
particle nodes 194
particles

about 192-194
embedding 200
rendering, on screen 194-196

particle system 192
particle types 193, 194
pause() method 220
pause state 263
PauseState class 128
PauseState constructor 221
PauseState destructor 221
Player class 111
PlayerConnect 256
PlayerEvent parameter 256, 261
player input

handling 102-106

[273]

Player::isRealtimeAction() function 110
PlayerRealtimeChange parameter 256, 261
play() function 229
playLocalSound() method 231
pollEvent() function 86
pop operations

delayed 120
popState() function 120
position, 3D vectors 226
PositionUpdate parameter 261
PostEffect::applyShader() function 207
post rendering 205
prepareTextures() function 213
primitive type 191
processEvents() function 13, 14
processEvents() method 24
projectiles

adding 161, 162
push operations

delayed 120
pushState() function 120

Q
Quadtrees 69, 179
quit parameter 261

R
RAII 36
real-time rendering 26
receiver categories 98, 99
relative position 53
removeStoppedSounds() method 224
render() function 13, 27
render() method 15, 24
render target 189
render texture 190
render window 189
RequestCoopPartner parameter 261
requestStackClear() 120
requestStackPop() 120
requestStackPush() 120
resolution 69
Resource Acquisition Is Initialization.

See RAII
ResourceHolder template 43
ResourceHolder::load() function 46

ResourceHolder class template 47
resource parameter 43
resources

accessing 35
acquiring 35
defining 29, 30
in SFML 30
releasing 35

rotation 54
round-trip time 265
run() function 13, 16

S
sample, loading screen

about 129, 130
concurrency 133
ParallelTask 132
progress bar 130-132
task, implementing 134, 135
thread 133

scale 54
scene

layers 64
origin, aligning 63
rendering 53
updating 64, 66

scene graph 55
SceneNode::isDestroyed() function 180
SceneNode class 66, 98
SceneNode::onCommand() function 100
scene nodes

about 55, 56
inserting 56, 57
making drawable 58-60
removing 56, 57

selectNext() function 143
selectPrevious() function 143
Separating Axis Theorem 174
server

about 246
disconnections, handling 252, 253
hot seat 250
loop 247, 248
new clients, accepting 250-252
packets, incoming 253-256
peers and artifacts 248, 249

[274]

protocol 256, 257
synchronization, issues 258
thread 246
ticks and updates 257, 258

server packet
AcceptCoopPartne 257
BroadcastMessage 256
InitialState 256
MissionSuccess 257
PlayerConnect 256
PlayerDisconnect 256
PlayerEvent 256
PlayerRealtimeChange 256
SpawnEnemy 257
SpawnPickup 257
SpawnSelf 256
UpdateClientState 257

setAttenuation() method 227
setBuffer() method 223
setCompletion() method 131
setDirection() method 226
set function 50
setMinDistance() method 227
setOrigin() 54
setPosition() method 226
SettingsState class 147
setVelocity() method 50
sf::Event::Closed event 10
sf::Event object 17
sf::Font class 32
sf::Music class

about 33, 219
compatibility with 45

sf::Mutex and sf::Lock 134
sf::Mutex object 135
sf::RenderWindow::display() function 26
sf::RenderWindow::draw() method 15
sf::RenderWindow::set

VerticalSyncEnabled() method 24
sf::Shader class 45, 46
sf::sleep() function 24
sf::SocketSelector class 239
sf::Sound constructor 223
sf::Sound object 33
sf::Sprite class 31, 72
sf::TcpListener::accept() function 251
sf::TcpSocket::receive() function 255

sf::Texture::loadFromFile() method 40
sf::Texture::loadFromX() function 31
sf::Texture::setRepeated(bool) function 73
sf::Texture class 24
sf::Thread::launch() 133
sf::UdpSocket::bind() function 239
sf::Event::Closed event 87
sf::Event::GainedFocus event 87, 94
sf::Event::JoystickButtonEvent

data structure 88
sf::Event::JoystickButtonPressed event 88
sf::Event::JoystickButtonReleased

event 88
sf::Event::JoystickConnected event 88
sf::Event::JoystickConnectEvent

data type 88
sf::Event::JoystickDisconnected event 88
sf::Event::JoystickMoved event 88
sf::Event::JoystickMoveEvent

data structure 88
sf::Event::KeyEvent data structure 89
sf::Event::KeyEvent data type 88
sf::Event::KeyPressed event 88
sf::Event::KeyReleased event 89
sf::Event::LostFocus event 87, 94
sf::Event::MouseButtonEvent structure 90
sf::Event::MouseButtonPressed type 90
sf::Event::MouseButtonReleased type 90
sf::Event::MouseEntered event 89
sf::Event::MouseLeft event 89
sf::Event::MouseMoved data type 89
sf::Event::Resized event 87
sf::Event::SizeEvent data type 87
sf::Event::TextEntered event 89
sf::Event::TextEvent data structure 89
sf::Event::type member variable 87
sf::Event variable 86
sf::Joystick class 90
sf::Keyboard class 91
SFML

about 7, 86
and transforms 54
API documentation, URL 28
audio module 8
events 17
graphics module 8
input state, obtaining in real time 90, 92

[275]

joystick events 88
keyboard events 88, 89
minimal example 9, 10
mouse events 89, 90
network module 8
pre-built libraries, downloading 8
system module 8
URL 8
window events 87
window module 8

SFML resources
about 30
fonts 32
images 31
music 33
shaders 32
sound buffers 33
textures 31

sf::Mouse class 91, 93
sf::MouseMoveEvent data structure 89
sf::RenderWindow class 86
sf::Shape class 189
sf::Sprite class 186, 189
sf::Text class 189
sf::Window class 86
sf::Window::pollEvent() function 86
shader 32, 208
Simple and Fast Multimedia Library.

See SFML
sockets

about 236
selectors 239, 240

SoundBufferHolder::load() function 223
sound buffers 33
SoundEffect::ID enumerator 223
sound effects

about 221
class, implementing 222
GUI sounds, use case 224, 225
inserting 223
loading 223
playing 223
removing 224

SoundNode::playSound() function 231
SoundPlayer object 224
spatializing 225

spatial sounds
playing 228-230

spawnEnemies() function 258
SpawnEnemy 257
SpawnPickup 257
spawnPickups() function 258
SpawnSelf 256
SpriteNode 71, 72
sprites

displaying, on screen 24, 25
sprite sheet 186
stack

integrating, in Application class 121, 122
state

context 121
defining 113, 114
game, pausing 128, 129
game state, creating 123
main menu 125-127
navigating between 123
title screen 124, 125

State::Context class 220
State::Context structure 224
state stack

about 114, 115
draw, handling 119
input, handling 119
states, adding to 117, 118
update, handling 119

StateStack::registerState() 118
StateStack class

about 116, 118
states, adding to 117, 118

std::array function 75
std::bind() call 231
std::function 117
std::function class 144
std::list::remove_if() method 224
std::make_shared() function 140
std::bind() function 96
std::function class 96
stop() method 220
strongly typed enumerations 37
system module, SFML 8

[276]

T
TCP

about 237
features 237

Texel 190
texture atlas

about 186
defining 186
game code, adapting 187, 188

TextureHolder class 62
texture mapping 190
texture rectangle 186
textures

about 31
accessing 39, 40

thread 133
tick rate 248
tile set 186
timedOut variable 249
timeout 253
TimePerFrame 23
time step 21
title screen 124, 125
toString() function 155
transform 54
transforms 66, 67
translation 54
Transmission Control Protocol. See TCP
true type fonts (TTF) 32
typedef 19
type inference 39

U
UDP 238, 239
unique pointers 37
unitVector() function 167
up, 3D vectors 226
update

handling 119
UpdateClientState 257
updateCurrent() function 167
update() function 13, 19, 21, 129,

165, 181, 260
updateLabels() function 148
updateLogic() function 248

update() method 24, 80
use case

in-game sound effects 230-232
in-game themes 220

User Datagram Protocol. See UDP
user tabs

interacting, with other applications 94

V
vector algebra 20
vectors 19
vertex 190
vertex array 191
Vertical Synchronization. See V-Sync
video memory 189
view

about 67
optimizing 68
rotating 71
scrolling 70
Viewport 68
zooming 71

Viewport 68
visual effect 192
V-Sync 24

W
waitEvent() function 86
window class 59
window events, SFML

sf::Event::Closed 87
sf::Event::GainedFocus 87
sf::Event::LostFocus 87
sf::Event::Resized 87

window module, SFML 8
world

composing 74, 75
draw() method 80
initialization 76, 77
scene, building 78, 79
textures, loading 77
update() method 80

World::update() function 182
World class 159

Thank you for buying
SFML Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

HTML5 Game Development with
GameMaker
ISBN: 978-1-849694-10-0 Paperback: 364 pages

Experience a captivating journey that will take you
from creating a full-on shoot 'em up to your first
social web browser game

1.	 Build browser-based games and share them
with the world

2.	 Master the GameMaker Language with easy to
follow examples

3.	 Every game comes with original art and
audio, including additional assets to build
upon each lesson.

Torque 3D Game Development
Cookbook
ISBN: 978-1-849693-54-7 Paperback: 380 pages

Over 80 prctical recipies and hidden gems for getting
the most out of the Tourque 3D game engine

1.	 Clear step-by-step instruction and practical
examples to advance your understanding of
Torque 3D and all of its sub-systems

2.	 Explore essential topics such as graphics,
sound, networking and user input

3.	 Helpful tips and techniques to increase the
potential of your Torque 3D games

Please check www.PacktPub.com for information on our titles

Cocos2d-X by Example
Beginner's Guide
ISBN: 978-1-782167-34-1 Paperback: 246 pages

Make fun games for any platform using C++,
combined with one of the most popular open source
frameworks in the world

1.	 Learn to build multi-device games in simple,
easy steps, letting the framework do all the
heavy lifting

2.	 Spice things up in your games with easy to
apply animations, particle effects, and physics
simulation

3.	 Quickly implement and test your own
gameplay ideas, with an eye for optimization
and portability

Mastering UDK Game
Development
ISBN: 978-1-849695-60-2 Paperback: 290 pages

Eight projects specifically designed to help you
exploit the Unreal Development Kit to its full
potential

1.	 Guides you through advanced projects that
help augment your skills with UDK by practical
example

2.	 Comes complete with all the art assets and
additional resources that you need to create
stunning content

3.	 Perfect for level designers who want to take
their skills to the next level

Please check www.PacktPub.com for information on our titles

		Cover

		Copyright

		Credits

		Foreword

		About the Authors

		About the Reviewers

		www.PacktPub.com

		Table of Contents

		Preface

		Chapter 1: Making a Game Tick

		Introducing SFML

		Downloading and installation

		A minimal example

		A few notes on C++

		Developing the first game

		The Game class

		Game loops and frames

		Input over several frames

		Vector algebra

		Frame-independent movement

		Fixed time steps

		Other techniques related to frame rates

		Displaying sprites on the screen

		File paths and working directories

		Real-time rendering

		Adapting the code

		Summary

		Chapter 2: Keeping Track of
Your Textures – Resource Management

		Defining resources

		Resources in SFML

		Textures

		Images

		Fonts

		Shaders

		Sound buffers

		Music

		A typical use case

		Graphics

		Audio

		Acquiring, releasing, and accessing resources

		An automated approach

		Finding an appropriate container

		Loading from files

		Accessing the textures

		Error handling

		Boolean return values

		Throwing exceptions

		Assertions

		Generalizing the approach

		Compatibility with sf::Music

		A special case – sf::Shader

		Summary

		Chapter 3: Forge of the Gods – Shaping Our World

		Entities

		Aircraft

		Alternative entity designs

		Rendering the scene

		Relative coordinates

		SFML and transforms

		Scene graphs

		Scene nodes

		Node insertion and removal

		Making scene nodes drawable

		Drawing entities

		Connecting entities with resources

		Aligning the origin

		Scene layers

		Updating the scene

		One step back – absolute transforms

		The view

		Viewport

		View optimizations

		Resolution and aspect ratio

		View scrolling

		Zoom and rotation

		Landscape rendering

		SpriteNode

		Landscape texture

		Texture repeating

		Composing our world

		World initialization

		Loading the textures

		Building the scene

		Update and draw

		Integrating the Game class

		The run method

		Summary

		Chapter 4: Command and
Control – Input Handling

		Polling events

		Window events

		Joystick events

		Keyboard events

		Mouse events

		Getting the input state in real time

		Events and real-time input – when to
use which

		Delta movement from the mouse

		Playing nice with your
application neighborhood

		A command-based communication system

		Introducing commands

		Receiver categories

		Command execution

		Command queues

		Handling player input

		Commands in a nutshell

		Implementing the game logic

		A general-purpose communication mechanism

		Customizing key bindings

		Why a player is not an entity

		Summary

		Chapter 5: Diverting the Game
Flow – State Stack

		Defining a state

		The state stack

		Adding states to StateStack

		Handling updates, input, and drawing

		Input

		Update

		Draw

		Delayed pop/push operations

		The state context

		Integrating the stack in the
Application class

		Navigating between states

		Creating the game state

		The title screen

		Main menu

		Pausing the game

		The loading screen – sample

		Progress bar

		ParallelTask

		Thread

		Concurrency

		Task implementation

		Summary

		Chapter 6: Waiting and Maintenance Area – Menus

		The GUI hierarchy, the Java way

		Updating the menu

		The promised key bindings

		Summary

		Chapter 7: Warfare Unleashed – Implementing Gameplay

		Equipping the entities

		Introducing hitpoints

		Storing entity attributes in data tables

		Displaying text

		Creating enemies

		Movement patterns

		Spawning enemies

		Adding projectiles

		Firing bullets and missiles

		Homing missiles

		Picking up some goodies

		Collision detection and response

		Finding the collision pairs

		Reacting to collisions

		An outlook on optimizations

		An interacting world

		Cleaning everything up

		Out of view, out of the world

		The final update

		Victory and defeat

		Summary

		Chapter 8: Every Pixel Counts – Adding Visual Effects

		Defining texture atlases

		Adapting the game code

		Low-level rendering

		OpenGL and graphics cards

		Understanding render targets

		Texture mapping

		Vertex arrays

		Particle systems

		Particles and particle types

		Particle nodes

		Emitter nodes

		Affectors

		Embedding particles in the world

		Animated sprites

		The Eagle has rolled!

		Post effects and shaders

		Fullscreen post effects

		Shaders

		The bloom effect

		Summary

		Chapter 9: Cranking Up the
Bass – Music and
Sound Effects

		Music themes

		Loading and playing

		Use case – In-game themes

		Sound effects

		Loading, inserting, and playing

		Removing sounds

		Use case – GUI sounds

		Sounds in 3D space

		The listener

		Attenuation factor and minimum distance

		Positioning the listener

		Playing spatial sounds

		Use case – In-game sound effects

		Summary

		Chapter 10: Company Atop the
Clouds – Co-op Multiplayer

		Playing multiplayer games

		Interacting with sockets

		TCP

		UDP

		Socket selectors

		Custom protocols

		Data transport

		Network architectures

		Peer-to-peer

		Client-server architecture

		Authoritative servers

		Creating the structure for multiplayer

		Working with the Server

		Server thread

		Server loop

		Peers and aircraft

		Hot Seat

		Accepting new clients

		Handling disconnections

		Incoming packets

		Studying our protocol

		Understanding the ticks and updates

		Synchronization issues

		Taking a peek in the other end – the client

		Client packets

		Transmitting game actions via network nodes

		The new pause state

		Settings

		The new Player class

		Latency

		Latency versus bandwidth

		View scrolling compensation

		Aircraft interpolation

		Cheating prevention

		Summary

		Index

