

�

�

�

�

�

�

�

�

Advanced Global Illumination

�

�

�

�

�

�

�

�

Advanced Global Illumination
Second Edition

Philip Dutré
Kavita Bala

Philippe Bekaert

A K Peters, Ltd.
Wellesley, Massachusetts

�

�

�

�

�

�

�

�

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.
888 Worcester Street, Suite 230
Wellesley, MA 02482
www.akpeters.com

Copyright c© 2006 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form, electronic or mechani-
cal, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Dutré, Philip
Advanced global illumination / Philip Dutré, Kavita Bala, Philippe Bekaert.

p. cm.
Includes bibliographical references and index.
ISBN 13: 978-1-56881-307-3 (alk. paper)
ISBN 10: 1-56881-307-4 (alk. paper)
1. Computer graphics. I. Bala, Kavita II. Bekaert, Philippe III. Title.

T385.D89 2006
006.6’93–dc22

2006044831

Printed in India
10 09 08 07 06 10 9 8 7 6 5 4 3 2 1

�

�

�

�

�

�

�

�

To my family. —Phil

To Andrew, Vivek, and Ravi. —KB

To Annelies, Lotte, and Fien. —Philippe

�

�

�

�

�

�

�

�

Foreword

There have been tremendous advances in the realism of computer-generated
images over the last twenty years. This is the result of a great deal of
research and is documented in thousands of technical papers. While this
effort has resulted in many algorithmic and mathematical tools, it has also
resulted in a vast and somewhat impenetrable literature. This literature
has conflicting terms, symbols, and often advocates approaches that are
simply not practical. As a result, it is very difficult for new people to “get
up to speed” and begin developing software to generate realistic images.
The most technical part of realistic image generation is dealing with “global
illumination.” The word “global” refers to the fact that the appearance
of an object depends on the light it receives from all other objects. So in
this sense, computing lighting even at a single point requires computation
using the entire model of the scene. While this might seem like overkill,
the visual richness of an image created using a global illumination program
is simply not possible with simpler local illumination programs.

This book breaks down the barrier to entry and describes global illumi-
nation concepts and algorithms from a modern viewpoint using consistent
terms and symbols. While there are good books on specific global illumina-
tion topics, this is the first book to address global illumination techniques
as a whole. The authors are ideal for such an ambitious project; they have
a broad background in rendering and have done significant research in all
of the major global illumination topics.

Most of the major theoretical advances in global illumination took place
in the 1980s. These included the development of both radiosity and Monte
Carlo ray tracing. In the 1990s, it became apparent that none of these
algorithms were practical when applied in a straightforward manner. In
that time, a more quiet revolution took place as techniques were developed

vii

�

�

�

�

�

�

�

�

viii Foreword

to make global illumination practical for real-world models. The authors
were key players in that revolution, and this book stresses techniques that
have been shown to work in the field. The approach of the book has been
fine-tuned in a course on global illumination taught by the authors at the
annual SIGGRAPH conference, and this has resulted in a clean progression
of ideas.

Since Advanced Global Illumination was published, it has become my
default reference for points related to advanced rendering. I also recom-
mend it to new students at my university who need to absorb twenty years
of rendering research without wading through hundreds of dense papers
that often have conflicting terminology or, worse, advance concepts that
have since been discredited. Rendering images with realistic illumination
effects is very rewarding, and it is not hard once the basic concepts are
clearly understood. This book describes all of those concepts, and it is a
passport to making beautiful and realistic images. Enjoy!

Peter Shirley
May 2006

�

�

�

�

�

�

�

�

Table of Contents

Preface xiii

Preface to the Second Edition xv

1 Introduction 1
1.1 What Is Realistic Image Synthesis? 1
1.2 Structure of this Book . 10
1.3 How to Use this Book . 12

2 The Physics of Light Transport 15
2.1 Brief History . 15
2.2 Models of Light . 17
2.3 Radiometry . 19
2.4 Light Emission . 31
2.5 Interaction of Light with Surfaces 31
2.6 Rendering Equation . 41
2.7 Importance . 44
2.8 The Measurement Equation 45
2.9 Summary . 45
2.10Exercises . 45

3 Monte Carlo Methods 47
3.1 Brief History . 47
3.2 Why Are Monte Carlo Techniques Useful? 48
3.3 Review of Probability Theory 48
3.4 Monte Carlo Integration . 54
3.5 Sampling Random Variables 63

ix

�

�

�

�

�

�

�

�

x Table of Contents

3.6 Variance Reduction . 67
3.7 Summary . 78
3.8 Exercises . 78

4 Strategies for Computing Light Transport 81
4.1 Formulation of the Rendering Equation 81
4.2 The Importance Function . 87
4.3 Adjoint Equations . 91
4.4 Global Reflectance Distribution Function 94
4.5 Classification of Global Illumination Algorithms 96
4.6 Path Formulation . 105
4.7 Summary . 105
4.8 Exercises . 106

5 Stochastic Path-Tracing Algorithms 107
5.1 Brief History . 107
5.2 Ray-Tracing Set-Up . 109
5.3 Simple Stochastic Ray Tracing 110
5.4 Direct Illumination . 114
5.5 Environment Map Illumination 127
5.6 Indirect Illumination . 134
5.7 Light Tracing . 143
5.8 Summary . 148
5.9 Exercises . 148

6 Stochastic Radiosity 151
6.1 Classic Radiosity . 153
6.2 The Form Factors . 159
6.3 Stochastic Relaxation Radiosity 164
6.4 Discrete Random Walk Methods for Radiosity 174
6.5 Photon Density Estimation Methods 184
6.6 Variance Reduction and Low-Discrepancy Sampling 202
6.7 Hierarchical Refinement and Clustering 211
6.8 Exercises . 214

7 Hybrid Algorithms 219
7.1 Final Gathering . 219
7.2 Multipass Methods . 223
7.3 Bidirectional Tracing . 227
7.4 Metropolis Light Transport 231
7.5 Irradiance Caching . 234
7.6 Photon Mapping . 236

�

�

�

�

�

�

�

�

Table of Contents xi

7.7 Instant Radiosity . 240
7.8 Lightcuts and Multidimensional Lightcuts 242
7.9 Exercises . 249

8 The Quest for Ultimate Realism and Speed 253
8.1 Beyond the Rendering Equation 254
8.2 Image Display and Human Perception 277
8.3 Fast Global Illumination . 287

9 Conclusion 301
9.1 Achievements of Photorealistic Rendering 301
9.2 Unresolved Issues in Photorealistic Rendering 302
9.3 Concluding Remarks . 304

A A Class Library for Global Illumination 305
A.1 Path Node Classes . 306
A.2 Light Source Sampling Classes 311
A.3 Support Classes . 313
A.4 Example Code Fragments . 316

B Hemispherical Coordinates 333
B.1 Hemispherical Coordinates 333
B.2 Solid Angle . 334
B.3 Integrating over the Hemisphere 336
B.4 Hemisphere-Area Transformation 337

C Theoretical Analysis of Stochastic Relaxation Radiosity 339

Bibliography 343

Index 363

�

�

�

�

�

�

�

�

Preface

This book is the result of our experience while teaching a course of the same
name at the annual ACM SIGGRAPH conference during 2001 and 2002,
as well as teaching various graduate-level courses and seminars covering
advanced photorealistic rendering topics. When setting up these courses,
we always felt that covering the fundamentals gives a much broader insight
into how to design a global illumination algorithm, instead of presenting the
student with a number of recipes and ready-to-compile code. By explaining
the basic building blocks and underlying theory, the reader should be more
able to design and implement his own photorealistic rendering algorithms.

We chose Advanced Global Illumination as the title because we present
topics which are of a more fundamental nature than those which are usually
understood by the term global illumination or photorealistic rendering by
the computer graphics enthusiast. Too often, classic ray tracing with some
extensions for handling area light sources, or with some heuristics added
for indirect illumination, are categorized as global illumination algorithms.
In order to know why such approaches fail to cover all possible illumina-
tion effects, and exactly why this is the case, it is necessary to understand
the fundamental and advanced concepts of the most advanced global illu-
mination algorithms available. The adjective “advanced” is to be read in
this way. The professional researcher or Ph.D. student who spends several
years of research studying global illumination algorithms may not judge
the topics in this book to be “advanced” in this sense, but we think that
the majority of computer graphics practitioners will discover many topics
here not covered by other books.

However, this does not imply that this book only covers theoretical
concepts. Various sections deal with practical issues on how to implement
the different building blocks needed to build your own global illumination

xiii

�

�

�

�

�

�

�

�

xiv Preface

algorithm. We hope that the researcher, the graduate and undergraduate
student, and the computer graphics enthusiast will find this book interest-
ing to read.

We would like to thank the people from A K Peters, who have been
more than helpful during the process of publishing this book, and who have
been very patient and encouraging. Especially, we would like to thank Alice
Peters, Heather Holcombe, and Jonathan Peters for their understanding in
us taking more time to finish this manuscript than originally intended.

We would also like to thank the various research groups and institu-
tions, at which we found the time to work on this book and who gave
us the opportunity to teach computer graphics and photorealistic render-
ing: The Program of Computer Graphics at Cornell University, USA; the
Max Planck Institut für Informatik in Saarbrücken, Germany; the Depart-
ment of Computer Science at the University of Leuven, Belgium; and the
Expertise Centre for Digital Media at the University of Limburg, also in
Belgium.

The students in our various computer graphics courses over the past
years provided us with valuable additional insight on how to adequately
explain various topics related to photorealistic rendering. Student feedback
in an educational setting is very worthwhile, and we wish to thank them
all. We also wish to thank the attendees of our global illumination courses
at the ACM SIGGRAPH conferences for the criticism and encouragement
they provided.

Last but not least, we would like to thank our families and close friends,
who supported us throughout the huge task of writing this book.

Philip Dutré
Philippe Bekaert

Kavita Bala

Leuven, Hasselt, and Ithaca, January 2003

�

�

�

�

�

�

�

�

Preface to the Second Edition

Since the first edition of this book was published almost three years ago,
we have received quite some feedback. We were very happy to hear that
Advanced Global Illumination has been used as a textbook in various uni-
versities and are grateful for the constructive comments from our readers.

During the last years, the field of global illumination has expanded, and
as a result, some new sections have been added. Chapter 5 contains a small
section about environment maps. Moreover, we extended Chapters 7 and
8 to include some of the newest developments in scalable rendering and
precomputed radiance transfer.

The most significant change probably is the inclusion of exercises at
the end of each chapter. We often received requests about homeworks for
courses using this book, and so we included a selection of homeworks we
have used ourselves during the past years.

Specifically for this second edition of the book, we would like to thank
all readers who have provided us with valuable feedback and criticism.
Partly due to their comments, various sections in this book have been
amended and improved. We especially thank the following persons: Tomas
Akenine-Möller, Andreas Baerentzen, Dave Beveridge, Bryan Cool, Jeppe
Revall Frisvad, Michael Goesele, Vlastimil Havran, Magnus Jonneryd,
Jaroslav Křivánek, Nelson Max, Rick Speer, Derek Young, Koen Yskout.
Our apologies to anyone who has contributed but is not mentioned in this
list. We would like to thank Bruce Walter for providing us with the images
for the book cover.

We would like to thank all the staff at A K Peters, and in particular
Alice Peters, who has provided us with the opportunity to publish a second
edition of this book. Also, we especially thank our editor Kevin Jackson-
Mead, who has assisted us greatly in preparing the final manuscript and
managed us skillfully throughout the whole process.

xv

�

�

�

�

�

�

�

�

xvi Preface to the Second Edition

All three of us would also like to thank our families and close friends
for making this a rewarding and fun experience; without their support this
book would not have been possible.

Philip Dutré
Kavita Bala

Philippe Bekaert

Leuven, Ithaca, and Hasselt, March 2006

�

�

�

�

�

�

�

�

1

Introduction

1.1 What Is Realistic Image Synthesis?

Realistic image synthesis is a domain in the field of computer graphics
that generates new images from other data. Typically, one starts from a
complete description of a three-dimensional scene, specifying the size and
location of objects, the material properties of all surfaces of solid objects
in the scene, and the position and emission characteristics of light sources.
From this data, a new picture is generated, as seen from a virtual camera
placed in the scene. The aim is to make these pictures as photorealistic
as possible, such that the difference with a real photograph (if the virtual
scene would be constructed in reality) is not noticeable. This requires the
underlying physical processes regarding materials and the behavior of light
to be precisely modeled and simulated. Only by knowing exactly what one
is trying to simulate does it become possible to know where simplifications
can be introduced in the simulation and how this will affect the resulting
pictures.

Generating photorealistic pictures is a very ambitious goal, and it has
been one of the major driving forces in computer graphics over the last
decades. Visual realism has always been a strong motivation for research
in this field, and it is a selling point for many graphics-related, commercially
available products. It is expected that this trend will continue in the coming
years and that photorealism will remain one of the core fields in rendering.

Photorealistic rendering is not the only rendering paradigm that is used
in computer graphics, nor is it the best solution for all rendering applica-
tions. Especially in the last couple of years, non-photorealistic rendering
has become a field in itself, providing viable alternatives for the photo-
realistic rendering style. Non-photorealistic rendering (or NPR, as it is
commonly called) uses a wide variety of drawing styles that are suited for
a more artistic, technical, or educational approach. Drawing styles covered
by NPR include pen-and-ink drawings, cartoon-style drawings, technical

1

�

�

�

�

�

�

�

�

2 1. Introduction

illustrations, watercolor painting, and various artistic styles such as im-
pressionism, pointillism, etc. The possibilities are virtually limitless, and
the algorithms are driven by trying to recreate a certain style rather than
by trying to simulate a physical process found in nature. While there is
clearly room for NPR, a variety of applications are interested in the physical
simulation of reality.

1.1.1 The Importance of Realistic Image Synthesis

Photorealistic rendering is a rendering style that has many applications in
various fields. Early applications were limited by the amount of time it
took to compute a single image (usually measured in hours), but recently,
interactive techniques have broadened the scope of photorealistic image
synthesis considerably.

Film and Visual Effects

Visual effects in the film industry have always been a driving force for the
development of new computer graphics techniques. Depending on the ren-
dering style used, feature animations can benefit from global illumination
rendering, although this might be limited to a few scenes where more com-
plex lighting configurations are used. Movies with live footage can benefit
too, especially when virtual elements are added. In this case, a consistent
lighting between the real and virtual elements in the same shot needs to
be achieved, in order to avoid implausible lighting effects. Global illumina-
tion is necessary to compute the light interaction between those different
elements.

Architecture

Architectural design is often quoted as one of the most beneficial appli-
cations of photorealistic rendering. It is possible to make visualizations,
whether they be still images or interactive walk-throughs, of buildings yet
to be constructed. Not only can indoor illumination due to interior light-
ing be simulated, but outdoor lighting can be considered as well, e.g., the
building can be illuminated using various atmospheric conditions at differ-
ent times of the year, or even various times during the day.

Ergonomic Design of Buildings and Offices

Although not strictly a computer graphics application, the ergonomic de-
sign of office rooms or factory halls is very much related to global illu-
mination. Given the design of a building, it is possible to compute the
various illumination levels in different parts of the building (e.g., desks,
workstations, etc.), and the necessary adjustments can be made to reach

�

�

�

�

�

�

�

�

1.1. What Is Realistic Image Synthesis? 3

the minimum legal or comfortable requirements by changing the color of
paint on the walls, the repositioning of windows, or even the replacement
of walls.

Computer Games

Most computer games revolve around fast and interactive action, coupled
with a suspension of disbelief in a virtual world. As such, photorealistic
rendered imagery probably is a strong cue to draw players into the envi-
ronments in which their virtual characters are acting. Since interactivity
is more important in a gaming context than realistic images, the use of
global illumination in games is still somewhat limited but will undoubtedly
become more important in the near future.

Lighting Engineering

The design of lights and light fixtures can also benefit from global illumina-
tion algorithms. Specific designs can be simulated in virtual environments,
such that the effect of the emission patterns of light bulbs can be studied.
This requires an accurate measurement and modeling of the characteristics
of the emission of the light sources, which is a whole field of study by itself.

Predictive Simulations

Predictive simulations encompass much more than just simulating the look
of buildings as described above. Other areas of design are important as
well: car design, appliances, consumer electronics, furniture, etc. This all
involves designing an object and then simulating how it will look in a real
or virtual environment.

Flight and Car Simulators

Simulators used for training, such as flight and car simulators, benefit from
having an as accurate as possible visual simulation, e.g., aspects of street
lighting are important in car simulators, accurate atmospheric visual sim-
ulation is important when designing a flight simulator, etc. Other types
of training simulators also use or might use realistic imagery in the future;
armed combat, ship navigation, and sports are a few examples.

Advertising

Producing accurate imagery of yet-to-be-produced products is probably a
good tool for the advertising world. Not only does the customer have the
ability to see what the product looks like when generated using photorealis-
tic rendering, but he would benefit if he could place the product in a known
environment, e.g., furniture could be placed, with consistent illumination,
in a picture of your own living room.

�

�

�

�

�

�

�

�

4 1. Introduction

1.1.2 History of Photorealistic Rendering

This section provides a brief history of photorealistic rendering algorithms
and the quest for visual realism. Some more extensive background and
history on specific algorithms can also be found in the relevant chapters.

Photorealism in the Precomputer Age

The history of photorealistic rendering, or the quest for visual realism,
can be traced throughout the history of art. Although we are mainly
interested here in the computer-driven photorealistic rendering programs,
it might be useful to look at how the understanding of realistic rendering
evolved in the course of history. Medieval and premedieval art is very
much iconic in nature: persons and objects are displayed in simplified,
often two-dimensional forms, and sizes and shapes are used to reflect the
importance of the person displayed, relative positioning in a scene, or other
properties.

The real beginning of realistic rendering probably starts with the first
use and study of perspective drawings. Especially in Italy during the Re-
naissance period, various artists were involved in discovering the laws of
perspective. Brunelleschi (1377–1446), da Vinci (1452–1519), and Dürer
(1471–1528) (to name a few) are well known for their contributions. Later,
painters also started to pay attention to the shading aspects. By carefully
studying shadows and light reflections, very accurate renderings of real
scenes could be produced using classic artistic materials.

Much of the knowledge of photorealistic painting was collected by British
landscape artist Joseph Turner (1775–1851), appointed Professor of Per-
spective at the Royal Academy of Arts in London. He designed a course
of six lectures, covering principles such as accurate drawing of light, reflec-
tions, and refractions. Some of his sketches show reflections in mirrored
and transparent spheres, a true precursor of ray tracing almost 300 years
later. In his book, Secret Knowledge, British artist David Hockney [73]
develops an interesting thesis: Starting in the 15th century, artists began
using optical tools to display reality very accurately. Mostly using a camera
lucida, they projected imagery onto the canvas and traced the silhouettes
and outlines very carefully. Afterwards, several such drawings were com-
posed in a bigger painting, which explains the different perspectives found
in various well-known paintings of the era.

It is certainly no coincidence that the trend and developments towards
more photorealism in art were somewhat halted with the invention of pho-
tography at the beginning of the 19th century (Nicéphore Niépce, 1765–
1833). Capturing an image accurately is suddenly not a difficult process
anymore. After the invention of photography, art evolved into modern art,

�

�

�

�

�

�

�

�

1.1. What Is Realistic Image Synthesis? 5

with its various novel ways, not necessarily photorealism, of looking at
reality (pointillism, impressionism, cubism, etc.).

Primitive Shading Algorithms

The birth of computer graphics is usually accredited to SketchPad [188], the
Ph.D. thesis of Ivan Sutherland at the Massachusetts Institute of Technol-
ogy (M.I.T.) in 1963. Early computer graphics were mostly line drawings,
but with the advent of raster graphics, shading algorithms became widely
available. Primitive shading algorithms usually attributed a single color
to a single polygon, the color being determined by the incident angle of
light on the surface. This type of shading gives some cues about shape and
orientation but is far away from realistically illuminated objects.

A breakthrough was achieved by Henri Gouraud and Bui Tui Phong,
who realized that by interpolation schemes, additional realism in shading
can be easily achieved. Gouraud shading [58] computes illumination values
at vertices and interpolates these values over the area of a polygon. Phong
shading [147] interpolates the normal vectors over the area of a polygon and
computes illumination values afterwards, thus better preserving highlights
caused by nondiffuse reflection functions. Both techniques are longstanding
shading algorithms in computer graphics and are still widely used.

Another major breakthrough for more realism in computer-generated
imagery was the use of texture mapping. Using a local two-dimensional
coordinate system on an object, it is possible to index a texture map and
attribute a color to the local coordinate. Integration in the rendering pro-
cess involves a two-dimensional coordinate transform from the local coor-
dinate system on the object to the local coordinate system of the texture
map. Once texture mapping was able to change the color of points on a
surface, it was fairly straightforward to change other attributes as well.
Thus, the techniques of bumpmapping, displacement mapping, environ-
ment mapping, etc., were added. Texturing remains one of the building
blocks for rendering in general.

Additional research was also performed in the area of light-source mod-
eling. Originally only point light sources or directional light sources were
used in the earliest rendering algorithms, but fairly soon spotlights, direc-
tional lights, and other types of light sources, sometimes emulating those
found in lighting design, were introduced. Together with the modeling of
light sources, the accurate portrayal of shadows has received much atten-
tion. When using point light sources, the computation of shadows can
be reduced to a simple visibility problem from a single point of view, but
the shadows are sharp and hard. The use of shadow volumes and shadow
maps are among the best-known algorithms and still receive attention for
improvement.

�

�

�

�

�

�

�

�

6 1. Introduction

Ray Tracing

In 1980, ray tracing, probably the most popular algorithm in rendering,
was introduced by Turner Whitted [194]. Although the principle of tracing
rays was used before to generate correct perspective and shadows in the
conventional arts, the tracing of rays in computer graphics was a major
idea for generating all sorts of photorealistic effects. The original paper
used rays for determining visibility through a single pixel (also known as
ray casting) but also used rays to compute direct illumination and perfect
specular and refractive illumination effects. As such, this seminal paper
described a major new tool in generating images.

The ray-tracing algorithm has been researched and implemented exten-
sively during the last two decades. Initially, much attention was on effi-
ciency, using well-known techniques such as spatial subdivision and bound-
ing volumes. More and more, the focus was also on lighting effects them-
selves. By treating ray tracing as a tool for computing integrals, effects
such as diffuse reflections and refractions, motion blur, lens effects, etc.
could be computed within a single framework. For a nice overview, the
reader is referred to [52].

The original paper did not solve the entire global illumination problem
but was very influential for later developments. To make a distinction
with more modern ray-tracing algorithms, the first algorithm is sometimes
referred to as Whitted-style ray tracing or classic ray tracing. Many present-
day global illumination algorithms at the core are ray tracers, in the sense
that the basic tool still is a procedure that traces a ray through a three-
dimensional scene.

Since a basic ray tracer is rather easy to implement, it is a very pop-
ular algorithm to serve as the first step into photorealistic rendering. It
is traditional to have undergraduate students implement a ray tracer in
many graphics courses. Many computer graphics enthusiasts post their ray
tracers on the internet, and many of the more popular rendering packages
have ray-tracing roots.

Radiosity

With ray tracing being well underway in the first half of the eighties as
the algorithm of choice for realistic rendering, it became clear that ray
tracing also had severe limitations. Indirect illumination effects such as
color bleeding and diffuse reflections were very difficult to simulate. It
was clear that a solution needed to be found if one wanted to produce
photorealistic pictures. The answer came in the form of a finite-element
method called radiosity, named after the radiometric quantity that was
computed. The algorithm was developed originally at Cornell University

�

�

�

�

�

�

�

�

1.1. What Is Realistic Image Synthesis? 7

[56] but, as was the case with ray tracing, spawned many research papers
and received lots of attention.

One of the early advantages of radiosity was that it was a scene-based
method, as opposed to ray tracing, which is an image-based method. In
radiosity, the distribution of light is computed by subdividing the scene into
surface elements and computing for each element the correct radiometric
value. Once the radiosity value for each surface element was known, the
solution could be displayed with existing graphics hardware, using Gouraud
shading for smoothing out the radiosity values computed at each vertex
or polygon. This made radiosity an algorithm of choice for interactive
applications such as scene walk-throughs.

Early radiosity research was centered around computing a faster solu-
tion for the linear system of equations that expressed the equilibrium of
the light distribution in the scene. Several relaxation techniques were in-
troduced and more or less subdivided the radiosity solvers into “gathering”
and “shooting” algorithms.

Early on, radiosity was limited to diffuse surfaces, and the accuracy of
the method was set by the choice of surface elements. Finer details in the
shading at a frequency higher than the initial mesh could not be displayed.
Hierarchical radiosity proved to be a major step forwards, since the algo-
rithm was now able to adapt its underlying solution mesh to the actual
shading values found on those surfaces. Discontinuity meshing was simi-
larly used to precompute accurate meshes that followed the discontinuity
lines between umbra and penumbra regions caused by area light sources.
The algorithm was also extended by subdividing the hemisphere around
surfaces in a mesh as well, such that glossy surfaces could also be handled.
On the other side of hierarchical radiosity, clustering algorithms were intro-
duced to compute the illumination for disjunct objects in single clusters.
Overall, radiosity has received wide attention comparable to ray tracing
but, due to the somewhat more complex underlying mathematics, has not
been as popular.

The Rendering Equation

One of the most important concepts for global illumination algorithms, the
rendering equation, was introduced by Kajiya in 1986 [85], although in a
different form than is used today. In this seminal paper, for the first time,
the complete transport equation describing the distribution of light in a
scene was described in a computer graphics context. The importance of
the rendering equation is that all light transport mechanisms are described
using a recursive integral equation, whose kernel contains the various ma-
terial properties and the visibility function.

�

�

�

�

�

�

�

�

8 1. Introduction

Formulating the global illumination problem as the rendering equation
allows for a unified approach when computing images. It now became
possible to apply any sort of integration mechanism to numerically evaluate
the rendering equation. Also, because the recursive nature of the rendering
equation required recursive algorithms, and thus stopping conditions, it was
more obvious which successive light reflections were ignored, approximated
only up to a certain depth, etc. Also, ray-tracing and radiosity algorithms
could now be considered as different integration procedures trying to solve
the rendering equation. Ray tracing basically could be written down as a
succession of recursive quadrature rules, and radiosity algorithms expressed
a finite element solution to the same equation.

One of the most influential consequences of the rendering equation was
the development of stochastic ray tracing or Monte Carlo ray tracing.
Monte Carlo integration schemes use random numbers to evaluate inte-
grals, but they have the nice property that the expected value of the result
equals the exact value of the integral. Thus, it became possible, in theory,
to compute correct photorealistic images, assuming the algorithm ran long
enough.

Multipass Methods

At the end of the eighties, there were two big families of global illumina-
tion algorithms: those that used a ray-tracing approach, computing a single
color for every pixel on the screen, and those that were based on the radios-
ity approach, computing a scene-based solution, only generating an image
as a post-process. The first class of algorithms is good for mostly specular
and refractive indirect illumination, while the second class is better suited
for computing diffuse interreflections and allows interactive manipulation.

It was therefore inevitable that a “best-of-both-worlds” approach would
be developed, using ray tracing and radiosity characteristics in the same
algorithm. These algorithms usually consist of multiple passes, hence the
name multipass methods. Many different variants have been published (e.g.,
[24], [209], [171]). A multipass method usually consists of a radiosity pass
computing the indirect diffuse illumination, followed by a ray-tracing pass
computing the specular light transport, while picking up radiosity values
from the first pass. Care has to be taken that some light transport modes
are not computed twice, otherwise the image would be too bright in some
areas. More than two passes are possible, each pass dedicated to computing
a specific aspect of the total light transport.

Algorithms that store partial solutions of the light distribution in the
scene, such as the RADIANCE algorithm [219] or photon mapping, can be
considered multipass algorithms as well. The photon mapping algorithm
has especially received a lot of attention in research literature and is widely

�

�

�

�

�

�

�

�

1.1. What Is Realistic Image Synthesis? 9

considered to be an efficient and accurate algorithm to solve the global
illumination problem.

Current Developments

Currently, lots of attention is given to interactive applications using global
illumination algorithms. These usually involve a clever combination of
storage and reuse of partial solutions, multipass algorithms, etc.

Also, more and more use is made of photographs of real objects or
scenes, which are integrated into virtual environments. The problem is
that one wants to keep a consistent illumination, and image-based lighting
techniques have proposed some elegant solutions.

As far as the authors can see, global illumination and photorealistic
rendering will likely remain a major influence in computer graphics devel-
opments of the future.

1.1.3 A Framework for Global Illumination Algorithms

When looking at the development of global illumination algorithms over the
past 20 years, one sees a collection of widely different approaches, as well as
variants of the same approach. Especially for the light transport simulation,
one can make a distinction between different paradigms: pixel-oriented
versus scene-oriented, diffuse versus specular surfaces, deterministic versus
Monte Carlo integration, shooting versus gathering, etc. These differences
are important because they affect the accuracy of the final image, but a
wider framework for a complete global illumination pipeline also involves
other aspects such as data acquisition and image display.

A framework for realistic image synthesis that combines these different
aspects was described in a paper by the same name by Greenberg et al.
[59]. The framework presented in this paper encompasses different aspects
of a full photorealistic rendering system and provides a general overview of
how photorealistic rendering algorithms have evolved over time.

A photorealistic rendering system can be thought of as consisting of
three main stages: measurement and acquisition of scene data, the light
transport simulation, and the visual display.

Measurement and Acquisition

This part of the framework includes measuring and modeling the BRDF of
materials to be used in the virtual scene, as well as emission characteristics
of light sources. By comparing the goniometric data, one is able to verify
the accuracy of the models and measurements.

�

�

�

�

�

�

�

�

10 1. Introduction

Light Transport

The light transport phase takes the data describing the geometry of the
scene, materials, and light sources and computes the distribution of light
in the scene. This is the main bulk of what is usually called a global
illumination algorithm. The result is radiometric values in the image plane,
which can be verified by, for example, comparing real photographs with
computed pictures.

Visual Display

The matrix of radiometric values needs to be displayed on a screen or
printer. A tone-mapping operator is necessary to transform the raw ra-
diometric data into pixel colors. This transformation uses a model of the
human visual system, such that the same visual sensation is caused by
looking at the displayed picture as by looking at the real scene.

If it is known what error can be tolerated in last stage, this error can
be translated into tolerances for the light transport phase, and eventually
to the measurement phase. The critical notion of this framework is that
perceptual accuracy on the part of the human observer, not radiometric
accuracy, should be the driving force when designing algorithms.

1.2 Structure of this Book

As mentioned before, the content of this book is geared towards under-
standing the fundamental principles of global illumination algorithms. The
division of the content into several chapters reflects this. We strongly be-
lieve that only by treating the fundamental and basic building blocks in
a thorough way can a full understanding of photorealistic rendering be
achieved.

The chapters are organized as follows:

• Chapter 1 provides a general introduction to global illumination, out-
lines the importance of global illumination in the field of computer
graphics, and provides a short history of global illumination algo-
rithms.

• Radiometry and the rendering equation are covered in Chapter 2.
A good understanding of radiometry is necessary for understanding
global illumination algorithms. We only cover those aspects that we
need to design global illumination software. The characteristics and
nature of the bidirectional reflectance distribution function (BRDF)

�

�

�

�

�

�

�

�

1.2. Structure of this Book 11

are covered in detail, as well as how the definition of the BRDF gives
rise to the rendering equation.

• Chapter 3 explains the principle of Monte Carlo integration, a ver-
satile technique that is used in almost all recent global illumination
algorithms. The key concepts are explained, but again, only to the
level that we need to understand and adequately explain the chapters
that follow.

• Chapter 4 puts the rendering equation in a somewhat broader context
and gives some general insights into several strategies on how a global
illumination algorithm can be designed.

• Chapter 5 gives all the details about stochastic ray tracing. Starting
from the rendering equation and using Monte Carlo integration as
a tool, several algorithms are deduced for computing various light-
ing effects. Special attention is given to the computation of direct
illumination.

• Stochastic radiosity is covered in Chapter 6 and complements the
previous chapter. It offers a very profound overview on the various
Monte Carlo radiosity approaches that matured only recently.

• Chapter 7 provides an overview of hybrid methods, which builds on
the principles of stochastic ray tracing and radiosity. Various algo-
rithms are explained in detail, with references for further study.

• Chapter 8 covers a number of topics that receive attention in cur-
rent research, including participating media, subsurface scattering,
tone mapping, human visual perception, and strategies for comput-
ing global illumination very rapidly.

• Appendix A describes an API for global illumination, a set of object
classes that encapsulates and hides the technical details of material
and geometry representation and ray casting. This API allows concise
and efficient implementations of the algorithms discussed in this book.
An example implementation of a light tracer, a path tracer, and a
bidirectional path tracer are given.

• Appendix B gives a review of solid angles and hemispherical geometry.

• Appendix C contains technical details omitted from Chapter 6.

�

�

�

�

�

�

�

�

12 1. Introduction

1.3 How to Use this Book

This book is the result of teaching various classes about advanced rendering
algorithms, and we think that if this book is used as a textbook, it should
be a course at the graduate level.

Students that wish to take a class that uses this book should have
taken at least one other computer graphics course. One course might be a
general introduction to computer graphics, while another course might be
project-oriented and focus on some aspects of animation, ray tracing, or
modeling. Also, familiarity with probability theory and calculus is required,
since otherwise the concepts of the rendering equation and Monte Carlo
integration will be hard to explain. Some knowledge about physics might
help, although we usually found it was not strictly necessary.

We have added exercises to each chapter in this edition. These exercises
are based on assignments we have used ourselves when teaching this course
at the graduate level and so have gone through some scrutiny as to whether
they have the appropriate difficulty level.

In all of our assignments for our own courses, we provided the students
with a basic ray-tracing framework. This skeleton ray tracer is kept very
simple, such that the focus can be put entirely on implementing physically
correct algorithms. Having the students themselves implement a (basic) ray
tracer from scratch is, in our opinion, not a good assignment, since students
will be mostly bothered by the nuts and bolts of ray-object intersections,
parsing an input file, image viewing, etc.

In case the instructor wants to put together his or her own assignments,
here are some suggestions based on our experience:

• Homework 1 might include some problems on radiometry to make
students familiar with the concepts of radiometry and make them
think about the definition of radiance. A typical exercise could be to
compute the radiance reaching earth from the sun, or the radiosity
value incident on a square surface under various conditions.

• Homework 2 could be a programming exercise in which students are
provided with a basic ray-tracing program. The students would then
have to add a specific BRDF model and render a few pictures.

• Homework 3 would extend on the ray tracer from Homework 2. Stu-
dents could be allowed to add specific lighting effects, such as various
ways of computing direct illumination. Also, they could be asked to
experiment with different sampling techniques and see what the effect
is on the resulting images.

�

�

�

�

�

�

�

�

1.3. How to Use this Book 13

• A number of problems about which global illumination algorithm to
use in specific situations could be the subject of Homework 4. For
example, scenes could be given with a high number of light sources, a
significant amount of specular materials, some unusual geometric con-
figuration, etc. This could be a written exercise, in which the student
does not necessarily have to implement his or her ideas, but merely
sketch them on paper. Thus, students can design any algorithm they
wish without the burden of actually implementing it.

• Studying and presenting a recent research paper would be a good
topic for Homework 5 and would also be a good conclusion of the
entire course.

Additionally, various problems discussed in the different chapters can
be used as homework assignments or can serve as a problem to start a class
discussion.

�

�

�

�

�

�

�

�

2

The Physics of Light Transport

The goal of rendering algorithms is to create images that accurately repre-
sent the appearance of objects in scenes. For every pixel in an image, these
algorithms must find the objects that are visible at that pixel and then
display their “appearance” to the user. What does the term “appearance”
mean? What quantity of light energy must be measured to capture “ap-
pearance”? How is this energy computed? These are the questions that
this chapter will address.

In this chapter, we present key concepts and definitions required to
formulate the problem that global illumination algorithms must solve. In
Section 2.1, we present a brief history of optics to motivate the basic as-
sumptions that rendering algorithms make about the behavior of light (Sec-
tion 2.2). In Section 2.3, we define radiometric terms and their relations
to each other. Section 2.4 describes the sources of lights in scenes; in Sec-
tion 2.5, we present the bidirectional distribution function, which captures
the interaction of light with surfaces. Using these definitions, we present
the rendering equation in Section 2.6, a mathematical formulation of the
equilibrium distribution of light energy in a scene. We also formulate the
notion of importance in Section 2.7. Finally, in Section 2.8, we present
the measurement equation, which is the equation that global illumination
algorithms must solve to compute images. In the rest of this book, we will
discuss how global illumination algorithms solve the measurement equation.

2.1 Brief History

The history of the science of optics spans about three thousand years of
human history. We briefly summarize relevant events based mostly on the
history included by Hecht and Zajac in their book Optics [68]. The Greek
philosophers (around 350 B.C.), including Pythagoras, Democritus, Empe-
docles, Plato, and Aristotle among others, evolved theories of the nature

15

�

�

�

�

�

�

�

�

16 2. The Physics of Light Transport

of light. In fact, Aristotle’s theories were quite similar to the ether theory
of the nineteenth century. However, the Greeks incorrectly believed that
vision involved emanations from the eye to the object perceived. By 300
B.C. the rectilinear propagation of light was known, and Euclid described
the law of reflection. Cleomedes (50 A.D.) and Ptolemy (130 A.D.) did
early work on studying the phenomenon of refraction.

The field of optics stayed mostly dormant during the Dark Ages with
the exception of the contribution of Ibn-al-Haitham (also known as Al-
hazen); Al-hazen refined the law of reflection specifying that the angles of
incidence and reflection lie in the same plane, normal to the interface. In
fact, except for the contributions of Robert Grosseteste (1175–1253) and
Roger Bacon (1215–1294) the field of optics did not see major activity until
the seventeenth century.

Optics became an exciting area of research again with the invention
of telescopes and microscopes early in the seventeenth century. In 1611,
Johannes Kepler discovered total internal reflection and described the small
angle approximation to the law of refraction. In 1621, Willebrord Snell
made a major discovery: the law of refraction; the formulation of this law
in terms of sines was later published by René Descartes. In 1657, Pierre
de Fermat rederived the law of refraction from his own principle of least
time, which states that a ray of light follows the path that takes it to its
destination in the shortest time.

Diffraction, the phenomenon where light “bends” around obstructing
objects, was observed by Grimaldi (1618–1683) and Hooke (1635–1703).
Hooke first proposed the wave theory of light to explain this behavior.
Christian Huygens (1629–1695) considerably extended on the wave theory
of light. He was able to derive the laws of reflection and refraction using
this theory; he also discovered the phenomenon of polarization during his
experiments.

Contemporaneously, Isaac Newton (1642–1727) observed dispersion,
where white light splits into its component colors when it passes through a
prism. He concluded that sunlight is composed of light of different colors,
which are refracted by glass to different extents. Newton, over the course
of his research, increasingly embraced the emission (corpuscular) theory of
light over the wave theory.

Thus, in the beginning of the nineteenth century, there were two con-
flicting theories of the behavior of light: the particle (emission/corpuscular)
theory and the wave theory. In 1801, Thomas Young described his principle
of interference based on his famous double-slit experiment, thus providing
experimental support for the wave theory of light. However, due to the
weight of Newton’s influence, his theory was not well-received. Indepen-
dently, in 1816, Augustin Jean Fresnel presented a rigorous treatment of

�

�

�

�

�

�

�

�

2.2. Models of Light 17

diffraction and interference phenomena showing that these phenomena can
be explained in terms of the wave theory of light. In 1821, Fresnel pre-
sented the laws that enable the intensity and polarization of reflected and
refracted light to be calculated.

Independently, in the field of electricity and magnetism, Maxwell (1831–
1879) summarized and extended the empirical knowledge on these subjects
into a single set of mathematical equations. Maxwell concluded that light
is a form of electromagnetic wave. However, in 1887, Hertz accidentally
discovered the photoelectric effect: the process whereby electrons are liber-
ated from materials under the action of radiant energy. This effect could
not be explained by the wave model of light. Other properties of light
also remained inexplicable in the wave model: black body radiation (the
spectrum of light emitted by a heated body), the wavelength dependency
of the absorption of light by various materials, fluorescence1, and phospho-
rescence2, among others. Thus, despite all the supporting evidence for the
wave nature of light, the particle behavior of light had to be explained.

In 1900, Max Karl Planck introduced a universal constant called
Planck’s constant to explain the spectrum of radiation emitted from a hot
black body: black body radiation. His work inspired Albert Einstein, who,
in 1905, explained the photoelectric effect based on the notion that light
consists of a stream of quantized energy packets. Each quantum was later
called a photon. Each photon has a frequency ν associated with it. The
energy associated with a photon is E = �ν, where � is Planck’s constant.

The seemingly conflicting behavior of light as a stream of particles and
waves was only reconciled by the establishment of the field of quantum
mechanics. By considering submicroscopic phenomena, researchers such as
Bohr, Born, Heisenberg, Schrödinger, Pauli, de Broglie, Dirac, and oth-
ers were able to explain the dual nature of light. Quantum field theory
and quantum electrodynamics further explained high-energy phenomena;
Richard Feynman’s book on quantum electrodynamics (QED) [49] gives an
intuitive description of the field.

2.2 Models of Light

The models of light used in simulations try to capture the different be-
haviors of light that arise from its dual nature: certain phenomena, for
example, diffraction and interference, can be explained by assuming that

1Fluorescence is the phenomenon by which light absorbed at one frequency is emitted
at a different frequency.

2Phosphorescence is the phenomenon by which light absorbed at one frequency at
some time is emitted at a different frequency and time.

�

�

�

�

�

�

�

�

18 2. The Physics of Light Transport

light is a wave; other behavior, such as the photoelectric effect, can be
better explained by assuming that light consists of a stream of particles.

2.2.1 Quantum Optics
Quantum optics is the fundamental model of light that explains its dual
wave-particle nature. The quantum optics model can explain the behavior
of light at the submicroscopic level, for example, at the level of electrons.
However, this model is generally considered to be too detailed for the pur-
poses of image generation for typical computer graphics scenes and is not
commonly used.

2.2.2 Wave Model
The wave model, a simplification of the quantum model, is described by
Maxwell’s equations. This model captures effects, such as diffraction, in-
terference, and polarization, that arise when light interacts with objects of
size comparable to the wavelength of light. These effects can be observed
in everyday scenes, for example, in the bright colors seen in oil slicks or
birds’ feathers. However, for the purposes of image generation in computer
graphics, the wave nature of light is also typically ignored.

2.2.3 Geometric Optics
The geometric optics model is the simplest and most commonly used model
of light in computer graphics. In this model, the wavelength of light is
assumed to be much smaller than the scale of the objects that the light
interacts with. The geometric optics model assumes that light is emitted,
reflected, and transmitted. In this model, several assumptions are made
about the behavior of light:

• Light travels in straight lines, i.e., effects such as diffraction where
light “bends around” objects are not considered.

• Light travels instantaneously through a medium; this assumption
essentially requires light to unrealistically travel at infinite speed.
However, it is a practical assumption because it requires global illu-
mination algorithms to compute the steady-state distribution of light
energy in scenes.

• Light is not influenced by external factors, such as gravity or magnetic
fields.

In most of this book, we ignore effects that arise due to the transmis-
sion of light through participating media (for example, fog). We also do not

�

�

�

�

�

�

�

�

2.3. Radiometry 19

consider media with varying indices of refraction. For example, mirage-like
effects that arise due to varying indices of refraction caused by temper-
ature differentials in the air are not considered. How to deal with these
phenomena is discussed in Section 8.1.

2.3 Radiometry

The goal of a global illumination algorithm is to compute the steady-state
distribution of light energy in a scene. To compute this distribution, we
need an understanding of the physical quantities that represent light energy.
Radiometry is the area of study involved in the physical measurement of
light. This section gives a brief overview of the radiometric units used in
global illumination algorithms.

It is useful to consider the relation between radiometry and photometry.
Photometry is the area of study that deals with the quantification of the
perception of light energy. The human visual system is sensitive to light in
the frequency range of 380 nanometers to 780 nanometers. The sensitiv-
ity of the human eye across this visible spectrum has been standardized;
photometric terms take this standardized response into account. Since
photometric quantities can be derived from the corresponding radiometric
terms, global illumination algorithms operate on radiometric terms. How-
ever, Section 8.2 will talk about how the radiometric quantities computed
by global illumination algorithms are displayed to an observer.

2.3.1 Radiometric Quantities

Radiant Power or Flux

The fundamental radiometric quantity is radiant power, also called flux.
Radiant power, often denoted as Φ, is expressed in watts (W) (joules/sec).
This quantity expresses how much total energy flows from/to/through a
surface per unit time. For example, we can say that a light source emits
50 watts of radiant power, or that 20 watts of radiant power is incident on
a table. Note that flux does not specify the size of the light source or the
receiver (table), nor does it include a specification of the distance between
the light source and the receiver.

Irradiance

Irradiance (E) is the incident radiant power on a surface, per unit surface
area. It is expressed in watts/m2:

E =
dΦ
dA

. (2.1)

�

�

�

�

�

�

�

�

20 2. The Physics of Light Transport

For example, if 50 watts of radiant power is incident on a surface that
has an area of 1.25 m2, the irradiance at each surface point is 40 watts/m2

(assuming the incident power is uniformly distributed over the surface).

Radiant Exitance or Radiosity

Radiant exitance (M), also called radiosity (B), is the exitant radiant power
per unit surface area and is also expressed in watts/m2:

M = B =
dΦ
dA

. (2.2)

For example, consider a light source, of area 0.1 m2, that emits 100
watts. Assuming that the power is emitted uniformly over the area of the
light source, the radiant exitance of the light is 1000 W/m2 at each point
of its surface.

Radiance

Radiance is flux per unit projected area per unit solid angle
(watts/(steradian · m2)). Intuitively, radiance expresses how much power
arrives at (or leaves from) a certain point on a surface, per unit solid angle,
and per unit projected area. Appendix B gives a review of solid angles and
hemispherical geometry.

Radiance is a five-dimensional quantity that varies with position x and
direction vector Θ, and is expressed as L(x,Θ) (see Figure 2.1):

L =
d2Φ

dωdA⊥
=

d2Φ
dωdA cos θ

. (2.3)

dω
Θ θ

dA x

Figure 2.1. Definition of radiance L(x, Θ): flux per unit projected area dA⊥ per
unit solid angle dω.

�

�

�

�

�

�

�

�

2.3. Radiometry 21

Radiance is probably the most important quantity in global illumination
algorithms because it is the quantity that captures the “appearance” of
objects in the scene. Section 2.3.3 explains the properties of radiance that
are relevant to image generation.

Intuition for cosine term. The projected area A⊥ is the area of the surface
projected perpendicular to the direction we are interested in. This stems
from the fact that power arriving at a grazing angle is “smeared out”
over a larger surface. Since we explicitly want to express power per (unit)
projected area and per (unit) direction, we have to take the larger area into
account, and that is where the cosine term comes from. Another intuition
for this term is obtained by drawing insights from transport theory.

Transport Theory

This section uses concepts from transport theory to intuitively explain the
relations between different radiometric terms (see Chapter 2, [29]). Trans-
port theory deals with the transport or flow of physical quantities such
as energy, charge, and mass. In this section, we use transport theory to
formulate radiometric quantities in terms of the flow of “light particles” or
“photons.”

Let us assume we are given the density of light particles, p(x), which
defines the number of particles per unit volume at some position x. The
number of particles in a small volume dV is p(x)dV . Let us consider the
flow of these light particles in some time dt across some differential surface
area dA. Assume that the velocity of the light particles is �c, where |�c| is
the speed of light and the direction of �c is the direction along which the
particles are flowing. Initially, we assume that the differential surface area
dA is perpendicular to the flow of particles. Given these assumptions, in
time dt, the particles that flow across the area dA are all the particles
included in a volume cdtdA. The number of particles flowing across the
surface is p(x)cdtdA.

Figure 2.2. Flow of particles across a surface.

�

�

�

�

�

�

�

�

22 2. The Physics of Light Transport

We now relax the assumption that the particle flow is perpendicular
to the surface area dA (as shown in Figure 2.2). If the angle between the
flow of the particles and dA is θ, the perpendicular area across which the
particles flow is dA cos θ. Now, the number of particles flowing across the
surface is p(x)cdtdA cos θ.

The derivation above assumed a fixed direction of flow. Including all
possible directions (and all possible wavelengths) along which the particles
can flow gives the following number of particles N that flow across an area
dA,

N = p(x, ω, λ)cdtdA cos θdωdλ,

where dω is a differential direction (or solid angle) along which particles
flow and the density function p varies with both position and direction.

Flux is defined as the energy of the particles per unit time. In this
treatment, flux is computed by dividing the number of particles by dt and
computing the limit as dt goes to zero:

Φ ∝ p(x, ω, λ)dA cos θdωdλ,
Φ

dA cos θdω
∝ p(x, ω, λ)dλ.

Let us assume these particles are photons. Each photon has energy E =
�ν. The wavelength of light λ is related to its frequency by the following
relation: λ = c/ν, where c is the speed of light in vacuum. Therefore,
E = �c

λ
. Nicodemus [131] defined radiance as the radiant energy per unit

volume, as follows:

L(x, ω) =
∫
p(x, ω, λ)�

c

λ
dλ.

Relating this equation with the definition of Φ above, we get a more
intuitive notion of how flux relates to radiance, and why the cosine term
arises in the definition of radiance.

2.3.2 Relationships between Radiometric Quantities
Given the definitions of the radiometric quantities above, the following
relationships between these different terms can be derived:

Φ =
∫

A

∫
Ω

L(x→ Θ) cos θdωΘdAx, (2.4)

E(x) =
∫

Ω

L(x← Θ) cos θdωΘ, (2.5)

B(x) =
∫

Ω

L(x→ Θ) cos θdωΘ, (2.6)

�

�

�

�

�

�

�

�

2.3. Radiometry 23

where A is the total surface area and Ω is the total solid angle at each point
on the surface.

We use the following notation in this book: L(x→ Θ) represents radi-
ance leaving point x in direction Θ. L(x← Θ) represents radiance arriving
at point x from direction Θ.

Wavelength Dependency

The radiometric measures and quantities described above are not only de-
pendent on position and direction but are also dependent on the wavelength
of light energy. When wavelength is explicitly specified, for example, for ra-
diance, the corresponding radiometric quantity is called spectral radiance.
The units of spectral radiance are the units of radiance divided by meters
(the unit of wavelength). Radiance is computed by integrating spectral
radiance over the wavelength domain covering visible light. For example,

L(x→ Θ) =
∫

spectrum

L(x→ Θ, λ)dλ.

The wavelength dependency of radiometric terms is often implicitly as-
sumed to be part of the global illumination equations and is not mentioned
explicitly.

2.3.3 Properties of Radiance
Radiance is a fundamental radiometric quantity for the purposes of image
generation. As seen in Equations 2.4–2.6, other radiometric terms, such
as flux, irradiance, and radiosity, can be derived from radiance. The fol-
lowing properties of radiance explain why radiance is important for image
generation.

Property 1: Radiance is invariant along straight paths.

Mathematically, the property of the invariance of radiance is expressed as

L(x→ y) = L(y ← x),

which states that the radiance leaving point x directed towards point y is
equal to the radiance arriving at point y from the point x. This property
assumes that light is traveling through a vacuum, i.e., there is no partici-
pating medium.

This important property follows from the conservation of light energy in
a small pencil of rays between two differential surfaces at x and y, respec-
tively. Figure 2.3 shows the geometry of the surfaces. From the definition
of radiance, the total (differential) power leaving a differential surface area
dAx, and arriving at a differential surface area dAy, can be written as

�

�

�

�

�

�

�

�

24 2. The Physics of Light Transport

x

Nx

Ny y

r
xy

θx

θy

Figure 2.3. Invariance of radiance.

L(x→ y) =
d2Φ

(cos θxdAx)dωx←dAy

; (2.7)

d2Φ = L(x→ y) cos θxdωx←dAy
dAx, (2.8)

where we use the notation that dωx←dAy
is the solid angle subtended by

dAy as seen from x.
The power that arrives at area dAy from area dAx can be expressed in

a similar way:

L(y ← x) =
d2Φ

(cos θydAy)dωy←dAx

; (2.9)

d2Φ = L(y ← x) cos θydωy←dAx
dAy. (2.10)

The differential solid angles are:

dωx←dAy
=

cos θydAy

r2xy

;

dωy←dAx
=

cos θxdAx

r2xy

.

We assume that there are no external light sources adding to the power
arriving at dAy. We also assume that the two differential surfaces are
in a vacuum; therefore, there is no energy loss due to the presence of

�

�

�

�

�

�

�

�

2.3. Radiometry 25

participating media. Then, by the law of conservation of energy, all energy
leaving dAx in the direction of the surface dAy must arrive at dAy,

L(x→ y) cos θxdωx←dAy
dAx = L(y ← x) cos θydωy←dAx

dAy;

L(x→ y) cos θx
cos θydAy

r2xy

dAx = L(y ← x) cos θy
cos θxdAx

r2xy

dAy,

and thus,

L(x→ y) = L(y ← x). (2.11)

Therefore, radiance is invariant along straight paths of travel and does
not attenuate with distance. This property of radiance is only valid in
the absence of participating media, which can absorb and scatter energy
between the two surfaces.

From the above observation, it follows that once incident or exitant
radiance at all surface points is known, the radiance distribution for all
points in a three-dimensional scene is also known. Almost all algorithms
used in global illumination limit themselves to computing the radiance
values at surface points (still assuming the absence of any participating
medium). Radiance at surface points is referred to as surface radiance
by some authors, whereas radiance for general points in three-dimensional
space is sometimes called field radiance.

Property 2: Sensors, such as cameras and the human eye, are sensitive to
radiance.

The response of sensors (for example, cameras or the human eye) is pro-
portional to the radiance incident upon them, where the constant of pro-
portionality depends on the geometry of the sensor.

These two properties explain why the perceived color or brightness of an
object does not change with distance. Given these properties, it is clear that
radiance is the quantity that global illumination algorithms must compute
and display to the observer.

2.3.4 Examples

This section gives a few practical examples of the relationship between the
different radiometric quantities that we have seen.

�

�

�

�

�

�

�

�

26 2. The Physics of Light Transport

Figure 2.4. Diffuse emitter.

Example (Diffuse Emitter)

Let us consider the example of a diffuse emitter. By definition, a diffuse
emitter emits equal radiance in all directions from all its surface points (as
shown in Figure 2.4). Therefore,

L(x→ Θ) = L.

The power for the diffuse emitter can be derived as

Φ =
∫

A

∫
Ω

L(x→ Θ) cos θdωΘdAx

=
∫

A

∫
Ω

L cos θdωΘdAx

= L(
∫

A

dAx)(
∫

Ω

cos θdωΘ)

= πLA,

where A is the area of the diffuse emitter, and integration at each point
on A is over the hemisphere, i.e., Ω is the hemisphere at each point (see
Appendix B).

The radiance for a diffuse emitter equals the power divided by the area,
divided by π. Using the above equations, it is straightforward to write
down the following relationship between the power, radiance, and radiosity
of a diffuse surface:

Φ = LAπ = BA. (2.12)

Example (Nondiffuse Emitter)

Consider a square area light source with a surface area measuring 10 ×
10 cm2. Each point on the light source emits radiance according to the

�

�

�

�

�

�

�

�

2.3. Radiometry 27

following distribution over its hemisphere:

L(x→ Θ) = 6000 cos θ (W/sr ·m2).

Remember that the radiance function is defined for all directions on
the hemisphere and all points on a surface. This specific distribution is the
same for all points on the light source. However, for each surface point,
there is a fall-off as the direction is farther away from the normal at that
surface point.

The radiosity for each point can be computed as follows:

B =
∫

Ω

L(x→ Θ) cos θdωΘ

=
∫

Ω

6000 cos2 θdωΘ

= 6000
∫ 2π

0

∫ π/2

0

cos2 θ sin θdθdφ

= 6000 · 2π ·
[
− cos3 θ

3

]π/2

0

= 4000π W/m2

= 12566 W/m2.

The power for the entire light source can then be computed as follows:

Φ =
∫

A

∫
Ω

L(x→ Θ) cos θdωΘdAx

=
∫

A

(
∫

Ω

L cos θdωΘ)dAx

=
∫

A

B(x)dAx

= 4000π W/m2 · 0.1 m · 0.1 m
= 125.66 W.

Example (Sun, Earth, Mars)

Now let us consider the example of an emitter that is very important to
us: the Sun. One might ask the question, if the radiance of the Sun is the
same irrespective of the distance from the Sun, why is the Earth warmer
than Mars?

Consider the radiance output from the Sun arriving at the Earth and
Mars (see Figure 2.5). For simplicity, let us assume that the Sun is a

�

�

�

�

�

�

�

�

28 2. The Physics of Light Transport

Figure 2.5. Relationship between the Earth, Mars, and the Sun.

uniform diffuse emitter. As before, we assume that the medium between
the Earth, Sun, and Mars is a vacuum. From Equation 2.12,

Φ = πLA.

Given that the total power emitted by the Sun is 3.91×1026 watts, and
the surface area of the Sun is 6.07× 1018 m2, the Sun’s radiance equals

L(Sun) =
Φ
Aπ

=
3.91× 1026

π6.07× 1018
= 2.05× 107 W/sr ·m2.

Now consider a 1 × 1 m2 patch on the surface of the Earth; the power
arriving at that patch is

P (Earth← Sun) =
∫

A

∫
Ω

L cos θdωdA.

Let us also assume that the Sun is at its zenith (i.e., cos θ = 1), and
that the solid angle subtended by the Sun is small enough that the radiance
can be assumed to be constant over the patch:

P (Earth← Sun) = ApatchLω.

�

�

�

�

�

�

�

�

2.3. Radiometry 29

The solid angle ω subtended by the Sun as seen from the Earth is

ωEarth←Sun =
A⊥Sundisk

distance2
= 6.7× 10−5 sr.

Note that the area of the Sun considered for the computation of the
radiance of the Sun is its surface area, whereas the area of the Sun in the
computation of the solid angle is the area of a circular section (disc) of the
Sun; this area is 1/4th the surface area of the Sun:

P (Earth← Sun) = (1× 1 m2)(2.05× 107 W/(sr ·m2))(6.7× 10−5 sr)
= 1373.5 W.

Similarly, consider a 1 × 1 m2 patch on the surface of Mars, the power
arriving at that patch can be computed in the same way. The solid angle
subtended by the Sun as seen from Mars is

ωMars←Sun =
A⊥Sundisk

distance2
= 2.92× 10−5 sr.

The total power incident on the patch on Mars is given by

P (Mars← Sun) = (1× 1 m2)(2.05× 107 W/(sr ·m2))(2.92× 10−5 sr)
= 598.6 W.

Thus, even though the radiance of the Sun is invariant along rays and is
the same as seen from the Earth and Mars, the solid angle measure ensures
that the power arriving at the planets drops off as the square of the distance
(the familiar inverse square law). Therefore, though the Sun will appear
equally bright on the Earth and Mars, it will look larger on the Earth than
on Mars and, therefore, warm the planet more.

Example (Plate)

A flat plate is placed on top of Mount Everest with its normal pointing up
(See Figure 2.6). It is a cloudy day, and the sky has a uniform radiance
of 1000 W/(sr · m2). The irradiance at the center of the plate can be
computed as follows:

�

�

�

�

�

�

�

�

30 2. The Physics of Light Transport

Figure 2.6. Plate with different constraints on incoming hemisphere. Scenario
(a): plate at top of peak; Scenario (b): plate in valley with 60◦ cutoff.

E =
∫
L(x← Θ) cos θdω

= 1000
∫ ∫

cos θ sin θdθdφ

= 1000
∫ 2π

0

dφ

∫ π/2

0

cos θ sin θdθ

= 1000 · 2π ·
[
−cos2 θ

2

]π/2

0

= 1000 · 2π · 1
2

= 1000 · π W/m2.

Now assume the plate is taken to an adjoining valley where the surrounding
mountains are radially symmetric and block off all light below 60◦. The
irradiance at the plate in this situation is

E =
∫
L(x← Θ) cos θdω

= 1000
∫ ∫

cos θ sin θdθdφ

= 1000
∫ 2π

0

dφ

∫ π/6

0

cos θ sin θdθ

= 1000 · 2π ·
[
−cos2 θ

2

]π/6

0

= 1000 · π · (1− 3
4
)

= 250 · π W/m2.

�

�

�

�

�

�

�

�

2.4. Light Emission 31

2.4 Light Emission

Light is electromagnetic radiation produced by accelerating a charge. Light
can be produced in different ways; for example, by thermal sources such as
the sun, or by quantum effects such as fluorescence, where materials absorb
energy at some wavelength and emit the energy at some other wavelength.
As mentioned in previous sections, we do not consider a detailed quantum
mechanical explanation of light for the purposes of computer graphics. In
most rendering algorithms, light is assumed to be emitted from light sources
at a particular wavelength and with a particular intensity.

The computation of accurate global illumination requires the specifi-
cation of the following three distributions for each light source: spatial,
directional, and spectral intensity distribution. For example, users, such
as lighting design engineers, require accurate descriptions of light source
distributions that match physical light bulbs available in the real world.
Idealized spatial distributions of lights assume lights are point lights; more
realistically, lights are modeled as area lights. The directional distribu-
tions of typical luminaires is determined by the shape of their associated
light fixtures. Though the spectral distribution of light could also be sim-
ulated accurately, global illumination algorithms typically simulate RGB
(or a similar triple) for efficiency reasons. All these distributions could be
specified either as functions or as tables.

2.5 Interaction of Light with Surfaces

Light energy emitted into a scene interacts with the different objects in the
scene by getting reflected or transmitted at surface boundaries. Some of
the light energy could also be absorbed by surfaces and dissipated as heat,
though this phenomenon is typically not explicitly modeled in rendering
algorithms.

2.5.1 BRDF

Materials interact with light in different ways, and the appearance of ma-
terials differs given the same lighting conditions. Some materials appear
as mirrors; others appear as diffuse surfaces. The reflectance properties
of a surface affect the appearance of the object. In this book, we assume
that light incident at a surface exits at the same wavelength and same time.
Therefore, we are ignoring effects such as fluorescence and phosphorescence.

In the most general case, light can enter some surface at a point p
and incident direction Ψ and can leave the surface at some other point q
and exitant direction Θ. The function defining this relation between the

�

�

�

�

�

�

�

�

32 2. The Physics of Light Transport

N

Figure 2.7. Bidirectional reflectance distribution function.

incident and reflected radiance is called the bidirectional surface scattering
reflectance distribution function (BSSRDF) [131]. We make the additional
assumption that the light incident at some point exits at the same point;
thus, we do not discuss subsurface scattering, which results in the light
exiting at a different point on the surface of the object.

Given these assumptions, the reflectance properties of a surface are
described by a reflectance function called the bidirectional reflectance dis-
tribution function (BRDF). The BRDF at a point x is defined as the ratio
of the differential radiance reflected in an exitant direction (Θ), and the
differential irradiance incident through a differential solid angle (dωΨ). The
BRDF is denoted as fr(x,Ψ→ Θ):

fr(x,Ψ→ Θ) =
dL(x→ Θ)
dE(x← Ψ)

(2.13)

=
dL(x→ Θ)

L(x← Ψ) cos(Nx,Ψ)dωΨ
, (2.14)

where cos(Nx,Ψ) is the cosine of the angle formed by the normal vector at
the point x, Nx, and the incident direction vector Ψ.

Strictly speaking, the BRDF is defined over the entire sphere of di-
rections (4π steradians) around a surface point. This is important for
transparent surfaces, since these surfaces can “reflect” light over the entire
sphere. In most texts, the term BSDF (bidirectional scattering distribution
function) is used to denote the reflection and transparent parts together.

2.5.2 Properties of the BRDF
There are several important properties of a BRDF:

1. Range. The BRDF can take any positive value and can vary with
wavelength.

�

�

�

�

�

�

�

�

2.5. Interaction of Light with Surfaces 33

2. Dimension. The BRDF is a four-dimensional function defined at each
point on a surface; two dimensions correspond to the incoming direc-
tion, and two dimensions correspond to the outgoing direction.

Generally, the BRDF is anisotropic. That is, if the surface is rotated
about the surface normal, the value of fr will change. However, there
are many isotropic materials for which the value of fr does not depend
on the specific orientation of the underlying surface.

3. Reciprocity. The value of the BRDF remains unchanged if the in-
cident and exitant directions are interchanged. This property is
also called Helmholtz reciprocity; intuitively, it means that reversing
the direction of light does not change the amount of light that gets
reflected:

fr(x,Ψ→ Θ) = fr(x,Θ→ Ψ).

Because of the reciprocity property, the following notation is used for
the BRDF to indicate that both directions can be freely interchanged:

fr(x,Θ↔ Ψ).

4. Relation between incident and reflected radiance. The value of the
BRDF for a specific incident direction is not dependent on the pos-
sible presence of irradiance along other incident angles. Therefore,
the BRDF behaves as a linear function with respect to all incident
directions. The total reflected radiance due to some irradiance distri-
bution over the hemisphere around an opaque, non-emissive surface
point can be expressed as:

dL(x→ Θ) = fr(x,Ψ→ Θ)dE(x← Ψ); (2.15)

L(x→ Θ) =
∫

Ωx

fr(x,Ψ→ Θ)dE(x← Ψ); (2.16)

L(x→ Θ) =
∫

Ωx

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ. (2.17)

5. Energy conservation. The law of conservation of energy requires that
the total amount of power reflected over all directions must be less
than or equal to the total amount of power incident on the surface
(excess power is transformed into heat or other forms of energy). For
any distribution of incident radiance L(x← Ψ) over the hemisphere,
the total incident power per unit surface area is the total irradiance
over the hemisphere:

E =
∫

Ωx

L(x← Ψ) cos(Nx,Ψ)dωΨ. (2.18)

�

�

�

�

�

�

�

�

34 2. The Physics of Light Transport

The total reflected power M is a double integral over the hemisphere.
Suppose we have a distribution of exitant radiance L(x → Θ) at a
surface. The total power per unit surface area leaving the surface,
M , is

M =
∫

Ωx

L(x→ Θ) cos(Nx,Θ)dωΘ. (2.19)

From the definition of the BRDF, we know

dL(x→ Θ) = fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ.

Integrating this equation to find the value for L(x → Θ) and com-
bining it with the expression for M gives us

M =
∫

Ωx

∫
Ωx

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Θ) cos(Nx,Ψ)dωΨdωΘ.

(2.20)

The BRDF satisfies the constraint of energy conservation for re-
flectance at a surface point if, for all possible incident radiance dis-
tributions L(x← Ψ), the following inequality holds: M ≤ E, or∫

Ωx

∫
Ωx
fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Θ) cos(Nx,Ψ)dωΨdωΘ∫

Ωx
L(x← Ψ) cos(Nx,Ψ)dωΨ

≤ 1.

(2.21)

This inequality must be true for any incident radiance function. Sup-
pose we take an appropriate δ-function for the incident radiance dis-
tribution, such that the integrals become simple expressions:

L(x← Ψ) = Linδ(Ψ−Θ),

then, the above equation can be simplified to

∀Ψ :
∫

Ωx

fr(x,Ψ→ Θ) cos(Nx,Θ)dωΘ ≤ 1. (2.22)

The above equation is a necessary condition for energy conservation,
since it expresses the inequality for a specific incident radiance dis-
tribution. It is also a sufficient condition because incident radiance
from two different directions do not influence the value of the BRDF;
therefore, conservation of energy is valid for any combination of inci-
dent radiance values. If the value of the BRDF is dependent on the
intensity of the incoming light, the more elaborate inequality from
Equation 2.21 holds.

�

�

�

�

�

�

�

�

2.5. Interaction of Light with Surfaces 35

Global illumination algorithms often use empirical models to charac-
terize the BRDF. Great care must be taken to make certain that these
empirical models are a good and acceptable BRDF. More specifically, en-
ergy conservation and Helmholtz reciprocity must be satisfied to make an
empirical model physically plausible.

Satisfying Helmholtz reciprocity is a particularly important constraint
for bidirectional global illumination algorithms; these algorithms compute
the distribution of light energy by considering paths starting from the light
sources and paths starting from the observer at the same time. Such al-
gorithms explicitly assume that light paths can be reversed; therefore, the
model for the BRDF should satisfy Helmholtz’s reciprocity.

2.5.3 BRDF Examples

Depending on the nature of the BRDF, the material will appear as a diffuse
surface, a mirror, or a glossy surface (see Figure 2.8). The most commonly
encountered types of BRDFs are listed below.

Diffuse Surfaces

Some materials reflect light uniformly over the entire reflecting hemisphere.
That is, given an irradiance distribution, the reflected radiance is indepen-
dent of the exitant direction. Such materials are called diffuse reflectors,
and the value of their BRDF is constant for all values of Θ and Ψ. To an
observer, a diffuse surface point looks the same from all possible directions.
For an ideal diffuse surface,

fr(x,Ψ↔ Θ) =
ρd

π
. (2.23)

The reflectance ρd represents the fraction of incident energy that is
reflected at a surface. For physically-based materials, ρd varies from 0 to 1.
The reflectance of diffuse surfaces is used in radiosity calculations as will
be seen in Chapter 6.

Figure 2.8. Different types of BRDFs.

�

�

�

�

�

�

�

�

36 2. The Physics of Light Transport

Specular Surfaces

Perfect specular surfaces only reflect or refract light in one specific direction.
Specular reflection. The direction of reflection can be found using the
law of reflection, which states that the incident and exitant light direction
make equal angles to the surface’s normal, and lie in the same plane as the
normal. Given that light is incident to the specular surface along direction
vector Ψ, and the normal to the surface is N , the incident light is reflected
along the direction R:

R = 2(N ·Ψ)N −Ψ. (2.24)

A perfect specular reflector has only one exitant direction for which the
BRDF is different from 0; the implication is that the value of the BRDF
along that direction is infinite. The BRDF of such a perfect specular reflec-
tor can be described with the proper use of δ-functions. Real materials can
exhibit this behavior very closely, but are nevertheless not ideal reflectors
as defined above.
Specular refraction. The direction of specular refraction is computed using
Snell’s law. Consider the direction T along which light that is incident from
a medium with refractive index η1 to a medium with refractive index η2 is
refracted. Snell’s law specifies the following invariant between the angle of
incidence and refraction and the refractive indices of the media:

η1 sin θ1 = η2 sin θ2, (2.25)

where θ1 and θ2 are the angles between the incident and transmitted ray
and the normal to the surface.

The transmitted ray T is given as:

T = −η1

η2
Ψ +N(

η1

η2
cos θ1 −

√
1− (

η1
η2

)2(1− cos θ2
1)),

= −η1

η2
Ψ +N(

η1

η2
(N ·Ψ)−

√
1− (

η1

η2
)2(1− (N ·Ψ)2)), (2.26)

since cos θ1 = N · Ψ, the inner product of the normal and the incoming
direction.

When light travels from a dense medium to a rare medium, it could get
refracted back into the dense medium. This process is called total internal
reflection; it arises at a critical angle θc, also known as Brewster’s angle,
which can be computed by Snell’s law:

η1 sin θc = η2 sin
π

2
;

sin θc =
η2
η1
.

�

�

�

�

�

�

�

�

2.5. Interaction of Light with Surfaces 37

θ
2

η
2

η
1

T

N

R

θ
1

Ψ

θ
1

Figure 2.9. Perfect specular reflection and refraction.

We can derive the same condition from Equation 2.26, where total internal
reflection occurs when the term under the square root, 1−(η1

η2
)2(1−cos θ21),

is less than zero.
Figure 2.9 shows the geometry of perfect specular reflections and re-

fractions.

Reciprocity for transparent surfaces. One has to be careful when assuming
properties about the transparent side of the BSDF; some characteristics,
such as reciprocity, may not be true with transparent surfaces as described
below. When a pencil of light enters a dense medium from a less dense
(rare) medium, it gets compressed. This behavior is a direct consequence
of Snell’s law of refraction (rays “bend” towards the normal direction).
Therefore, the light energy per unit area perpendicular to the pencil di-
rection becomes higher; i.e., the radiance is higher. The reverse process
takes place when a pencil of light leaves a dense medium to be refracted
into a less dense medium. The change in ray density is the square ratio of
the refractive indices of the media [203, 204]: (η2/η1)2. When computing
radiance in scenes with transparent surfaces, this weighting factor should
be considered.

Fresnel equations. The above equations specify the angles of reflection
and refraction for light that arrives at a perfectly smooth surface. Fresnel
derived a set of equations called the Fresnel equations that specify the
amount of light energy that is reflected and refracted from a perfectly
smooth surface.

When light hits a perfectly smooth surface, the light energy that is re-
flected depends on the wavelength of light, the geometry at the surface, and

�

�

�

�

�

�

�

�

38 2. The Physics of Light Transport

the incident direction of the light. Fresnel equations specify the fraction of
light energy that is reflected. These equations (given below) take the po-
larization of light into consideration. The two components of the polarized
light, rp and rs, referring to the parallel and perpendicular (senkrecht in
German) components, are given as

rp =
η2 cos θ1 − η1 cos θ2
η2 cos θ1 + η1 cos θ2

; (2.27)

rs =
η1 cos θ1 − η2 cos θ2
η1 cos θ1 + η2 cos θ2

, (2.28)

where η1 and η2 are the refractive indices of the two surfaces at the interface.
For unpolarized light, F = |rp|2+|rs|2

2 . Note that these equations apply
for both metals and nonmetals; for metals, the index of refraction of the
metal is expressed as a complex variable: n+ ik, while for nonmetals, the
refractive index is a real number and k = 0.

The Fresnel equations assume that light is either reflected or refracted
at a purely specular surface. Since there is no absorption of light energy,
the reflection and refraction coefficients sum to 1.

Glossy Surfaces

Most surfaces are neither ideally diffuse nor ideally specular but exhibit a
combination of both reflectance behaviors; these surfaces are called glossy
surfaces. Their BRDF is often difficult to model with analytical formulae.

2.5.4 Shading Models
Real materials can have fairly complex BRDFs. Various models have been
suggested in computer graphics to capture the complexity of BRDFs. Note
that in the following description, Ψ is the direction of the light (the input
direction) and Θ is the direction of the viewer (the outgoing direction).
Lambert’s model. The simplest model is Lambert’s model for idealized
diffuse materials. In this model, the BRDF is a constant as described
earlier:

fr(x,Ψ↔ Θ) = kd =
ρd

π
,

where ρd is the diffuse reflectance (see Section 2.5.3).
Phong model. Historically, the Phong shading model has been extremely
popular. The BRDF for the Phong model is:

fr(x,Ψ↔ Θ) = ks
(R ·Θ)n

N ·Ψ + kd,

�

�

�

�

�

�

�

�

2.5. Interaction of Light with Surfaces 39

Nx

H
R

Figure 2.10. Shading models geometry.

where the reflected vector R can be computed from Equation 2.24.
Blinn-Phong model. The Blinn-Phong model uses the half-vector H, the
halfway vector between Ψ and Θ, as follows:

fr(x,Ψ↔ Θ) = ks
(N ·H)n

N ·Ψ + kd.

Modified Blinn-Phong model. While the simplicity of the Phong model is ap-
pealing, it has some serious limitations: it is not energy conserving, it does
not satisfy Helmholtz’s reciprocity, and it does not capture the behavior of
most real materials. The modified Blinn-Phong model addresses some of
these problems:

fr(x,Ψ↔ Θ) = ks(N ·H)n + kd.

Physically Based Shading Models

The modified Blinn-Phong model is still not able to capture realistic BRDFs.
Physically based models, such as Cook-Torrance [33] and He [67], among
others, attempt to model physical reality. We provide a brief description of
the Cook-Torrance model below. For details, refer to the original paper [33].
The He model [67] is, to date, the most comprehensive and expensive shad-
ing model available; however, it is beyond the scope of this book to present
this model.
Cook-Torrance model. The Cook-Torrance model includes a microfacet
model that assumes that a surface is made of a random collection of small
smooth planar facets. The assumption in this model is that an incoming
ray randomly hits one of these smooth facets. Given a specification of the
distribution of microfacets for a material, this model captures the shadow-
ing effects of these microfacets. In addition to the facet distribution, the

�

�

�

�

�

�

�

�

40 2. The Physics of Light Transport

Cook-Torrance model also includes the Fresnel reflection and refraction
terms:

fr(x,Ψ↔ Θ) =
F (β)
π

D(θh)G
(N ·Ψ)(N ·Θ)

+ kd,

where the three terms in the nondiffuse component of the BRDF are the
Fresnel reflectance F , the microfacet distribution D, and a geometric shad-
owing term G. We now present each of these terms.

The Fresnel terms, as given in Equations 2.27 and 2.28, are used in the
Cook-Torrance model. This model assumes that the light is unpolarized;
therefore, F = |rp|2+|rs|2

2
. The Fresnel reflectance term is computed with

respect to the angle β, which is the angle between the incident direction
and the half-vector: cosβ = Ψ ·H = Θ ·H. By the definition of the half-
vector, this angle is the same as the angle between the outgoing direction
and the half-vector.

The distribution function D specifies the distribution of the microfacets
for the material. Various functions can be used to specify this distribution.
One of the most common distributions is the distribution by Beckmann:

D(θh) =
1

m2 cos4 θh
e−(

tan θh
m)2 ,

where θh is the angle between the normal and the half-vector and cos θh =
N · H. Also, m is the root-mean-square slope of the microfacets, and it
captures surface roughness.

The geometry term G captures masking and self-shadowing by the mi-
crofacets:

G = min{1, 2(N ·H)(N ·Θ)
Θ ·H ,

2(N ·H)(N ·Ψ)
Θ ·H }.

Empirical Models

Models such as Ward [221] and Lafortune [105] are based on empirical
data. These models aim at ease of use and an intuitive parameterization
of the BRDF. For isotropic surfaces, the Ward model has the following
BRDF:

fr(x,Ψ↔ Θ) =
ρd

π
+ ρs

e
−tan2θh

α2

4πα2
√

(N ·Ψ)(N ·Θ)
,

where θh is the angle between the half-vector and the normal.
The Ward model includes three parameters to describe the BRDF: ρd,

the diffuse reflectance; ρs, the specular reflectance; and α, a measure of

�

�

�

�

�

�

�

�

2.6. Rendering Equation 41

the surface roughness. This model is energy conserving and relatively in-
tuitive to use because of the small set of parameters; with the appropriate
parameter settings, it can be used to represent a wide range of materials.

Lafortune et al. [105] introduced an empirically based model to repre-
sent measurements of real materials. This model fits modified Phong lobes
to measured BRDF data. The strength of this technique is that it exploits
the simplicity of the Phong model while capturing realistic BRDFs from
measured data. More detailed descriptions of several models can be found
in Glassner’s books [54].

2.6 Rendering Equation

Now we are ready to mathematically formulate the equilibrium distribution
of light energy in a scene as the rendering equation. The goal of a global
illumination algorithm is to compute the steady-state distribution of light
energy. As mentioned earlier, we assume the absence of participating me-
dia. We also assume that light propagates instantaneously; therefore, the
steady-state distribution is achieved instantaneously. At each surface point
x and in each direction Θ, the rendering equation formulates the exitant
radiance L(x→ Θ) at that surface point in that direction.

2.6.1 Hemispherical Formulation
The hemispherical formulation of the rendering equation is one of the most
commonly used formulations in rendering. In this section, we derive this
formulation using energy conservation at the point x. Let us assume that
Le(x → Θ) represents the radiance emitted by the surface at x and in
the outgoing direction Θ, and Lr(x → Θ) represents the radiance that is
reflected by the surface at x in that direction Θ.

By conservation of energy, the total outgoing radiance at a point and
in a particular outgoing direction is the sum of the emitted radiance and
the radiance reflected at that surface point in that direction. The outgoing
radiance L(x→ Θ) is expressed in terms of Le(x→ Θ) and Lr(x→ Θ) as
follows:

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ).

From the definition of the BRDF, we have

fr(x,Ψ→ Θ) =
dLr(x→ Θ)
dE(x← Ψ)

,

Lr(x→ Θ) =
∫

Ωx

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ.

�

�

�

�

�

�

�

�

42 2. The Physics of Light Transport

Putting these equations together, the rendering equation is

L(x→ Θ) = Le(x→ Θ) (2.29)

+
∫

Ωx

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ.

The rendering equation is an integral equation called a Fredholm equa-
tion of the second kind because of its form: the unknown quantity, radi-
ance, appears both on the left-hand side of the equation, and on the right,
integrated with a kernel.

2.6.2 Area Formulation
Alternative formulations of the rendering equation are sometimes used de-
pending on the approach that is being used to solve for global illumination.
One popular alternative formulation is arrived at by considering the sur-
faces of objects in the scene that contribute to the incoming radiance at
the point x. This formulation replaces the integration over the hemisphere
by integration over all surfaces visible at the point.

To present this formulation, we introduce the notion of a ray-casting
operation. The ray-casting operation, denoted as r(x,Ψ), finds the point
on the closest visible object along a ray originating at point x and pointing
in the direction Ψ. Efficient ray-casting techniques are beyond the scope of
this book; hierarchical bounding volumes, octrees, and BSP trees are data
structures that are used to accelerate ray casting in complex scenes [52].

r(x,Ψ) = {y : y = x+ tintersectionΨ};
tintersection = min{t : t > 0, x+ tΨ ∈ A},

dωx

NyNx

x

y

Figure 2.11. Area formulation of the rendering equation.

�

�

�

�

�

�

�

�

2.6. Rendering Equation 43

where all the surfaces in the scene are represented by the set A. The
visibility function V (x, y) specifies the visibility between two points x and
y and is defined as follows:

∀x, y ∈ A : V (x, y) =
{

1 if x and y are mutually visible,
0 if x and y are not mutually visible.

The visibility function is computed using the ray-casting operation r(x,Ψ):
x and y are mutually visible if there exists some Ψ such that r(x,Ψ) = y.

Using these definitions, let us consider the terms of the rendering equa-
tion from Equation 2.29. Assuming nonparticipating media, the incoming
radiance at x from direction Ψ is the same as the outgoing radiance from
y in the direction −Ψ:

L(x← Ψ) = L(y → −Ψ).

Additionally, the solid angle can be recast as follows (see Appendix B):

dωΨ = dωx←dAy
= cos(Ny,−Ψ)

dAy

r2xy

.

Substituting in Equation 2.29, the rendering equation can also be expressed
as an integration over all surfaces in the scene as follows:

L(x→ Θ) = Le(x→ Θ)

+
∫

A

fr(x,Ψ→ Θ)L(y → −Ψ)V (x, y)
cos(Nx,Ψ) cos(Ny,−Ψ)

r2xy

dAy.

The term G(x, y), called the geometry term, depends on the relative
geometry of the surfaces at point x and y:

G(x, y) =
cos(Nx,Ψ) cos(Ny,−Ψ)

r2xy

;

L(x→ Θ) = Le(x→ Θ)

+
∫

A

fr(x,Ψ→ Θ)L(y → −Ψ)V (x, y)G(x, y)dAy.

This formulation recasts the rendering equations in terms of an integration
over all the surfaces in the scene.

2.6.3 Direct and Indirect Illumination Formulation
Another formulation of the rendering equation separates out the direct
and indirect illumination terms. Direct illumination is the illumination

�

�

�

�

�

�

�

�

44 2. The Physics of Light Transport

that arrives at a surface directly from the light sources in a scene; indi-
rect illumination is the light that arrives after bouncing at least once off
another surface in the scene. It is often efficient to sample direct illumina-
tion using the area formulation of the rendering equation, and the indirect
illumination using the hemispherical formulation.

Splitting the integral into a direct and indirect component gives the
following form of the rendering equation:

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ);

Lr(x→ Θ) =
∫

Ωx

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ

= Ldirect + Lindirect;

Ldirect =
∫

A

fr(x,−→xy → Θ)Le(y → −→yx)V (x, y)G(x, y)dAy;

Lindirect =
∫

Ωx

fr(x,Ψ→ Θ)Li(x← Ψ) cos(Nx,Ψ)dωΨ;

Li(x← Ψ) = Lr(r(x,Ψ)→ −Ψ).

Thus, the direct term is the emitted term from the surface y visible to the
point x along direction −→xy: y = r(x,−→xy). The indirect illumination is the
reflected radiance from all points visible over the hemisphere at point x:
r(x,Ψ).

2.7 Importance

The problem that a global illumination algorithm must solve is to compute
the light energy that is visible at every pixel in an image. Each pixel
functions as a sensor with some notion of how it responds to the light
energy that falls on the sensor. The response function captures this notion
of the response of the sensor to the incident light energy. This response
function is also called the potential function or importance by different
authors.

The response function is similar in form to the rendering equation:

W (x→ Θ) = We(x→ Θ) (2.30)

+
∫

Ωx

fr(x,Ψ← Θ)W (x← Ψ) cos(Nx,Ψ)dωΨ.

Importance flows in the opposite direction as radiance. An informal in-
tuition for the form of the response function can be obtained by considering
two surfaces, i and j. If surface i is visible to the eye in a particular image,

�

�

�

�

�

�

�

�

2.8. The Measurement Equation 45

then We(i) will capture the extent to which the surface is important to the
image (some measure of the projected area of the surface on the image). If
surface j is also visible in an image and surface i reflects light to surface j,
then, due to the importance of j, i will indirectly be even more important.
Thus, while energy flows from i to j, importance flows from j to i.

2.8 The Measurement Equation

The rendering equation formulates the steady-state distribution of light
energy in the scene. The importance equation formulates the relative im-
portance of surfaces to the image. The measurement equation formulates
the problem that a global illumination algorithm must solve. This equation
brings the two fundamental quantities, importance and radiance, together
as follows.

For each pixel j in an image, Mj represents the measurement of radiance
through that pixel j. The measurement function M is

Mj =
∫
W (x← Ψ)L(x← Ψ) cos(Nx,Ψ)dAxdωΨ. (2.31)

We assume here that the sensors are part of the scene so that we can
integrate over their surface.

2.9 Summary

This chapter presented the formulation of the fundamental problems that
global illumination must solve: the rendering equation and the measure-
ment equation. We discussed a model of the behavior of light, definitions
from radiometry, and a description of how light interacts with materials in
a scene. For more details on the behavior of light, refer to standard physics
textbooks in the field of optics [68]. References for radiative transport
theory are Chandrasekhar’s Radiative Transfer [22] and Ishimaru’s Wave
Propagation and Scattering in Random Media [75]. Glassner’s books [54]
present a range of different shading models used in computer graphics.

2.10 Exercises

1. A flat plate (measuring 0.5 meter by 0.5 meter) is placed on the
highest mountain in the landscape, exactly horizontal. It is a cloudy

�

�

�

�

�

�

�

�

46 2. The Physics of Light Transport

day, such that the sky has a uniform radiance of 1000 W/m2sr. What
is the irradiance at the center point of the plate?

2. The plate has a uniform Lambertian reflectance ρ = 0.4. What is the
exitant radiance leaving the center point of the plate in a direction
45 degrees from the normal? In a direction normal to the surface?

3. Consider the sun being a diffuse light source with a diameter of 1.39 ·
109 meters at a distance of 1.5 · 1011 meters and emitting a radiance
of 8 · 106 W/m2sr. What is the radiance at the center point of the
plate, expressed as a function of the angle between the position of
the sun and the normal to the plate (the zenith)?

4. Using the Web, look up information on the following: the irradiance
spectrum of the sun (irradiance as a function of wavelength) reaching
the Earth; and the reflectivity of a chosen material, also as a function
of wavelength. Sketch the approximate spectrum of the reflected light
from the plate as a function of wavelength.

5. Implement the specular term of the Cook-Torrance BRDF model. For
nickel at 689 nm wavelength, use the following parameters: microfacet
distribution m = 0.3; refractive index n = 2.14 and k = 4.00. Plot
graphs of the following terms: the Fresnel reflectance; the geometry
term G; the full BRDF in the plane of incidence. Look up parameters
for some additional materials and make similar plots.

�

�

�

�

�

�

�

�

3

Monte Carlo Methods
This chapter introduces the concept of Monte Carlo integration and reviews
some basic concepts in probability theory. We also present techniques to
create better distributions of samples. More details on Monte Carlo meth-
ods can be found in Kalos and Whitlock [86], Hammersley and Hand-
scomb [62], and Spanier and Gelbard [183]. References on quasi–Monte
Carlo methods include Niederreiter [132].

3.1 Brief History

The term “Monte Carlo” was coined in the 1940s, at the advent of elec-
tronic computing, to describe mathematical techniques that use statistical
sampling to simulate phenomena or evaluate values of functions. These
techniques were originally devised to simulate neutron transport by scien-
tists such as Stanislaw Ulam, John von Neumann, and Nicholas Metropolis,
among others, who were working on the development of nuclear weapons.
However, early examples of computations that can be defined as Monte
Carlo exist, though without the use of computers to draw samples. One
of the earliest documented examples of a Monte Carlo computation was
done by Comte de Buffon in 1677. He conducted an experiment in which a
needle of length L was thrown at random on a horizontal plane with lines
drawn at a distance d apart (d > L). He repeated the experiment many
times to estimate the probability P that the needle would intersect one of
these lines. He also analytically evaluated P as

P =
2L
πd
.

Laplace later suggested that this technique of repeated experimentation
could be used to compute an estimated value of π. Kalos and Whitlock [86]
present early examples of Monte Carlo methods.

47

�

�

�

�

�

�

�

�

48 3. Monte Carlo Methods

3.2 Why Are Monte Carlo Techniques Useful?

Consider a problem that must be solved, for example, computing the value
of the integration of a function with respect to an appropriately defined
measure over a domain. The Monte Carlo approach to solving this problem
would be to define a random variable such that the expected value of that
random variable would be the solution to the problem. Samples of this
random variable are then drawn and averaged to compute an estimate of
the expected value of the random variable. This estimated expected value
is an approximation to the solution of the problem we originally wanted to
solve.

One major strength of the Monte Carlo approach lies in its conceptual
simplicity; once an appropriate random variable is found, the computa-
tion consists of sampling the random variable and averaging the estimates
obtained from the sample. Another advantage of Monte Carlo techniques
is that they can be applied to a wide range of problems. It is intuitive
that Monte Carlo techniques would apply to problems that are stochastic
in nature, for example, transport problems in nuclear physics. However,
Monte Carlo techniques are applicable to an even wider range of problems,
for example, problems that require the higher-dimensional integration of
complicated functions. In fact, for these problems, Monte Carlo techniques
are often the only feasible solution.

One disadvantage of Monte Carlo techniques is their relatively slow
convergence rate of 1√

N
, where N is the number of samples (see Sec-

tion 3.4). As a consequence, several variance reduction techniques have
been developed in the field, discussed in this chapter. However, it should
be noted that despite all these optimizations, Monte Carlo techniques still
converge quite slowly and, therefore, are not used unless there are no vi-
able alternatives. For example, even though Monte Carlo techniques are
often illustrated using one-dimensional examples, they are not typically
the most efficient solution technique for problems of this kind. But there
are problems for which Monte Carlo methods are the only feasible solu-
tion technique: higher-dimensional integrals and integrals with nonsmooth
integrands, among others.

3.3 Review of Probability Theory

In this section, we briefly review important concepts from probability the-
ory. A Monte Carlo process is a sequence of random events. Often, a
numerical outcome can be associated with each possible event. For exam-

�

�

�

�

�

�

�

�

3.3. Review of Probability Theory 49

ple, when a fair die is thrown, the outcome could be any value from 1 to 6.
A random variable describes the possible outcomes of an experiment.

3.3.1 Discrete Random Variables

When a random variable can take a finite number of possible values, it
is called a discrete random variable. For a discrete random variable, a
probability pi can be associated with any event with outcome xi.

A random variable xdie might be said to have a value of 1 to 6 associated
with each of the possible outcomes of the throw of the die. The probability
pi associated with each outcome for a fair die is 1/6.

Some properties of the probabilities pi are:

1. The probablity of an event lies between 0 and 1: 0 ≤ pi ≤ 1. If an
outcome never occurs, its probability is 0; if an event always occurs,
its probability is 1.

2. The probability that either of two events occurs is:

Pr(Event1 or Event2) ≤ Pr(Event1) + Pr(Event2).

Two events are mutually exclusive if and only if the occurence of one
of the events implies the other event cannot possibly occur. In the
case of two such mutually exclusive events,

Pr(Event1 or Event2) = Pr(Event1) + Pr(Event2).

3. A set of all the possible events/outcomes of an experiment such that
the events are mutually exclusive and collectively exhaustive satisfies
the following normalization property:

∑
i pi = 1.

Expected Value

For a discrete random variable with n possible outcomes, the expected
value, or mean, of the random variable is

E(x) =
n∑

i=1

pixi.

�

�

�

�

�

�

�

�

50 3. Monte Carlo Methods

For the case of a fair die, the expected value of the die throws is

E(xdie) =
6∑

i=1

pixi

=
6∑

i=1

1
6
xi =

1
6
(1 + 2 + 3 + 4 + 5 + 6)

= 3.5.

Variance and Standard Deviation

The variance σ2 is a measure of the deviation of the outcomes from the
expected value of the random variable. The variance is defined as the
expected value of the square difference between the outcome of the exper-
iment and its expected value. The standard deviation σ is the square root
of the variance. The variance is expressed as

σ2 = E[(x− E[x])2] =
∑

i

(xi − E[x])2pi.

Simple mathematical manipulation leads to the following equation:

σ2 = E[x2]− (E[x])2 =
∑

i

x2
i pi − (

∑
i

xipi)2.

In the case of the fair die, the variance is

σ2
die =

1
6
[(1− 3.5)2 + (2− 3.5)2 + (3− 3.5)2 + (4− 3.5)2

+(5− 3.5)2 + (6− 3.5)2]
= 2.91.

Functions of Random Variables

Consider a function f(x), where x takes values xi with probabilities pi.
Since x is a random variable, f(x) is also a random variable whose expected
value or mean is defined as

E[f(x)] =
∑

i

pif(xi).

The variance of the function f(x) is defined similarly as

σ2 = E[(f(x)− E[f(x)])2].

�

�

�

�

�

�

�

�

3.3. Review of Probability Theory 51

Example (Binomial Distribution)

Consider a random variable that has two possible mutually exclusive events
with outcomes 1 and 0. These two outcomes occur with probability p and
1− p, respectively. The expected value and variance of a random variable
distributed according to this distribution are

E[x] = 1 · p+ 0 · (1− p) = p;
σ2 = E[x2]− E[x]2 = p− p2 = p(1− p).

Consider an experiment in which N random samples are drawn from the
probability distribution above. Each sample can take a value of 0 or 1. The
sum of these N samples is given as

S =
N∑

i=1

xi.

The probability that S = n, where n ≤ N , is the probability that n of the
N samples take a value of 1, and N − n samples take a value of 0. This
probability is

Pr(S = n) = CN
n p

n(1− p)N−n.

This distribution is called the binomial distribution. The binomial coeffi-
cient, CN

n , counts the number of ways in which n of the N samples can
take a value of 1: CN

n = N !
(N−n)!n! .

The expected value of S is

E[S] =
N∑

i=1

npi =
∑

nCN
n p

n(1− p)N−n = Np.

The variance is
σ2 = Np(1− p).

This expected value and variance can be computed analytically by evaluat-
ing the expression: a d

da
(a+b)N , where a = p and b = (1−p). Another possi-

ble way to compute the expected value and variance is to treat S as the sum
of N random variables. Since these random variables are independent of
each other, the expected value of S is the sum of the expected value of each
variable as described in Section 3.4.1. Therefore, E[S] =

∑
E[xi] = Np.

3.3.2 Continuous Random Variables
We have been discussing discrete-valued random variables; we will now
extend our discussion to include continuous random variables.

�

�

�

�

�

�

�

�

52 3. Monte Carlo Methods

Probability Distribution Function and Cumulative Distribution Function

For a real-valued (continuous) random variable x, a probability density func-
tion (PDF) p(x) is defined such that the probability that the variable takes
a value x in the interval [x, x + dx] equals p(x)dx. A cumulative distri-
bution function (CDF) provides a more intuitive definition of probabilities
for continuous variables. The CDF for a random variable x is defined as
follows:

P (y) = Pr(x ≤ y) =
∫ y

−∞
p(x)dx.

The CDF gives the probability with which an event occurs with an outcome
whose value is less than or equal to the value y. Note that the CDF P (y)
is a nondecreasing function and is non-negative over the domain of the
random variable.

The PDF p(x) has the following properties:

∀x : p(x) ≥ 0;∫ ∞
−∞

p(x)dx = 1;

p(x) =
dP (x)
dx

.

Also,

Pr(a ≤ x ≤ b) = Pr(x ≤ b)− Pr(x ≤ a)

= CDF (b)− CDF (a) =
∫ b

a

p(z)dz.

Expected Value

Similar to the discrete-valued case, the expected value of a continuous
random variable x is given as:

E[x] =
∫ ∞
−∞

xp(x)dx.

Now consider some function f(x), where p(x) is the probability distribution
function of the random variable x. Since f(x) is also a random variable,
its expected value is defined as follows:

E[f(x)] =
∫
f(x)p(x)dx.

�

�

�

�

�

�

�

�

3.3. Review of Probability Theory 53

Variance and Standard Deviation

The variance σ2 for a continuous random variable is

σ2 = E[(x− E[x])2] =
∫

(x− E[x])2p(x)dx.

Simple mathematical manipulation leads to the following equation:

σ2 = E[x2]− (E[x])2 =
∫
x2p(x)dx− (

∫
xp(x)dx)2.

Example (Uniform Probability Distribution)

For concreteness, we consider an example of one of the simplest probability
distribution functions: the uniform probability distribution function. For
a uniform probability distribution, the PDF is a constant over the entire
domain, as depicted in Figure 3.1.

We know that
∫ b

a
p(x)dx = 1. Therefore, the PDF pu for a uniform

probability distribution function is

pu(x) =
1

b− a. (3.1)

The probability that x ∈ [a′, b′] is

Pr(x ∈ [a′, b′]) =
∫ b′

a′

1
b− adx

=
b′ − a′
b− a ;

Pr(x ≤ y) = CDF (y) =
∫ y

−∞

1
b− adx

=
y − a
b− a .

p(x)

a a' b' b

Figure 3.1. Uniform distribution.

�

�

�

�

�

�

�

�

54 3. Monte Carlo Methods

For the special case where a = 0, b = 1:

Pr(x ≤ y) = CDF (y) = y.

3.3.3 Conditional and Marginal Probabilities
Consider a pair of random variables x and y. For discrete random variables,
pij specifies the probability that x takes a value of xi and y takes a value
of yi. Similarly, a joint probability distribution function p(x, y) is defined
for continuous random variables.

The marginal density function of x is defined as

p(x) =
∫
p(x, y)dy.

Similarly, for a discrete random variable, pi =
∑

j pij .
The conditional density function p(y|x) is the probability of y given

some x:

p(y|x) =
p(x, y)
p(x)

=
p(x, y)∫
p(x, y)dy

.

The conditional expectation of a random function g(x, y) is computed as

E[g|x] =
∫
g(x, y)p(y|x)dy =

∫
g(x, y)p(x, y)dy∫

p(x, y)dy
.

These definitions are useful for multidimensional Monte Carlo computa-
tions.

3.4 Monte Carlo Integration

We now describe how Monte Carlo techniques can be used for the inte-
gration of arbitrary functions. Let us assume we have some function f(x)
defined over the domain x ∈ [a, b]. We would like to evaluate the integral

I =
∫ b

a

f(x)dx. (3.2)

We will first illustrate the idea of Monte Carlo integration in the con-
text of one-dimensional integration and then extend these ideas to higher-
dimensional integration. However, it should be mentioned that several ef-
fective deterministic techniques exist for one-dimensional integration, and
Monte Carlo is typically not used in this domain.

�

�

�

�

�

�

�

�

3.4. Monte Carlo Integration 55

3.4.1 Weighted Sum of Random Variables
Consider a function G that is the weighted sum of N random variables
g(x1), ...g(xN), where each of the xi has the same probability distribu-
tion function p(x). The xi variables are called independent identically dis-
tributed (IID) variables. Let gi(x) denote the function g(xi):

G =
N∑

j=1

wjgj .

The following linearity property can easily be proved:

E[G(x)] =
∑

j

wjE[gj(x)].

Now consider the case where the weights wj are the same and all add to 1.
Therefore, when N functions are added together, wj = 1/N :

G(x) =
N∑

j=1

wjgj(x)

=
N∑

j=1

1
N
gj(x)

=
1
N

N∑
j=1

gj(x).

The expected value of G(x) is

E[G(x)] =
∑

j

wjE[gj(x)]

=
1
N

N∑
j=1

E[gj(x)]

=
1
N

N∑
j=1

E[g(x)]

=
1
N
NE[g(x)]

= E[g(x)].

Thus, the expected value of G is the same as the expected value of g(x).
Therefore, G can be used to estimate the expected value of g(x). G is
called an estimator of the expected value of the function g(x).

�

�

�

�

�

�

�

�

56 3. Monte Carlo Methods

The variance of G is

σ2[G(x)] = σ2[
N∑

i=1

gi(x)
N

].

Variance, in general, satisfies the following equation:

σ2[x+ y] = σ2[x] + σ2[y] + 2Cov[x, y],

with the covariance Cov[x, y] given as

Cov[x, y] = E[xy]− E[x] · E[y].

In the case of independent random variables, the covariance is 0, and
the following linearity property for variance does hold:

σ2[x+ y] = σ2[x] + σ2[y].

This result generalizes to the linear combination of several variables.
The following property holds for any constant a:

σ2[ax] = a2σ2[x].

Using the fact that the xi in G are independent identically distributed
variables, we get the following variance for G:

σ2[G(x)] =
N∑

i=1

σ2[
gi(x)
N

].

Therefore,

σ2[G(x)] =
N∑

i=1

σ2[g(x)]
N2

= N
σ2[g(x)]
N2

=
σ2[g(x)]
N

.

Thus, as N increases, the variance of G decreases with N , making G an
increasingly good estimator of E[g(x)]. The standard deviation σ decreases
as
√
N .

�

�

�

�

�

�

�

�

3.4. Monte Carlo Integration 57

3.4.2 Estimator
The Monte Carlo approach to computing the integral is to consider N
samples to estimate the value of the integral. The samples are selected
randomly over the domain of the integral with probability distribution
function p(x). The estimator is denoted as 〈I〉 and is

〈I〉 =
1
N

N∑
i=1

f(xi)
p(xi)

.

In Section 3.6.1, we explain why samples are computed from a probability
distrubtion p(x) as opposed to uniform sampling of the domain of the
integration. Let us for now accept that p(x) is used for sampling.

Using the properties described in Section 3.4.1, the expected value of
this estimator is computed as follows:

E[〈I〉] = E[
1
N

N∑
i=1

f(xi)
p(xi)

]

=
1
N

N∑
i=1

E[
f(xi)
p(xi)

]

=
1
N
N

∫
f(x)
p(x)

p(x)dx

=
∫
f(x)dx

= I.

Also, from Section 3.4.1, we know that the variance of this estimator is

σ2 =
1
N

∫
(
f(x)
p(x)

− I)2p(x)dx.

Thus, as N increases, the variance decreases linearly with N . The error
in the estimator is proportional to the standard deviation σ; the standard
deviation decreases as

√
N . This is a classic result of Monte Carlo meth-

ods. In fact one problem with Monte Carlo is the slow convergence of the
estimator to the right solution; four times more samples are required to
decrease the error of the Monte Carlo computation by half.

Example (Monte Carlo Summation)

A discrete sum S =
∑n

i=1 si can be computed using the estimator 〈S〉 = nx,
where x takes the value of each term of the sum si with equal probability

�

�

�

�

�

�

�

�

58 3. Monte Carlo Methods

1/n. We can see that the expected value of the estimator is S. Using
the estimator, the following algorithm can be used to estimate the sum S:
Randomly select a term si where each term has the same chance of being
selected 1/n. An estimate of the sum is the product of the value of the
selected term times the number of terms: nsi.

Since computing sums is clearly a very efficient computation in modern
computers, it might appear that the above algorithm is not very useful.
However, in cases where the sum consists of complex terms that are time-
consuming to compute, this technique of sampling sums is useful. We show
how this technique is used in Chapter 6.

Example (Simple MC Integration)

Let us show how Monte Carlo integration works for the following simple
integral:

I =
∫ 1

0

5x4dx.

Using analytical integration, we know that the value of this integral is 1.
Assuming samples are computed from a uniform probability distribution

Figure 3.2. Monte Carlo integration of a simple function 5x4 including the plot
of the variance.

�

�

�

�

�

�

�

�

3.4. Monte Carlo Integration 59

(i.e., p(x) = 1 over the domain [0, 1)), our estimator would be

〈I〉 =
1
N

N∑
i=1

5x4
i .

A possible evaluation of this integral using Monte Carlo techniques is
shown in Figure 3.2.

The variance of this function can be analytically computed as follows:

σ2
est =

1
N

∫ 1

0

(5x4 − 1)2dx =
16
9N

.

As N increases, we get an increasingly better approximation of the
integral.

3.4.3 Bias
When the expected value of the estimator is exactly the value of the integral
I (as is the case for the estimator described above), the estimator is said to
be unbiased. An estimator that does not satisfy this property is said to be
biased; the difference between the expected value of the estimator and the
actual value of the integral is called bias: B[〈I〉] = E[〈I〉] − I. The total
error on the estimate is typically represented as the sum of the standard
deviation and the bias. The notion of bias is important in characterizing
different approaches to solving a problem using Monte Carlo integration.

A biased estimator is called consistent if the bias vanishes as the number
of samples increases; i.e., if limN→∞B[〈I〉] = 0. Sometimes, it is useful to
use biased estimators if they result in a lower variance that compensates for
the bias introduced. However, we must analyze both variance and bias for
these estimators, making the analysis more complicated than for unbiased
estimators.

3.4.4 Accuracy
Two theorems explain how the error of the Monte Carlo estimator reduces
as the number of samples increases. Remember that these error bounds
are probabilistic in nature.

The first theorem is Chebyshev’s Inequality, which states that the prob-
ability that a sample deviates from the solution by a value greater than√

σ2

δ , where δ is an arbitrary positive number, is smaller than δ. This
inequality is expressed mathematically as

Pr[|〈I〉 − E[I]| ≥
√
σ2

I

δ
] ≤ δ,

�

�

�

�

�

�

�

�

60 3. Monte Carlo Methods

where δ is a positive number. Assuming an estimator that averages N
samples and has a well-defined variance, the variance of the estimator is

σ2
I =

1
N
σ2

primary.

Therefore, if δ = 1
10000 ,

Pr[|〈I〉 − E[I]| ≥ 100σprimary√
N

] ≤ 1
10000

.

Thus, by increasing N , the probability that 〈I〉 ≈ E[I] is very large.
The Central Limit Theorem gives an even stronger statement about the

accuracy of the estimator. As N → ∞, the Central Limit Theorem states
that the values of the estimator have a normal distribution. Therefore,
as N → ∞, the computed estimate lies in a narrower region around the
expected value of the integral with higher probability. Thus, the computed
estimate is within one standard deviation of the integral 68.3% of the time,
and within three standard deviations of the integral 99.7% of the time. As
N gets larger, the standard deviations, which vary as 1√

N
, get smaller and

the estimator estimates the integral more accurately with high probability.
However, the Central Limit Theorem only applies when N is large

enough; how large N should be is not clear. Most Monte Carlo techniques
assume that N is large enough; though care should be taken when small
values of N are used.

3.4.5 Estimating the Variance
The variance of a Monte Carlo computation can be estimated using the
same N samples that are used to compute the original estimator. The
variance for the Monte Carlo estimator is

σ2 =
1
N

∫
(
f(x)
p(x)

− I)2p(x)dx

=
1
N

∫
(
f(x)
p(x)

)2p(x)dx− I2

=
1
N

∫
f(x)2

p(x)
dx− I2.

The variance itself can be estimated by its own estimator σ2
est [86]:

σ2
est ≈

1
N

∑N
i=1(

f(xi)
p(xi)

)2 − (1
N

∑N
i=1

f(xi)
p(xi)

)2

N − 1
.

�

�

�

�

�

�

�

�

3.4. Monte Carlo Integration 61

Figure 3.3. Deterministic one-dimensional integration.

3.4.6 Deterministic Quadrature versus Monte Carlo

As a point of comparison, note that a deterministic quadrature rule to
compute a one-dimensional integral could be to compute the sum of the
area of regions (perhaps uniformly spaced) over the domain (see Figure 3.3).
Effectively, one approximation of the integral I would be

I ≈
N∑

i=1

wif(xi) =
N∑

i=1

f(xi)(b− a)
N

.

The trapezoidal rule and other rules [149] are typical techniques used for
one-dimensional integration. Extending these deterministic quadrature
rules to a d-dimensional integral would require Nd samples.

3.4.7 Multidimensional Monte Carlo Integration

The Monte Carlo integration technique described above can be extended
to multiple dimensions in a straightforward manner as follows:

I =
∫ ∫

f(x, y)dxdy

〈I〉 =
1
N

N∑
i=1

f(xi, yi)
p(xi, yi)

.

One of the main strengths of Monte Carlo integration is that it can be ex-
tended seamlessly to multiple dimensions. Unlike deterministic quadrature
techniques, which would require Nd samples for a d-dimensional integra-
tion, Monte Carlo techniques permit an arbitrary choice of N .

�

�

�

�

�

�

�

�

62 3. Monte Carlo Methods

x

Figure 3.4. Sampling of hemisphere.

Example (Integration over a Hemisphere)

Let us consider a simple example of Monte Carlo integration over a hemi-
sphere. The particular problem we want to solve is to estimate the irra-
diance at a point by integrating the contribution of light sources in the
scene.

Let us consider a light source L. To compute the irradiance due to the
light source, we must evaluate the following integral:

I =
∫
Lsource cos θdωΘ

=
∫ 2π

0

∫ π
2

0

Lsource cos θ sin θdθdφ.

The estimator for irradiance is:

〈I〉 =
1
N

N∑
i=1

Lsource(Θi) cos θ sin θ
p(Θi)

.

We can choose our samples from the following probability distribution:

p(Θi) =
cos θ sin θ

π
.

The estimator for irradiance is then given as

〈I〉 =
π

N

N∑
i=1

Lsource(Θi).

3.4.8 Summary of Monte Carlo
In summary, a Monte Carlo estimator for an integral I =

∫
f(x)dx is

〈I〉 =
1
N

N∑
i=1

f(xi)
p(xi)

.

�

�

�

�

�

�

�

�

3.5. Sampling Random Variables 63

The variance of this estimator is

σ2 =
1
N

∫
(
f(x)
p(x)

− I)2p(x)dx.

Monte Carlo integration is a powerful, general technique that can handle
arbitrary functions. A Monte Carlo computation consists of the following
steps:

• Sampling according to a probability distribution function.

• Evaluation of the function at that sample.

• Averaging these appropriately weighted sampled values.

The user only needs to understand how to do the above three steps to
be able to use Monte Carlo techniques.

3.5 Sampling Random Variables

We have discussed how the Monte Carlo technique must compute samples
from a probability distribution p(x). Therefore, we want to find samples
such that the distribution of the samples matches p(x). We now describe
different techniques to achieve this sampling.

3.5.1 Inverse Cumulative Distribution Function
To intuitively illustrate the inverse cumulative distribution function (CDF)
technique, we first describe how to sample according to a PDF for a discrete
PDF. We then extend this technique to a continuous PDF.

Discrete Random Variables

Given a set of probabilities pi, we want to pick xi with probability pi.
We compute the discrete cumulative probability distribution (CDF) corre-
sponding to the pi as follows: Fi =

∑i
j=1 pi. Now, the selection of samples

is done as follows. Compute a sample u that is uniformly distributed over
the domain [0, 1). Output k that satisfies the property:

Fk−1 ≤ u < Fk;
k−1∑
j=1

pj ≤ u <
k∑

j=1

pj ;

k−1∑
j=1

pj ≤ u < Fk−1 + pk.

�

�

�

�

�

�

�

�

64 3. Monte Carlo Methods

We know from Equation 3.1 for a uniform PDF, F (a ≤ u < b) = (b − a).
Clearly, the probability that the value of u lies between Fk−1 and Fk is
Fk − Fk−1 = pk. But this is the probability that k is selected. Therefore,
k is selected with probability pk, which is exactly what we want.

The F values can be computed in O(n) time; the look-up of the appro-
priate value to output can be done in O(log2(n)) time per sample by doing
a binary search on the precomputed F table.

Continuous Random Variables

The approach above can be extended to continuous random variables. A
sample can be generated according to a given distribution p(x) by applying
the inverse cumulative distribution function of p(x) to a uniformly gener-
ated random variable u over the interval [0, 1). The resulting sample is
F−1(u). This technique is illustrated in Figure 3.5.

Pick u uniformly from [0,1)
Output y = F−1(u)

The resulting samples have the distribution of p(x) as can be proved
below:

F (y) =
∫ y

−∞
p(x)dx.

Figure 3.5. Inverse CDF sampling.

�

�

�

�

�

�

�

�

3.5. Sampling Random Variables 65

We want to prove that

Pr[y ≤ Y] =
∫ Y

−∞
p(x)dx.

Consider the new samples we compute. For every uniform variable u, we
compute the sample as y = F−1(u). From Equation 3.1, we know that

Pr[u ≤ X] = X.

Therefore,

Pr[F−1(u) ≤ F−1(X)] = X

if X = F (Y)

Pr[y ≤ Y] = F (Y) =
∫ Y

−∞
p(x)dx.

Note that the fact that the cumulative probability distribution function is
a monotonically nondecreasing function is important in the proof above.
Also note that this method of sampling requires the ability to compute and
analytically invert the cumulative probability distribution.

Example (Cosine Lobe)

A cosine weighting factor arises in the rendering equation; therefore, it is
often useful to sample the hemisphere to compute radiance using a cosine
PDF. We show how the hemisphere can be sampled such that the samples
are weighted by the cosine term.

The PDF is
p(θ, φ) =

cos θ
π

.

Its CDF is computed as described above:

F =
1
π

∫
cos θdω;

F (θ, φ) =
1
π

∫ φ

0

∫ θ

0

cos θ′ sin θ′dθ′dφ′

=
1
π

∫ φ

0

dφ′
∫ θ

0

cos θ′ sin θ′dθ′

=
φ

π
(− cos2 θ′/2)|θ0

=
φ

2π
(1− cos2 θ).

�

�

�

�

�

�

�

�

66 3. Monte Carlo Methods

The CDF, with respect to φ and θ functions, is separable:

Fφ =
φ

2π
;

Fθ = 1− cos2 θ.

Therefore, assuming we compute two uniformly distributed samples u1 and
u2:

φi = 2πu1

and
θi = cos−1√u2,

where 1 − u is replaced by u2 since the uniform random variables lie in
the domain [0, 1). These φi and θi values are distributed according to the
cosine PDF.

3.5.2 Rejection Sampling
It is often not possible to derive an analytical formula for the inverse of the
cumulative distribution function. Rejection sampling is an alternative that
could be used and was one of the primary techniques used in the field in the
past. In rejection sampling, samples are tentatively proposed and tested
to determine acceptance or rejection of the sample. This method raises
the dimension of the function being sampled by one and then uniformly
samples the bounding box that includes the entire PDF. This sampling
technique yields samples with the appropriate distribution.

Let us see how this works for a one-dimensional PDF whose maxi-
mum value over the domain [a, b] to be sampled is M . Rejection sampling
raises the dimension of the function by one and creates a two-dimensional
function over [a, b] × [0,M]. This function is then sampled uniformly to
compute samples (x, y). Rejection sampling rejects all samples (x, y) such
that p(x) < y. All other samples are accepted. The distribution of the
accepted samples is exactly the PDF p(x) we want to sample.

Compute sample xi uniformly from the domain of x
Compute sample ui uniformly from [0, 1)
if ui ≤ p(xi)

M
then return xi

else reject sample

One criticism of rejection sampling is that rejecting these samples (those
that lie in the unshaded area of Figure 3.6) could be inefficient. The ef-
ficiency of this technique is proportional to the probabilty of accepting a
proposed sample. This probability is proportional to the ratio of the area

�

�

�

�

�

�

�

�

3.6. Variance Reduction 67

Figure 3.6. Rejection Sampling.

under the function to the area of the box. If this ratio is small, a lot of
samples are rejected.

3.5.3 Look-Up Table

Another alternative for sampling PDFs is to use a look-up table. This
approach approximates the PDF to be sampled using piecewise linear ap-
proximations. This technique is not commonly used though it is very useful
when the sampled PDF is obtained from measured data.

3.6 Variance Reduction

Monte Carlo integration techniques can be roughly subdivided into two
categories: those that have no information about the function to be inte-
grated (sometimes called blind Monte Carlo), and those that do have some
kind of information (sometimes called informed Monte Carlo). Intuitively,
one expects that informed Monte Carlo methods are able to produce more
accurate results as compared to blind Monte Carlo methods. The Monte
Carlo integration algorithm outlined in Section 3.4 would be a blind Monte
Carlo method if the samples were generated uniformly over the domain of
integration without any information about the function being integrated.

Designing efficient estimators is a major area of research in Monte Carlo
literature. A variety of techniques that reduce variance have been devel-
oped. We discuss some of these techniques in this section: importance
sampling, stratified sampling, multiple importance sampling, the use of
control variates, and quasi–Monte Carlo.

�

�

�

�

�

�

�

�

68 3. Monte Carlo Methods

3.6.1 Importance Sampling

Importance sampling is a technique that uses a nonuniform probability
distribution function to generate samples. The variance of the computation
can be reduced by choosing the probability distribution wisely based on
information about the function to be integrated.

Given a PDF p(x) defined over the integration domain D, and sam-
ples xi generated according to the PDF, the value of the integral I can
be estimated by generating N sample points and computing the weighted
mean:

〈I〉 =
1
N

N∑
i=1

f(xi)
p(xi)

.

As proven earlier, the expected value of this estimator is I; therefore, the
estimator is unbiased. To determine if the variance of this estimator is
better that an estimator using uniform sampling, we estimate the variance
as described in Section 3.4.5. Clearly, the choice of p(x) affects the value
of the variance. The difficulty of importance sampling is to choose a p(x)
such that the variance is minimized. In fact, a perfect estimator would have
the variance be zero.

The optimal p(x) for the perfect estimator can be found by minimizing
the equation of the variance using variational techniques and Lagrange
multipliers as below. We have to find a scalar λ for which the following
expression L, a function of p(x), reaches a minimum,

L(p) =
∫

D

(
f(x)
p(x)

)2p(x)dx+ λ

∫
D

p(x)dx,

where the only boundary condition is that the integral of p(x) over the
integration domain equals 1, i.e.,∫

D

p(x)dx = 1.

This kind of minimization problem can be solved using the Euler-Lagrange
differential equation:

L(p) =
∫

D

(
f(x)2

p(x)
+ λp(x))dx.

�

�

�

�

�

�

�

�

3.6. Variance Reduction 69

Figure 3.7. Comparing three different importance functions.

To minimize the function, we differentiate L(p) with respect to p(x) and
solve for the value of p(x) that makes this quantity zero:

0 =
∂

∂p
(
f(x)2

p(x)
+ λp(x))

0 = −f
2(x)
p2(x)

+ λ

p(x) =
1√
λ
|f(x)|.

The constant 1√
λ

is a scaling factor, such that p(x) can fulfill the boundary
condition. The optimal p(x) is then given by:

p(x) =
|f(x)|∫

D
f(x)dx

.

If we use this p(x), the variance will be exactly 0 (assuming f(x) does not
change sign). However, this optimal p(x) requires us to know the value of
the integral

∫
D
f(x)dx. But this is exactly the integral we want to compute

to begin with! Clearly, finding the optimal p(x) is not possible. However,
importance sampling can still be a major tool in decreasing variance in
Monte Carlo techniques. Intuitively, a good importance sampling func-
tion matches the “shape” of the original function as closely as possible.
Figure 3.7 shows three different probability functions, each of which will
produce an unbiased estimator. However, the variance of the estimator on
the left-hand side will be larger than the variance of the estimator shown
on the right-hand side.

3.6.2 Stratified Sampling
One problem with the sampling techniques that we have described is that
samples can be badly distributed over the domain of integration resulting
in a poor approximation of the integral. This clumping of samples can hap-
pen irrespective of the PDF used, because the PDF only tells us something

�

�

�

�

�

�

�

�

70 3. Monte Carlo Methods

about the expected number of samples in parts of the domain. Increasing
the number of samples collected will eventually address this problem of un-
even sample distribution. However, other techniques have been developed
to avoid the clumping of samples: one such technique is stratified sampling.

The basic idea in stratified sampling is to split the integration domain
into m disjoint subdomains (also called strata) and evaluate the integral
in each of the subdomains separately with one or more samples. More
precisely, ∫ 1

0

f(x)dx =
∫ α1

0

f(x)dx+
∫ α2

α1

f(x)dx+ . . .

+
∫ αm−1

αm−2

f(x)dx+
∫ 1

αm−1

f(x)dx.

Stratified sampling often leads to a smaller variance as compared to a
blind Monte Carlo integration method. The variance of a stratified sam-
pling method, where each stratum receives a number of samples nj , which
are in turn distributed uniformly over their respective intervals, is equal to

σ2 =
m∑

j=1

αj − αj−1

nj

∫ αj

αj−1

f(x)2dx−
m∑

j=1

1
nj

(
∫ αj

αj−1

f(x)dx)2.

If all the strata are of equal size (αj − αj−1 = 1/m), and each stratum
contains one uniformly generated sample (nj = 1;N = m), the above
equation can be simplified to:

σ2 =
m∑

j=1

1
N

∫ αj

αj−1

f(x)2dx−
m∑

j=1

(
∫ αj

αj−1

f(x)dx)2

=
1
N

∫ 1

0

f(x)2dx−
N∑

j=1

(
∫ αj

αj−1

f(x)dx)2.

This expression indicates that the variance obtained using stratified sam-
pling is always smaller than the variance obtained by a pure Monte Carlo
sampling scheme. As a consequence, there is no advantage in generating
more than one sample within a single stratum, since a simple equal subdivi-
sion of the stratum such that each sample is attributed to a single stratum
always yields a better result.

This does not mean that the above sampling scheme always gives us
the smallest possible variance; this is because we did not take into account

�

�

�

�

�

�

�

�

3.6. Variance Reduction 71

the size of the strata relative to each other and the number of samples
per stratum. It is not an easy problem to determine how these degrees
of freedom can be chosen optimally, such that the final variance is the
smallest possible. It can be proven that the optimal number of samples
in one subdomain is proportional to the variance of the function values
relative to the average function value in that subdomain. Applied to the
principle of one sample per stratum, this implies that the size of the strata
should be chosen such that the function variance is equal in all strata. Such
a sampling strategy assumes prior knowledge of the function in question,
which is often not available. However, such a sampling strategy might be
used in an adaptive sampling algorithm.

Stratified sampling works well when the number of samples required is
known in advance and the dimensionality of the problem is relatively low
(typically less than 20). The number of strata required does not scale well
with an increase in the number of dimensions. For a d-dimensional function,
the number of samples required is Nd, which can be prohibitive for large
values of d. Several techniques can be used to control the increase in the
number of samples with the increase in dimensions. The N -rooks algorithm
keeps the number of samples fixed (irrespective of dimensionality). Quasi–
Monte Carlo sampling uses nonrandom samples to avoid clumping. Both
of these techniques are described below.

3.6.3 N-Rooks or Latin Hypercube Algorithm

As mentioned, one major disadvantage of stratified sampling arises when
it is used for higher-dimensional sampling. Consider, for example, a two-
dimensional function; stratification of both dimensions would require N2

Stratified N-Rooks

y-axis

x-axis

y-axis

x-axis

Figure 3.8. Stratified sampling versus N -rooks sampling for two dimensions.

�

�

�

�

�

�

�

�

72 3. Monte Carlo Methods

strata with one sample per stratum. The N -rooks algorithm addresses this
by distributing N samples evenly among the strata. Each dimension is
still subdivided into N subintervals. However, only N samples are needed;
these samples are distributed such that one sample lies in each subinterval.

This distribution is achieved by computing permutations of 1..N (let us
call them q0, q1, ...), and letting the ith d-dimensional sample be:

(
q0(i) − u0

N
,
q1(i) − u1

N
, ...,

qd−1(i) − ud−1

N
).

In two dimensions, this means that no row or column has more than
one sample. An example distribution is shown in Figure 3.8.

3.6.4 Combining Stratified Sampling and Importance Sampling

Stratified sampling can easily be integrated with importance sampling: the
samples computed from a uniform probability distribution can be stratified,
and then these stratified samples are transformed using the inverse cumu-
lative distribution function. This strategy (shown in Figure 3.9) avoids
the clumping of samples, while at the same time distributing the samples
according to the appropriate probability distribution function.

Example (Stratified Sampling of Discrete Sums)

The following example illustrates how stratification can be combined with
importance sampling. Stratification of the following sum, S =

∑n
i=1 ai,

with probabilities pi, is done using the following code [124]:

F(x)

Figure 3.9. Combining stratified sampling and importance sampling.

�

�

�

�

�

�

�

�

3.6. Variance Reduction 73

Compute a uniformly distributed random number u in [0, 1)
Initialize: Nsum = 0, P = 0
for i = 1 to n
P += pi

Ni = �P n + u� − Nsum

Sample the ith term of the sum Ni times
Nsum + = Ni

A single random number u is computed using the above algorithm. The
ith term of the sum is sampled Ni times, where Ni is computed as above.

3.6.5 Combining Estimators of Different Distributions
We have explained that importance sampling is an effective technique often
used to decrease variance. The function f could consist of the product of
several different functions: importance sampling according to any one of
these PDFs could be used. Each of these techniques could be effective (i.e.,
have a low variance) depending on the parameters of the function. It is
useful to combine these different sampling techniques so as to obtain robust
solutions that have low variance over a wide range of parameter settings.
For example, the rendering equation consists of the BRDF, the geometry
term, the incoming radiance, etc. Each one of these different terms could
be used for importance sampling. However, depending on the material
properties or the distribution of objects in a scene, one of these techniques
could be more effective than the other.

Using Variance

Consider combining two estimators, 〈I1〉 and 〈I2〉, to compute an integral
I. Clearly, any linear combination w1〈I1〉 + w2〈I2〉 with constant weights
w1 + w2 = 1 will also be an estimator for S. The variance of the linear
combination however depends on the weights,

σ2[w1〈I1〉+ w2〈I2〉] = w2
1σ

2[〈I1〉] + w2
2σ

2[〈I2〉] + 2w1w2Cov[〈I1〉〈I2〉],

where Cov[〈I1〉〈I2〉] denotes the covariance of the two estimators:

Cov[〈I1〉〈I2〉] = E[〈I1〉 · 〈I2〉]− E[〈I1〉] · E[〈I2〉].

If 〈I1〉 and 〈I2〉 are independent, the covariance is zero. Minimization of the
variance expression above allows us to fix the optimal combination weights:

w1

w2
=
σ2[〈I2〉]− Cov[〈I1〉, 〈I2〉]
σ2[〈I1〉]− Cov[〈I1〉, 〈I2〉]

.

�

�

�

�

�

�

�

�

74 3. Monte Carlo Methods

For independent estimators, the weights should be inversely proportional
to the variance. In practice, the weights can be calculated in two different
ways:

• Using analytical expressions for the variance of the involved estima-
tors (such as presented in this text).

• Using a posteriori estimates for the variances based on the samples
in an experiment themselves [86]. By doing so, a slight bias is intro-
duced. As the number of samples is increased, the bias vanishes: the
combination is asymptotically unbiased or consistent.

Multiple Importance Sampling

Veach [204] described a robust strategy, called multiple importance sam-
pling, to combine different estimators using potentially different weights for
each individual sample, even for samples from the same estimator. Thus,
samples from one estimator could have different weights assigned to them,
unlike the approach above where the weight depends only on the variance.
The balance heuristic is used to determine the weights that combine these
samples from different PDFs provided the weights sum to 1. The balance
heuristic results in an unbiased estimator that provably has variance that
differs from the variance of the “optimal estimator” by an additive error
term. For complex problems, this strategy is simple and robust.

Let the sample computed from technique i with PDF pi be denoted
Xi,j, where j = 1, .., ni. The estimator using the balance heuristic is

F =
1
N

n∑
i=1

ni∑
j=1

f(Xi,j)∑
k ckpk(Xi,j)

,

where N =
∑

i ni is the total number of samples and ck = nk/N is the
fraction of samples from technique k.

The balance heuristic is computed as follows:

N =
∑n

i=1 ni

for i = 1 to n
for j = 1 to ni

X = Sample(pi)
d =

∑n
k=1 (nk/N) pk(X)

F = F + f(X)/d
return F/N

�

�

�

�

�

�

�

�

3.6. Variance Reduction 75

3.6.6 Control Variates
Another technique to reduce variance uses control variates. Variance could
be reduced by computing a function g that can be integrated analytically
and subtracted from the original function to be integrated.

I =
∫
f(x)dx

=
∫
g(x)dx+

∫
f(x)− g(x)dx.

Since the integral of the function
∫
g(x)dx has been computed analytically,

the original integral is estimated by computing an estimator for
∫
f(x) −

g(x)dx.
If f(x)− g(x) is almost constant, this technique is very effective at de-

creasing variance. If f/g is nearly constant, g should be used for importance
sampling [86].

3.6.7 Quasi–Monte Carlo
Quasi–Monte Carlo techniques decrease the effects of clumping in samples
by eliminating randomness completely. Samples are deterministically dis-
tributed as uniformly as possible. Quasi–Monte Carlo techniques try to
minimize clumping with respect to a measure called the discrepancy.

The most commonly used measure of discrepancy is the star discrep-
ancy measure described below. To understand how quasi–Monte Carlo
techniques distribute samples, we consider a set of points P . Consider
each possible axis-aligned box with one corner at the origin. Given a box
of size Bsize, the ideal distribution of points would have NBsize points.
The star discrepancy measure computes how much the point distribution
P deviates from this ideal situation,

D∗N (P) = supB|
NumPoints(P ∩B)

N
−Bsize|,

where NumPoints(P ∩ B) are the number of points from the set P that
lie in box B.

The star discrepancy is significant because it is closely related to the
error bounds for quasi–Monte Carlo integration. The Koksma-Hlawka in-
equality [132] states that the difference between the estimator and the in-
tegral to be computed satisifes the condition:

| 1
N

N∑
k=1

f(xk)−
∫ 1

0

f(x)dx| ≤ VHK(f(x))D∗,

�

�

�

�

�

�

�

�

76 3. Monte Carlo Methods

i Reflection about decimal point Φb=2 (Base 2)
1 = 12 .12 = 1/2 0.5
2 = 102 .012 = 1/4 0.25
3 = 112 .112 = 1/2 + 1/4 0.75
4 = 1002 .0012 = 1/8 0.125
5 = 1012 .1012 = 1/2 + 1/8 0.625
6 = 1102 .0112 = 1/4 + 1/8 0.375

Table 3.1. Examples of the radical inverse function for base 2.

where the VHK term is the variation in the function f(x) in the sense of
Hardy and Krause. Intuitively, VHK measures how fast the function can
change. If a function has bounded and continuous mixed derivatives, then
its variation is finite.

The important point to take from this inequality is that the error in
the MC estimate is directly proportional to the discrepancy of the sample
set. Therefore, much effort has been expended in designing sequences that
have low discrepancy; these sequences are called low-discrepancy sequences
(LDS).

There are several low-discrepancy sequences that are used in quasi–
Monte Carlo techniques: Hammersley, Halton, Sobol, and Niederreiter,
among others. We describe a few of these sequences here.

Halton sequences are based on the radical inverse function and are com-
puted as follows. Consider a number i which is expressed in base b with
the terms aj :

i =
∞∑

j=0

aj(i)bj .

The radical inverse function Φ is obtained by reflecting the digits about
the decimal point:

Φb(i) =
∞∑

j=0

aj(i)b−j−1.

Examples of the radical inverse function for numbers 1 through 6 in
base 2 (b = 2) are shown in Table 3.1. To compare the radical inverse
function for different bases, consider the number 11 in base 2: i = 10112.
The radical inverse function Φ2(11) = .11012 = 1/2+1/4+1/16 = 0.8125.
In base 3, Φ3(11) = .2013 = 2/3 + 1/27 = 0.7037.

�

�

�

�

�

�

�

�

3.6. Variance Reduction 77

The discrepancy of the radical inverse sequence is O((logN)/N) for
any base b. To obtain a d-dimensional low-discrepancy sequence, a different
radical-inverse sequence is used in each dimension. Therefore, the ith point
in the sequence is given as

xi = (Φb1(i),Φb2(i),Φb3(i), ...,Φbd
(i)),

where the bases bj are relatively prime.
The Halton sequence for d dimensions sets the bi terms to be the first

d prime numbers; i.e., 2, 3, 5, 7, ..., and so on. The Halton sequence has a
discrepancy of O((logN)d/N). Intuitively, the reason the Halton sequence
is uniform can be explained as follows: This sequence produces all binary
strings of length m before producing strings of length m+ 1. All intervals
of size 2−m will be visited before a new point is put in the same interval.

When the number of samples required N is known ahead of time, the
Hammersley sequence could be used for a slightly better discrepancy. The
ith point of the Hammersley sequence is

xi = (
i

N
,Φb1(i),Φb2(i),Φb3(i), ...,Φbd−1(i)).

This sequence is regular in the first dimension; the remaining dimensions
use the first (d − 1) prime numbers. The discrepancy of the Hammersley
point set is O((logN)d−1/N).

Other sequences, such as the Niederreiter, are also useful for Monte
Carlo computations [19].

Why Quasi–Monte Carlo?

The error bound for low-discrepancy sequences when applied to MC inte-
gration is O((logN)d/N) or O((logN)d−1/N) for large N and dimension
d. This bound could have a substantial potential benefit compared to the
1/
√
N error bounds for pure Monte Carlo techniques. Low-discrepancy

sequences work best for low dimensions (about 10-20); at higher dimen-
sions, their performance is similar to pseudorandom sampling. However,
as compared to pseudorandom sampling, low-discrepancy sequences are
highly correlated; e.g., the difference between successive samples in the van
der Corput sequence (a base-2 Halton sequence) is 0.5 half of the time;
Table 3.1 shows this.

The upshot is that low-discrepancy sampling gives up randomness in
return for uniformity in the sample distribution.

�

�

�

�

�

�

�

�

78 3. Monte Carlo Methods

3.7 Summary

In this chapter, we have described Monte Carlo integration techniques and
discussed their accuracy and convergence rates. We have also presented
variance reduction techniques such as importance sampling, stratified sam-
pling, the use of control variates, multiple importance sampling, and quasi–
Monte Carlo sampling. More details on MC methods can be found in Ka-
los and Whitlock [86], Hammersley and Handscomb [62], and Spanier and
Gelbard [183]. References on quasi–Monte Carlo methods include Nieder-
reiter [132].

3.8 Exercises

1. Write a program to compute the integral of a one-dimensional func-
tion using Monte Carlo integration. Plot the absolute error versus
the number of samples used. This requires that you know the an-
alytic answer to the integral, so use well-known functions such as
polynomials.

Experiment with various optimization techniques such as stratified
sampling and importance sampling. Draw conclusions about how
the error due to the Monte Carlo integration is dependent on the
sampling scheme used.

2. Using the algorithm designed above, try to compute the integral for
sine functions with increasing frequencies. How is the error influenced
by the various frequencies over the same integration domain?

3. Write a program to compute the integral of a two-dimensional func-
tion using Monte Carlo integration. This is very similar to the first
exercise, but using two-dimensional functions poses some additional
problems. Experiment with stratified sampling versus N -rooks sam-
pling, as well as with importance sampling. Again, plot absolute error
versus number of samples used.

4. Implement an algorithm to generate uniformly distributed points over
a triangle in the 2D-plane. Start with a simple triangle first (connect-
ing points (0, 0), (1, 0) and (0, 1)), then try to generalize to a random
triangle in the 2D plane.

How can such an algorithm be used to generate points on a triangle
in 3D space?

�

�

�

�

�

�

�

�

3.8. Exercises 79

5. Pick an interesting geometric solid in 3D: a sphere, cone, cylinder, etc.
Design and implement an algorithm to generate uniformly distributed
points on the surface of these solids. Visualize your results to make
sure the points are indeed distributed uniformly.

�

�

�

�

�

�

�

�

4

Strategies for Computing
Light Transport

4.1 Formulation of the Rendering Equation

The global illumination problem is basically a transport problem. Energy
emitted by light sources is transported by means of reflections and refrac-
tions in a three-dimensional environment. We are interested in the energy
equilibrium of the illumination in the environment. Since the human eye is
sensitive to radiance values, and since we want to compute photorealistic
images, we are primarily interested in radiance values or average radiance
values computed over certain areas and solid angles in the scene. The lat-
ter means that we should compute flux values for several areas of interest,
which will be referred to as sets. The exact geometric shape of these sets can
vary substantially, depending on the requested level of accuracy. As will be
explained in subsequent chapters, ray tracing algorithms define sets as sur-
face points visible through a pixel, with regard to the aperture of the eye.
Radiosity algorithms often define sets as surface patches with the reflecting
hemisphere as the directional component (Figure 4.1). Other algorithms
might follow different approaches, but the common factor is always that for
a number of finite surface elements and solid angle combinations, average
radiance values need to be computed.

As explained in Chapter 2, the fundamental transport equation used to
describe the global illumination problem is called the rendering equation
and was first introduced into the field of computer graphics by Kajiya
[85]. The rendering equation describes the transport of radiance through a
three-dimensional environment. It is the integral equation formulation of
the definition of the BRDF and adds the self-emittance of surface points at
light sources as an initialization function. The self-emitted energy of light
sources is necessary to provide the environment with some starting energy.

81

�

�

�

�

�

�

�

�

82 4. Strategies for Computing Light Transport

Figure 4.1. Sets of surface points and directions for ray tracing and radiosity
algorithms.

The radiance leaving some point x, in direction Θ, is written as:

L(x→ Θ) = Le(x→ Θ) +
∫

Ωx

fr(x,Ψ↔ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ.

(4.1)
The rendering equation tells us that the exitant radiance emitted by a

point x in a direction Θ equals the self-emitted exitant radiance at that
point and in that direction, plus any incident radiance from the illuminating
hemisphere that is reflected at x in direction Θ. This is illustrated in
Figure 4.2.

Emission can result from various physical processes, e.g., heat or chem-
ical reactions. The emission can also be time-dependent for a single surface
point and direction, as is the case with phosphorescence. In the context of
global illumination algorithms, one usually is not interested in the nature
of the source of the self-emitted radiance of surfaces. Self-emitted radiance
is merely considered as a function of position and direction.

As was shown in Chapter 2, it is possible to transform the rendering
equation from an integral over the hemisphere to an integral over all sur-
faces in the scene. Both the hemispherical and area formulation contain
exitant and incident radiance functions. We know that radiance remains
unchanged along straight paths, so we can easily transform exitant radi-

�

�

�

�

�

�

�

�

4.1. Formulation of the Rendering Equation 83

Figure 4.2. Rendering equation: incident radiance is integrated over the hemi-
sphere.

ance to incident radiance and vice-versa, thus obtaining new versions of the
rendering equation that contain exitant or incident radiance only. By com-
bining both options with a hemispheric or surface integration, we obtain
four different formulations of the rendering equation.

The formulations that integrate over surfaces or hemispheres are all
mathematically equivalent. However, there can be some important dif-
ferences when one develops algorithms starting from a specific formula-
tion. For completeness, we list all possible formulations of the rendering
equation.

4.1.1 Exitant Radiance, Integration over the Hemisphere

The incident radiance in the classic form of the rendering equation is
replaced by the equivalent exitant radiance at the nearest visible point
y = r(x,Ψ), found by evaluating the ray-casting function (Figure 4.3):

L(x→ Θ) = Le(x→ Θ) +
∫

Ωx

fr(x,Ψ↔ Θ)L(y → −Ψ) cos(Nx,Ψ)dωΨ,

Nx

x

L(x→Θ)

Le(x→Θ)

y

y

y

L(r(x,Ψ)→−Ψ)

L(r(x,Ψ)→−Ψ)

L(r(x,Ψ)→−Ψ)

Figure 4.3. Transport of exitant radiance using hemisphere integration.

�

�

�

�

�

�

�

�

84 4. Strategies for Computing Light Transport

Figure 4.4. Transport of exitant radiance using surface integration.

with y = r(x,Ψ). When designing an algorithm based on this formulation,
one will integrate over the hemisphere, and as part of the function evalu-
ation for each point in the integration domain, a ray will be cast and the
nearest intersection point located.

4.1.2 Exitant Radiance, Integration over Surfaces
The hemispherical equation is transformed to an integral over all surface
points (Figure 4.4):

L(x→ Θ) = Le(x→ Θ) +
∫

A

fr(x,Ψ↔ Θ)L(y → −→yx)V (x, y)G(x, y)dAy,

with

G(x, y) =
cos(Nx,Ψ) cos(Ny,−Ψ)

r2xy

.

The main difference with the previous formulation is that incident radiance
at x is seen as originating at all surfaces in the scene and not only at the
hemisphere Ωx. Algorithms using this formulation will need to check the
visibility V (x, y), which is slightly different than casting a ray from x in a
direction Θ.

4.1.3 Incident Radiance, Integration over the Hemisphere
In order to transform the hemispherical rendering equation to incident
radiance values only, we again make use of the invariance of radiance along
a straight path. However, we also have to write the initial self-emitted
radiance Le as an incident measure. The concept of incident radiance

�

�

�

�

�

�

�

�

4.1. Formulation of the Rendering Equation 85

Figure 4.5. Exitant surface radiance for a light source at the ceiling and corre-
sponding incident surface radiance.

Le may seem odd. It is relatively easy to imagine the incident radiance
at a surface point, but it is harder to imagine the incident Le function
corresponding to a certain light source (Figure 4.5).

We obtain the following equation:

L(x← Θ) = Le(x← Θ) +
∫

Ωy

fr(y,Ψ↔ −Θ)L(y ← Ψ) cos(Ny,Ψ)dωΨ,

with y = r(x,Θ). This equation is graphically represented in Figure 4.6.

Figure 4.6. Transport of incident radiance using hemisphere integration.

�

�

�

�

�

�

�

�

86 4. Strategies for Computing Light Transport

Figure 4.7. Transport of incident radiance using surface integration.

4.1.4 Incident Radiance, Integration over Surfaces
Following a similar procedure for incident radiance from surfaces, we get
the following equation (Figure 4.7):

L(x← Θ) = Le(x← Θ) +
∫

A

fr(y,Ψ↔ −→yz)L(y ← −→yz)V (y, z)G(y, z)dAz,

with y = r(x,Θ).

4.1.5 Radiant Flux
The ideal solution to the global illumination problem would consist of find-
ing all values of the radiance function for all possible (surface) points and
all directions relative to those points. It is easy to see that this is not pos-
sible in practice. This would require the computation of (discrete) function
values over all points belonging to a piecewise-continuous four-dimensional
set in the five-dimensional space.

Most global illumination algorithms are, therefore, aimed at comput-
ing the average radiance over some chosen sets of points and directions.
One possible way of computing the average radiance value over a set is to
compute the radiant flux over that set. By assuming the radiance to be
changing slowly over the set, an average radiance value can be obtained
by dividing the flux by the total area and total solid angle of the set.
Ray tracing algorithms use this technique by computing the flux through
a pixel with regard to the aperture of the eye. Radiosity algorithms typi-

�

�

�

�

�

�

�

�

4.2. The Importance Function 87

cally compute the flux, leaving a surface element or patch over the entire
hemisphere.

The radiant flux can be expressed in terms of radiance by integrating
the radiance distribution over all possible surface points and directions
around these surface points belonging to the set for which the flux has to
be computed. Let S = As × Ωs denote the set of surface points As and
directions Ωs we are interested in. Then the flux Φ(S) leaving S can be
written using the measurement equation (see Chapter 2),

Φ(S) =
∫

As

∫
Ωs

L(x→ Θ) cos(Nx,Θ)dωΘdAx.

By introducing the initial importance function We(x← Θ), we can rewrite
the above integral by integrating over all surfaces A in the scene, and by
integrating over the complete hemisphere Ω for all surface points:

Φ(S) =
∫

A

∫
Ω

L(x→ Θ)We(x← Θ) cos(Nx,Θ)dωΘdAx, (4.2)

with

We(x← Θ) =

{
1 if (x,Θ) ∈ S
0 if (x,Θ) /∈ S.

The average radiance value associated with the set is then expressed by

Laverage =

∫
A

∫
Ω
L(x→ Θ)We(x← Θ) cos(Nx,Θ)dωΘdAx∫
A

∫
Ω
We(x← Θ) cos(Nx,Θ)dωΘdAx

.

Depending on the geometry of the set S, the denominator of this fraction
can sometimes be computed analytically.

The global illumination problem can, therefore, be specified as com-
puting the radiant fluxes for a certain number of well-defined sets. These
sets are usually continuous and belong to the space A× Ω. The fluxes are
computed by evaluating Equation 4.2. The integrand contains the radiance
function L, which needs to be evaluated using one of four possible recursive
Fredholm equations. Solving the Fredholm equations requires numerical al-
gorithms, which are the focus of many global illumination algorithms, and
which will be treated in more detail in Chapters 5 and 6.

4.2 The Importance Function

4.2.1 Definition
So far, we have thought of the global illumination problem as computing
the incident or exitant radiance at a point x and in a direction Θ, given a

�

�

�

�

�

�

�

�

88 4. Strategies for Computing Light Transport

specific distribution of light sources. Thus, a certain function Le, defined
over all points and directions belonging to A × Ω, determines a function
L, also defined over A × Ω, by means of radiance transport. The relation
between Le and L is given by the rendering equation. This section looks in
more detail at the importance function, which will define an adjoint trans-
port quantity. We will first look at the importance function in an intuitive
manner, and afterwards we will deal with some more complex mathematical
issues. The importance function was first introduced in computer graphics
by Pattanaik [139]. Some authors prefer to use the term potential function,
but this function is equivalent to the importance function described here.

Suppose we are interested in the flux Φ(S) leaving a set S, consisting
of points and directions around those points. Instead of starting from a
fixed Le distribution, we want to compute the possible influence of each
pair (x,Θ) on Φ(S). To put it more precisely: if a single radiance value
(a light source covering a differential surface area and differential solid
angle) L(x → Θ) is placed at (x,Θ), and if there are no other sources of
illumination present, how large is the resulting value of Φ(S)? The weight
we have to attribute to L(x → Θ) in order to obtain Φ(S) is called the
importance of (x,Θ) with regard to S and is written as W (x← Θ).

The importance value does not depend on the exact magnitude of
L(x → Θ), since any resulting flux scales linearly due to the linearity
of a BRDF with regard to reflection of incident radiance. This is true re-
gardless of the number of possible light paths between (x,Θ) and S, and
regardless of the number of reflections. Thus, W (x← Θ) depends only on
the geometry of the scene and the reflective properties of the materials.

The next step is to derive an expression or equation that describes the
importance W (x← Θ). This expression can be written down by consider-
ing two ways in which contributions from the flux resulting from L(x→ Θ)
can be made to Φ(S):
Self-contribution. If (x,Θ) ∈ S, then L(x → Θ) fully contributes to Φ(S).
This is called the self-importance of the set S and is written as We(x← Θ)
(see also Equation 4.2):

We(x← Θ) =

{
1 if (x,Θ) ∈ S
0 if (x,Θ) /∈ S.

Contribution through one or more reflections. We also have to consider all
indirect contributions to the resulting flux. It is possible that some part of
L(x → Θ) contributes to Φ(S) through one or more reflections at several
surfaces. We know that the radiance L(x → Θ) travels along a straight
path and reaches a surface point r(x,Θ). The energy is reflected at this
surface point according to a hemispherical distribution determined by the

�

�

�

�

�

�

�

�

4.2. The Importance Function 89

BRDF. Thus, we have a hemisphere of directions at r(x,Θ), each emitting
a differential radiance value as a result of the reflection of the radiance
L(r(x,Θ) ← −Θ). By integrating the importance values for all these new
directions, we have a new term for W (x← Θ). By taking into account the
reflection, and thus the BRDF values, we obtain the following equation for
both terms combined:

W (x← Θ) = We(x← Θ)

+
∫

Ωz

fr(z,Ψ↔ −Θ)W (z ← Ψ) cos(Nr(x,Θ),Ψ)dωΨ,

(4.3)

with z = r(x,Θ).

4.2.2 Incident and Exitant Importance
Mathematically, Equation 4.3 is identical to the transport equation of in-
cident radiance. It is, therefore, appropriate to associate the notion of
“incidence” also to importance, since importance as a transport quantity
behaves in exactly the same way as an incident radiance.

The source function We depends on the nature of the set S. If one
wants to compute individual flux values for pixels, We(x ← Θ) = 1 if x is
visible through the pixel and Θ is a direction pointing through the pixel to
the aperture of the virtual camera. For a radiosity algorithm, S probably is
a single patch and for each surface point, the full hemisphere of directions.

To further enhance the analogy, we can also introduce exitant impor-
tance by formally defining W (x→ Θ):

W (x→ Θ) = W (r(x,Θ)← −Θ).

This definition implies that we attribute the property of invariability along
straight lines also to importance, which is in accordance with the defini-
tions of radiance and importance. It is then easy to prove that exitant
importance has exactly the same transport equation as exitant radiance:

W (x→ Θ) = We(x→ Θ) +
∫

Ωx

fr(x,Ψ↔ Θ)W (x← Ψ) cos(Nx,Ψ)dωΨ.

As incident self-emitted radiance is not very intuitive to think about, so
is self-emitted exitant surface importance. In the case of small sets with a
narrow solid angle domain, self-emitted importance is sometimes easier to
visualize by introducing a light detector. Such a detector has no influence
on the propagation of light energy through the scene but detects only the
flux of the set in question. Self-emitted exitant importance can then be

�

�

�

�

�

�

�

�

90 4. Strategies for Computing Light Transport

thought of as emanating from this hypothetical detector, which acts as
a source of importance. The concept of light detectors works extremely
well when applied to an image generation algorithm, such as ray tracing.
The eye point can then be considered as the source of exitant importance,
directed towards the different pixels.

4.2.3 Flux
An expression for the flux of a set based on the importance function can now
be deduced. The light sources are the only points that provide light energy
in an environment. Their radiance values account for the illumination of
the whole scene. Only the importance values of these points need to be
considered when computing the flux. Given a certain set S,

Φ(S) =
∫

A

∫
Ωx

Le(x→ Θ)W (x← Θ) cos(Nx,Θ)dωΘdAx.

We can integrate over all surface points A, since Le is suitably defined to
be 0 at points and directions not belonging to light sources. This equation,
together with the transport equation of the importance function, provides
us with an alternative way of solving the global illumination problem.

It is also possible to write Φ(S) in the form

Φ(S) =
∫

A

∫
Ωx

Le(x← Θ)W (x→ Θ) cos(Nx,Θ)dωΘdAx,

and also

Φ(S) =
∫

A

∫
Ωx

L(x→ Θ)We(x← Θ) cos(Nx,Θ)dωΘdAx,

Φ(S) =
∫

A

∫
Ωx

L(x← Θ)We(x→ Θ) cos(Nx,Θ)dωΘdAx.

Thus, the flux of a given set can be computed by four different integral
expressions, and each can be computed through double integration over all
surfaces or hemispheres.

We now have two different approaches to solve the global illumina-
tion problem. The first approach starts from the definition of the set and
requires the computation of the radiance values for the points and direc-
tions belonging to that set. The radiance values are computed by solving
one of the transport equations describing radiance. So, we start from the
set, working towards the light sources by following the recursive transport
equation.

The second approach computes the flux of a given set by starting from
the light sources and computes for each light source the corresponding
importance value with regard to the set. The importance value also requires

�

�

�

�

�

�

�

�

4.3. Adjoint Equations 91

the use of one of the recursive integral equations. This kind of algorithm
starts from the light sources and works towards the set by following the
recursive transport equation for importance.

4.3 Adjoint Equations

The previous section described transport equations for incident and exitant
radiance, incident and exitant importance, and also gave four different
expressions for the flux. Moreover, we have a choice of integrating over
a hemisphere or over all possible surfaces in the scene. This section will
point out the symmetry between the two approaches more clearly. We will
often refer to the complete radiance or importance functions, defined over
A × Ω. We will denote them by L, L→ (exitant radiance), L← (incident
radiance), W , W→ (exitant importance), or W← (incident importance)
where appropriate.

4.3.1 Linear Transport Operators
The recursive integral equations that describe transport of radiance and
importance can be written in a more concise form, using linear operators.
The reflectance part of the rendering equation can actually be considered as
an operator that transforms a certain radiance distribution over all surface
points and directions to another distribution that gives us the reflected ra-
diance values after one reflection. This new distribution is again a function
of radiance values defined over the whole scene. We denote this operator
by T . T L is a new function, also defined over A× Ω.

L(x→ Θ) = Le(x→ Θ) + T L(x→ Θ);

T L(x→ Θ) =
∫

Ωx

fr(x,Ψ↔ Θ)L(r(x,Θ)→ −Ψ) cos(Nx,Ψ)dωΨ.

The same operator can also be written using the area integral formulation,
since it is just a different parameterization.

In an analogous manner, the transport equation for the incident impor-
tance function W← can also be described by use of a transport operator,
which we denote by Q:

W (x← Θ) = We(x← Θ) +QW (x← Θ);

QW (x← Θ) =
∫

Ωr(x,Θ)

fr(r(x,Θ),Ψ↔ −Θ)W (r(x,Θ)← Ψ) ·
cos(Nr(x,Θ),Ψ)dωΨ.

or the equivalent expression using area integration.

�

�

�

�

�

�

�

�

92 4. Strategies for Computing Light Transport

Since L← and W→ are described with the same transport equations as
W← and L→, respectively, we have four transport equations to describe
radiance and importance transport in a three-dimensional environment:

L→ = L→e + T L→; W← = W←e +QW←;
L← = L←e +QL←; W→ = W→e + TW→.

These four equations clearly illustrate the symmetry between radiance and
importance distributions.

4.3.2 Inner Product of Functions

In the function space defined over the five-dimensional domain A × Ω, it
is possible to define an inner product of an exitant function F→ and an
incident function G← as

〈F→, G←〉 =
∫

A

∫
Ω

F (x→ Θ)G(x← Θ) cos(Nx,Θ)dωΘdAx.

The same inner product can be written using area integration, and intro-
ducing the visibility function into the equation:

〈F→, G←〉 =
∫

A

∫
A

F (x→ −→xy)G(x← −→xy)G(x, y)V (x, y)dAxdAy.

The flux of a set S can now be seen as an inner product of a radiance func-
tion and an importance function. Based on previous transport equations,
we have four different expressions available to write the flux as an inner
product:

Φ(S) = 〈L→,W←e 〉; Φ(S) = 〈L→e ,W←〉;
Φ(S) = 〈L←,W→e 〉; Φ(S) = 〈L←e ,W→〉.

4.3.3 Adjoint Operators

Two operators, O1 and O2, operating on elements of the same vector-space
V , are said to be adjoint with respect to an inner product 〈F,G〉 if

∀F,G ∈ V : 〈O1F,G〉 = 〈F,O2G〉.

O2 is called the adjoint operator of O1 and is written as O∗1 .
By manipulating the area integral formulation, one can prove that the

above defined operators T and Q, which describe transport of radiance and

�

�

�

�

�

�

�

�

4.3. Adjoint Equations 93

importance, are adjoint to each other for the above defined inner product
describing the flux Φ(S), or Q∗ = T , and thus

L← = L←e + T ∗L← and W← = W←e + T ∗W←.

Due to this property of adjointness, the equivalence of the different ex-
pressions for the flux of a given set S can be written in a very compact
notation. For example, the flux expressions using exitant radiance and in-
cident importance can be transformed into each other using the properties
of an inner product and the adjointness of the transport operators:

Φ(S) = 〈L→,W←e 〉
= 〈L→,W← − T ∗W←〉
= 〈L→,W←〉 − 〈L→, T ∗W←〉
= 〈L→,W←〉 − 〈T L→,W←〉
= 〈L→ − T L→,W←〉
= 〈L→e ,W←〉.

The equations describing the global illumination problem, which give ex-
pressions for the flux and transport equations for radiance or importance,
can thus be written in several different ways. The different choices to make
are:

• Using incident or exitant functions for radiance and importance.

• Using importance-based or radiance-based transport equations.

• Integration over hemispheres or surface area integration.

We have, therefore, four possible, mathematically equivalent formula-
tions of the global illumination problem:

Φ(S) = 〈L→,W←e 〉 Φ(S) = 〈L→e ,W←〉
L→ = L→e + T L→; W← = W←e + T ∗W←;

(4.4)
Φ(S) = 〈L←,W→e 〉 Φ(S) = 〈L←e ,W→〉
L← = L←e + T ∗L←; W→ = W→e + TW→.

Similar descriptions for the global illumination problem, using incident
and exitant functions, and operators that act in function space, have been

�

�

�

�

�

�

�

�

94 4. Strategies for Computing Light Transport

presented by other authors [25, 26, 204]. Some of these authors introduce
additional operators, such as the geometry operator, which transforms an
incident function into the corresponding exitant function (or vice-versa),
by making use of the invariability along straight paths. The inner product
can also be defined differently, not including the cosine term. However, we
feel that the symmetry in this case is not as clear as it is presented here.

4.4 Global Reflectance Distribution Function

4.4.1 Description

Given the transport equation of L→, it is obvious that each single radiance
value in the scene is dependent on the initial distribution given by L→e . For
the flux of a complete set, such dependency is expressed by the importance
function W←. We will now introduce a function that expresses the relation
between a single L(x→ Θ) value at an arbitrary chosen point, and the ini-
tial L→e distribution. Such relation already exists as the transport equation
for radiance. However, we want to derive a more direct function, instead
of a recursive formulation. We will call this function the global reflectance
distribution function [102, 41], or GRDF.

The GRDF is a four-dimensional transfer function that describes the
entire light transport in a three-dimensional scene between two pairs (x,Θ)
and (y,Ψ). It has the characteristics of both an incident and an exitant
function, since the transfer can happen in both directions. We will write
the GRDF as Gr(x← Θ, y → Ψ).

Intuitively, the Gr(x ← Θ, y → Ψ) describes some sort of global trans-
port between two point-direction pairs and can be thought of as the contri-
bution one pair makes, if it would act as a differential source of transport
quantity, to the transport quantity measured at the other pair. In other
words, we want the GRDF to be such that

L(y → Ψ) =
∫

A

∫
Ωx

Le(x→ Θ)Gr(x← Θ, y → Ψ) cos(Nx,Θ)dωΘdAx.

(4.5)
So, Gr(x ← Θ, y → Ψ) expresses the influence of the total power leaving
dAx through a solid angle dωΘ on the final value of the radiance measured
at y in direction Ψ, through any number of reflections on intermediate
surfaces. The GRDF can thus be considered as some kind of response
function in the three-dimensional environment. In mathematical physics, a
function like the GRDF is usually called the Green’s function of a problem.

�

�

�

�

�

�

�

�

4.4. Global Reflectance Distribution Function 95

Since the transport is reciprocal, we want a similar equation for the
importance:

W (x← Θ) =
∫

A

∫
Ωx

We(y ← Ψ)Gr(x← Θ, y → Ψ) cos(Nx,Θ)dωΘdAx.

(4.6)
Similar equations hold for incident radiance and exitant importance.

Differentiating the above equations yields

Gr(x← Θ, y → Ψ) =
d2L(y → Ψ)

Le(x→ Θ) cos(Nx,Θ)dωΘdAx

and

Gr(x← Θ, y → Ψ) =
d2W (x← Θ)

We(y ← Ψ) cos(Nx,Θ)dωΘdAx
.

This is very similar to the definition of the common BRDF, which describes
a similar property for exitant radiance and incident irradiance at a single
surface point. The GRDF extends this concept and describes the relation-
ship between any two radiance or importance values, taking into account
all possible reflections in the scene. The BRDF can be considered as a spe-
cial case of the GRDF. The name global reflectance distribution function
is therefore quite appropriate.

4.4.2 Properties of the GRDF

Transport Equations

The following adjoint transport equations both describe the behavior of
the GRDF:

Gr(x← Θ, y → Ψ) = δ(x← Θ, y → Ψ) + T Gr(x← Θ, y → Ψ),
Gr(x← Θ, y → Ψ) = δ(x← Θ, y → Ψ) + T ∗Gr(x← Θ, y → Ψ),

with δ(x ← Θ, y → Ψ) being a proper Dirac impulse defined in the four-
dimensional domain. When using the T and T ∗ operators, we have to keep
in mind that T operates on the exitant part of Gr, and that T ∗ operates
on the incident part of Gr.

Transforming Arguments

Another useful property of Gr is that the arguments can be switched, in
much the same manner as the directions of the BRDF can be reversed:

Gr(x← Θ, y → Ψ) = Gr(r(y,Ψ)← Ψ, r(x,Θ)→ −Θ).

�

�

�

�

�

�

�

�

96 4. Strategies for Computing Light Transport

This relationship is the generalization of the property of the BRDF, by
which the incident and exitant directions can switch roles, resulting in the
same BRDF value.

Flux

It is now possible to write an expression for the flux Φ(S) using the GRDF.
This expression follows from integrating Equations 4.5 and 4.6:

Φ(S) =
∫

A

∫
Ωx

∫
A

∫
Ωy

Le(x→ Θ)Gr(x← Θ, y → Ψ)We(y ← Ψ)

× cos(Nx,Θ) cos(Ny,Ψ)dωΨdAydωΘdAx. (4.7)

4.4.3 Significance of the GRDF
The GRDF allows us to describe the global illumination problem in a very
short and elegant format, independent of any initial distributions for self-
emitted radiance or importance. The GRDF is only dependent on the
geometry of the scene and the reflective properties of the surfaces. No
positioning of light sources is assumed, nor is it assumed that we know
where we will place the sources of importance for which flux values need
to be computed.

Consequently, if the GRDF would be known, it is possible to compute
various fluxes for a number of light sources and importance distributions.
It suffices to evaluate Equation 4.7, which is a nonrecursive integral. In
practice, however, this may be difficult to achieve, since the GRDF has
as arguments two positions and two directions. If one wants to compute
and store the GRDF for a significant number of arguments, or if we want
to compute a discretized version of the GRDF, the required amount of
memory can easily become huge.

A Monte Carlo algorithm based on the computation of the GRDF, so-
called bi-directional path tracing, is discussed in Chapter 7.

4.5 Classification of Global Illumination Algorithms

In the previous section, it was shown that there are four possible expressions
for the flux of any given set of surface points and directions in a global
illumination environment.

When designing a global illumination algorithm, which means we want
to compute fluxes for specific sets in the scene, we can choose whether we
want to use incident radiance combined with exitant importance in the al-
gorithm, or exitant radiance combined with incident importance. Further-
more, we can choose to consider radiance or importance as the transport

�

�

�

�

�

�

�

�

4.5. Classification of Global Illumination Algorithms 97

quantity which has to be computed by solving a recursive integral trans-
port equation. This implies there are four different classes of algorithms
trying to compute global illumination solutions.

4.5.1 Incident and Exitant Representations

A first option to consider is whether we want to represent radiance as an exi-
tant or incident measure (which automatically determines importance to be
incident or exitant, respectively). From a mathematical point of view, the
incident and exitant functions can be transformed into each other because
they remain invariant along straight lines. But the choice is important with
regard to representation of the functions and storage requirements.

The previous section showed that it is easier to intuitively reason about
exitant radiance and incident importance. The initial incident radiance
distribution due to a light source equals zero at the surface points belonging
to that light source but has a value different from zero at surface points
directly visible to that light source. All points and directions belonging
to a set for which we want to compute the flux have an initial incident
importance value different from zero. Exitant importance is only different
from zero in points that are visible to the set in question. Thus, it is
a lot more convenient to think in terms of exitant radiance and incident
importance.

A second issue to be considered is the nature of the incident and exitant
functions with regard to continuity over the integration domains. Finite
element methods make certain assumptions about the shape of the func-
tions under consideration in order to achieve a required precision. It is,
therefore, important to know whether or not features such as discontinu-
ities are present in the function we want to compute. All of the transport
quantities described above, incident and exitant, can have discontinuities
in the surface area domain. It suffices to think of shadow boundaries or ma-
terial boundaries for exitant radiance or directly versus indirectly lit areas
for incident radiance. Analogous phenomena are present in the importance
function. However, there is a difference when considering these functions in
the directional domain. If the BRDF itself is a continuous function (which
might not always be the case, e.g., ideal specular surfaces), then exitant
radiance is continuous over the hemisphere. Incident radiance can have
discontinuities, due to the angle under which light sources light a surface.
The same can be said about the importance function: incident importance
can have discontinuities in the directional domain, but exitant importance
is continuous.

Whatever option we choose, we always have to work with a pair of
functions consisting of an exitant and an incident one, so we will always

�

�

�

�

�

�

�

�

98 4. Strategies for Computing Light Transport

have a function that has at least discontinuities in the directional domain.
However, the discontinuities only matter if we construct an algorithm that
uses a data representation not well suited to represent these kinds of dis-
continuities. For instance, in [173], spherical harmonic functions are used
to represent directional distributions. They are not capable of reproducing
discontinuities accurately, so it may be a bad choice to work with a com-
bination of incident radiance and spherical harmonic functions. If we want
to somehow represent discontinuities in the spatial domain, they should be
integrated in the structure of the finite elements. This technique is known
as discontinuity meshing [71, 111, 112].

4.5.2 Series Expansion

Once we have chosen a pair of an exitant and an incident function, the
next choice to make is what transport equation to use; or more precisely,
what measure will we consider to be unknown with regard to the given
set, and thus needs to be computed using an appropriate recursive integral
equation? For this computation, we have the following data available:

• A specific initial radiance distribution L→e , thereby defining all the
light sources present in the environment.

• A specific initial importance distribution W←e , thereby defining the
set S for which we want to compute a flux. A typical situation might
be that we want to compute flux values for all areas visible through
each pixel (and thus each pixel defines its own set S).

• A given scene description, thereby defining the geometric kernel func-
tion G(x, y), the visibility function V (x, y), and the material proper-
ties or BRDFs of all surfaces in the scene.

From a mathematical point of view, we have two different expressions,
given by two inner products, from which we can start the computation
for any Φ(S). We can start from the initial radiance distribution L→e and
compute W← by evaluating its transport equation, or we can start from the
initial importance distribution W←e and compute L→. The first step of the
computation, no matter which inner product we choose as a starting point,
is the substitution of the unknown function by its appropriate transport
equation. For example, if we start from 〈L→e ,W←〉, we can write down the
following expansion of the inner product:

Φ(S) = 〈L→e ,W←〉 = 〈L→e ,W←e + T ∗W←〉 = 〈L→e ,W←e 〉+ 〈L→e , T ∗W←〉.

�

�

�

�

�

�

�

�

4.5. Classification of Global Illumination Algorithms 99

This first substitution gives us a first approximate term 〈L→e ,W←e 〉 (which
only contains known terms) of the final solution. The second term needs
to be expanded further:

Φ(S) = 〈L→e ,W←e 〉+ 〈L→e , T ∗W←〉
= 〈L→e ,W←e 〉+ 〈L→e , T ∗W←e 〉+ 〈L→e , T ∗T ∗W←〉. (4.8)

This provides us with a second term to compute. However, we could also
obtain an expression for the second term in another way, by using the
property of adjoint operators. By shifting T ∗ in the inner product, we can
express Φ(S) as

Φ(S) = 〈L→e ,W←e 〉+ 〈L→e , T ∗W←〉
= 〈L→e ,W←e 〉+ 〈T L→e ,W←〉
= 〈L→e ,W←e 〉+ 〈T L→e ,W←e + T ∗W←〉
= 〈L→e ,W←e 〉+ 〈T L→e ,W←e 〉+ 〈T L→e , T ∗W←〉. (4.9)

Mathematically, the second and third terms of Equation 4.8 are, of course,
equal to the second and third terms of Equation 4.9 (due to adjointness of
T and T ∗). By further expanding the series and by using the same adjoint
property, we are able to write Φ(S) in many different ways. Indeed, we
have the option of using the adjoint property in any step of the expansion.
All possibilities can be represented by a binary tree of possible expansions,
originating from 〈L→e ,W←e 〉:

〈L→e , T ∗T ∗T ∗W←e 〉
〈L→e , T ∗T ∗W←e 〉

〈L→e , T ∗W←e 〉 〈T L→e , T ∗T ∗W←e 〉
Φ(S) = 〈L→e ,W←e 〉+ +〈T L→e , T ∗W←e 〉 + + . . .

〈T L→e ,W←e 〉 〈T T L→e , T ∗W←e 〉
〈T T L→e ,W←e 〉

〈T T T L→e ,W←e 〉
(4.10)

Exactly the same tree can be constructed by expanding 〈L→,W←e 〉 and
by using the same kind of substitutions. The computation of a single flux
can therefore be thought of as the sum of several inner products. For each
inner product, we have a choice of functions to multiply with each other,
and which are equivalent to each other due to the duality of the transport
operator.

�

�

�

�

�

�

�

�

100 4. Strategies for Computing Light Transport

Figure 4.8. Propagation of an exitant function.

4.5.3 Physical Interpretation
The above series of inner products has, of course, a corresponding physical
meaning. In order to better grasp this physical meaning, it is important
to have a look at what the functional operators T and T ∗ actually do in
a three-dimensional environment. Operator T , operating on an exitant
function, was defined as

T L(x→ Θ) =
∫

Ωx

fr(x,Ψ↔ Θ)L(r(x,Θ)→ −Ψ) cos(Nx,Ψ)dωΨ.

The operator T transforms a function L→ int another function T L→. T L→
is the function we obtain when we “propagate” L→ in the environment ac-
cording to the rules of the transport equation defining T . Thus, T L→ is the
result of propagating L→, and evaluating this propagation in (x,Θ). The
operator T not only implies propagating radiance along its straight path of
traversal but also implies reflecting it once on a surface, in order to obtain
another exitant function at the reflection point. Figure 4.8 illustrates this
for a function L→ that exists only in a single point and a single direction.
T ∗, the adjoint operator of T , was defined as

T ∗W (x← Θ) =∫
Ωr(x,Θ)

fr(r(x,Θ),Ψ↔ −Θ)W (r(x,Θ)← Ψ) cos(Nr(x,Θ),Ψ)dωΨ.

The operator T ∗ behaves in a similar way as T but propagates incident
functions through one reflection on the point on which they are incident.
This is illustrated in Figure 4.9.

�

�

�

�

�

�

�

�

4.5. Classification of Global Illumination Algorithms 101

Figure 4.9. Propagation of an incident function.

One might be tempted to use the terms “shooting” and “gathering” to
denote these operations. The operator T may be thought of as a shoot-
ing operation, because T L→ seems to be the resulting function when we
“shoot” L→ forward. However, the terms shooting and gathering are usu-
ally applied to the way algorithms work and not to mathematical opera-
tions. It might be more convenient to think in terms of propagating the
function. Whether the function is of an incident or exitant nature deter-
mines what operator (T or T ∗) has to be used for the propagation.

If we look at the series of inner products that composes Φ(S), we can
see that it is a succession of T and T ∗ operations applied to the initial
radiance and importance distributions. For example, the second term in
the expansion, which expresses direct illumination, can be computed by
propagating W←e or by propagating L→e . By successively repeating these
steps, we gradually build up the flux Φ(S). At each step during the eval-
uation, we have a choice of evaluating the next term by applying a T or
T ∗ operation on one of the intermediate resulting functions. For example,
we might propagate the radiance distribution twice, then propagate the
importance function once, propagate the radiance again, etc.

The following figures illustrate this by means of a simple example. A
simple scene consisting of three surfaces is depicted in Figure 4.10. For
simplicity, let us also assume that there are only three directions per sur-
face, and that functions are only defined in one surface point. The surface
labeled a is a light source, emitting radiance only in the direction of sur-
face d (exitant radiance from surface to surface is represented by a single

�

�

�

�

�

�

�

�

102 4. Strategies for Computing Light Transport

Figure 4.10. Propagation of an initial radiance distribution.

arrow, instead of a complete directional distribution, in order not to overly
complicate the figure). Propagating this initial radiance distribution by
applying operator T once results in a new distribution shown in Situation
2. Indeed, the self-emitted radiance from surface a reaches surface d, where
it is reflected over the entire hemisphere (just three directions in this ex-
ample), and thus emits radiance toward surfaces a, b, and c. One more
propagation is shown in Situation 3. Surfaces a, b, and c emit radiance
toward all other surfaces. All further propagations would result in all four
surfaces emitting radiance toward all other surfaces, although the exact
numerical values vary for each propagation (dependent on the values of the
local BRDF, and due to absorption, each further propagation carries less
total power).

Figure 4.11 shows the various propagations for the importance function
by applying operator T ∗. Suppose we want to compute the flux leaving
surface d. The corresponding distribution is shown in Situation 1. W→e is
defined for all surface points belonging to d, and for all directions towards
other surfaces. Applying the transport operator gives the results as shown
in Situations 2 and 3. Further propagations result in all surfaces and all
directions having an incident importance value attributed to them. As
explained before, due to absorption and BRDF values, the exact numerical
values would differ for each propagation.

Figure 4.11. Propagation of an initial importance distribution.

�

�

�

�

�

�

�

�

4.5. Classification of Global Illumination Algorithms 103

In order to compute the flux, we now have to compute the various inner
products, the summation of which provides us with a numerical value for
the flux. This is represented in Figure 4.12. The top row shows the various
propagations for the radiance distribution; the leftmost column gives the
importance propagations. For each entry in the table, a thick line indicates
at what surface points and for what directions a contribution to the inner
product exists. Only if there are point-directions pairs that have a nonzero
value for both propagations of L→e and W←e is a contribution to the inner
product found.

As such, we see that the contribution to the flux due to self-emittance
equals 0, which is, of course, a quite logical result, since the importance-
source and radiance-source do not overlap. In order to compute the contri-
butions as a result of direct lighting (light that reaches the set unhindered

Figure 4.12. Successive propagations of exitant radiance and initial importance
are shown in the top row and leftmost column, respectively. The entries in the
table represent where nonzero values for the inner products can be found.

�

�

�

�

�

�

�

�

104 4. Strategies for Computing Light Transport

and contributes to the flux leaving that surface), we have the choice of
propagating L→e , and thus computing 〈T L→e ,W←e 〉, or propagating W←e
and thereby computing 〈L→e , T ∗W←e 〉. Both inner products are equal, al-
though the integration domain where the inner product is nonzero is dif-
ferent in both situations.

The next propagations compute the contributions to the flux through
one or more reflections on intermediate surfaces. In this example, there are
no contributions due to one intermediate reflection, but there is a contri-
bution when the radiance is reflected at two surfaces.

The different choices available for expanding into a series of inner prod-
ucts are not mutually exclusive. Since all inner products at the same level of
the expansion are mathematically and numerically equivalent, it is possible
to compute them all and make a selection of one to use in the final result.
This selection might be based on an error metric or on any other criteria
that seem plausible. It also means that different terms can be combined in
order to produce a possibly better result. For example, one might compute
weighted averages, with the weight based on the relative reliability of the
numerical results. The resulting expression will then, hopefully, be more
correct than each inner product individually.

4.5.4 Taxonomy

Depending on what inner products are used, and how the propagation is
being carried out, it is possible to make a taxonomy of different global
illumination algorithms. A complete classification would lead us too far
and is also partly covered in subsequent chapters. Detailed descriptions of
the algorithms mentioned below are also covered in the next chapters.

• The traditional ray-tracing algorithm typically exploits the propaga-
tion of importance, with the surface area visible through each pixel
being the source of importance. In a typical implementation, the im-
portance is never explicitly computed, but by tracing rays through
the scene and picking up illumination values from the light sources,
it is done implicitly.

• Light tracing is the dual algorithm of ray tracing. It propagates
radiance from the light sources and computes final inner products at
the surfaces visible through each pixel.

• Bidirectional ray tracing propagates both transport quantities at the
same time and, in its most advanced form, computes a weighted av-
erage of all possible inner products at all possible interactions.

�

�

�

�

�

�

�

�

4.6. Path Formulation 105

• The equivalent algorithms in a radiosity context are, respectively,
Gauss-Seidel radiosity, progressive radiosity, and bidirectional
radiosity.

4.6 Path Formulation

The above derivation and classification of global illumination transport al-
gorithms is based on the notion of radiance and importance. Also, the
global reflection distribution function expresses the global transport be-
tween two point-direction pairs in the scene. Computing the fluxes can then
be seen as computing an integral over all possible pairs of point-direction
couples, evaluating the GRDF and the initial radiance and importance
values. The GRDF itself is given by a recursive integral equation. By
recursively evaluating the GRDF, all possible paths of different lengths in
the scene are constructed.

One can also express global transport by considering path-space and
computing a transport measure over each individual path. Path-space itself
encompasses all possible paths of any length. Integrating a transport mea-
sure in path-space then involves generating the correct paths (e.g., random
paths can be generated using an appropriate Monte Carlo sampling proce-
dure) and evaluating the throughput of energy over each generated path.
This view was developed by Spanier and Gelbard [183] and introduced into
rendering by Veach [204]. The equation for the path formulation is

Φ(S) =
∫

Ω∗
f(x)dµ(x),

in which Ω∗ is the path-space, x is a path of any length, and dµ(x) is a
measure in path space. f(x) describes the throughput of energy and is a
succession of G(x, y), V (x, y), and BRDF evaluations, together with a Le

and We evaluation at the beginning and end of the path.
An advantage of the path formulation is that paths are now considered

to be the sample points for any integration procedure. Algorithms such
as Metropolis light transport or bidirectional ray tracing are often better
described using the path formulation.

4.7 Summary

In this chapter, we defined a mathematical framework for describing the
light transport equations and the global illumination problem. This math-
ematical framework encompasses two sets of dual equations.

�

�

�

�

�

�

�

�

106 4. Strategies for Computing Light Transport

On the one hand, the radiance transport equation is based on the notion
of gathering radiance values at a surface point. It assumes that the light
sources are fixed and that we have several sets of interest for which we want
to compute a flux. Precomputing a solution based on radiance transport
and storing it in the scene would allow us to generate various images, from
different camera positions.

On the other hand, the importance transport equation expresses the
influence of a surface point and associated direction, if it would be a light
source on the illumination of a given set. It assumes the light sources can
vary, but the set of interest remains fixed. Thus, if the camera would act
as a source of importance, and if an importance solution is stored in the
scene, it would be possible to change the nature and characteristics of the
light sources.

Both transport equations are written as recursive integral equations,
known as Fredholm equations of the second kind.

Both the transport of radiance and importance can be combined by
introducing the global reflectance distribution function. The GRDF de-
scribes a general transfer property from one point-direction pair in the
scene to another point-direction pair. As such, it can be considered as the
core function for the global illumination problem.

Computing solutions for the transport equations can be done in various
ways. It is possible to distribute radiance from the light sources into the
scene, and collect it at the sets for which we want to compute a flux. Or,
importance can be distributed from the importance sources and collected
at the light sources, upon which we would know the flux for the importance
source. We can also distribute both transport quantities at once and com-
pute their interaction at the surfaces and directions at which they meet.
Based on this notion, a taxonomy of various global illumination algorithms
can be constructed.

4.8 Exercises

1. Study the original formulation of the rendering equation as intro-
duced by Kajiya [85]. It is different from the radiance formulation as
mostly used today. Explain the differences. Could these differences
have an influence on the final algorithms?

2. Once you have studied Chapters 5 and 6, construct a taxonomy of
global illumination algorithms. Look for similarities rather than dif-
ferences. Is it important whether you render pixels (as in most path-
tracing variants) or patches (as in most radiosity-based algorithms)?

�

�

�

�

�

�

�

�

5

Stochastic Path-Tracing
Algorithms

This chapter discusses a class of algorithms for computing global illumina-
tion pictures known as path-tracing algorithms1. The common aspect of
these algorithms is that they generate light transport paths between light
sources and the points in the scene for which we want to compute radiance
values. Another, although less vital, characteristic is that they usually
compute radiance values for each individual pixel directly. As such, these
algorithms are pixel-driven, but many of the principles outlined here can
be equally applied to other classes of light transport algorithms, such as
finite element techniques (to be discussed in the next chapter).

First, we present a brief history of path-tracing algorithms in the con-
text of global illumination algorithms (Section 5.1). Then, we discuss the
camera set-up that is common to most pixel-driven rendering algorithms
(Section 5.2) and introduce a simple path-tracing algorithm in Section 5.3.
In Section 5.4, we introduce various methods for computing the direct il-
lumination in a scene, followed by similar sections for the special case of
environment map illumination (Section 5.5) and indirect illumination (Sec-
tion 5.6). Finally, in Section 5.7, the light-tracing algorithm is discussed,
which is the dual algorithm of ray tracing.

5.1 Brief History

Path-tracing algorithms for global illumination solutions started with the
seminal paper on ray tracing by Whitted [194]. This paper described a
novel way for extending the ray-casting algorithm to determine visible sur-
faces in a scene [4] to include perfect specular reflections and refractions.

1The terms ray tracing and path tracing are often used interchangeably in literature.
Some prefer to use the term path tracing for a variant of ray tracing where rays do not
split into multiple rays at surface points.

107

�

�

�

�

�

�

�

�

108 5. Stochastic Path-Tracing Algorithms

At the time, ray tracing was a very slow algorithm due to the number of
rays that had to be traced through the scene, such that many techniques
were developed for speeding up the ray-scene intersection test (see [52] for
a good overview).

In 1984, Cook et al. [34] described stochastic ray tracing. Rays were
distributed over several dimensions, such that glossy reflections and refrac-
tions, and other effects such as motion blur and depth of field, could be
simulated in a coherent framework.

The paper of Kajiya [85] applied ray tracing to the rendering equation,
which described the physical transport of light (see Chapter 2). This tech-
nique allowed full global illumination effects to be rendered, including all
possible interreflections between any types of surfaces.

Other Monte Carlo sampling techniques were applied to the rendering
equation, the most complete being bidirectional ray tracing, introduced by
Lafortune [100] and Veach [200].

5.2 Ray-Tracing Set-Up

In order to compute a global illumination picture, we need to attribute
a radiance value Lpixel to each pixel in the final image. This value is a
weighted measure of radiance values incident on the image plane, along a
ray coming from the scene, passing through the pixel, and pointing to the
eye (Figure 5.1). This is best described by a weighted integral over the
image plane:

Lpixel =
∫

imageplane

L(p→ eye)h(p)dp

=
∫

imageplane

L(x→ eye)h(p)dp,
(5.1)

with p being a point on the image plane, and h(p) a weighting or filtering
function. x is the visible point seen from the eye through p. Often, h(p)
equals a simple box filter such that the final radiance value is computed by
uniformly averaging the incident radiance values over the area of the pixel.
A more complex camera model is described in [95].

The complete ray-tracing set-up refers to the specific configuration of
scene, camera, and pixels, with the specific purpose to compute radiance
values for each pixel directly. We need to know the camera position and
orientation, and the resolution of the target image. We assume the image
is centered along the viewing axis. To evaluate L(p → eye), a ray is cast
from the eye through p, in order to find x. Since L(p→ eye) = L(x→ −→xp),
we can compute this radiance value using the rendering equation.

�

�

�

�

�

�

�

�

5.2. Ray-Tracing Set-Up 109

Figure 5.1. Ray-tracing set-up.

A complete pixel-driven rendering algorithm (see Figure 5.2) consists
of a loop over all pixels, and for each pixel, the integral in the image
(Equation 5.1) plane is computed using an appropriate integration rule. A
simple Monte Carlo sampling over the image plane where h(p) �= 0 can be

// pixel-driven rendering algorithm
computeImage(eye)

for each pixel
radiance = 0;
H = integral(h(p));
for each viewing ray

pick uniform sample point p such that h(p) <> 0;
construct ray at origin eye, direction p-eye;
radiance = radiance + rad(ray)*h(p);

radiance = radiance / (#viewingRays*H);

rad(ray)
find closest intersection point x of ray with scene;
computeRadiance(x, eye-x);

Figure 5.2. Pixel-driven rendering algorithm.

�

�

�

�

�

�

�

�

110 5. Stochastic Path-Tracing Algorithms

used. For each sample point p, a primary ray needs to be constructed. The
radiance along this primary ray is computed using a function rad(ray).
This function finds the intersection point x, and then computes the radiance
leaving surface point x in the direction of the eye. The final radiance
estimate for the pixel is obtained by averaging over the total number of
viewing rays, and taking into account the normalizing factor of the uniform
PDF over the integration domain (h(p) �= 0).

5.3 Simple Stochastic Ray Tracing

5.3.1 Truly Random Paths
The function compute_radiance(x, eye-x) in the pixel-driven rendering
algorithm uses the rendering equation to evaluate the appropriate radiance
value. The most simple algorithm to compute this radiance value is to
apply a basic and straightforward Monte Carlo integration scheme to the
standard form of the rendering equation. Suppose we want to evaluate the
radiance L(x→ Θ) at some surface point x (Section 2.6):

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ)

= Le(x→ Θ) +
∫

Ωx

L(x← Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ.

The integral can be evaluated using Monte Carlo integration, by gener-
ating N random directions Ψi over the hemisphere Ωx, distributed ac-
cording to some probability density function p(Ψ). The estimator for
Lr(x→ Θ) is then given by

〈Lr(x→ Θ)〉 =
1
N

N∑
i=1

L(x← Ψi)fr(x,Θ↔ Ψi) cos(Ψi, Nx)
p(Ψi)

.

The cosine and BRDF terms in the integrand can be evaluated by ac-
cessing the scene description. L(x ← Ψi), the incident radiance at x, is
however unknown. Since

L(x← Ψi) = L(r(x,Ψi)→ −Ψi),

we need to trace the ray leaving x in direction Ψi through the environment
to find the closest intersection point r(x,Ψ). At this point, another radiance
evaluation is needed. Thus, we have a recursive procedure to evaluate
L(x← Ψi), and a path, or a tree of paths, is traced through the scene.

Any of these radiance evaluations will only yield a nonzero value if the
path hits a surface for which Le is different from 0. In other words, the

�

�

�

�

�

�

�

�

5.3. Simple Stochastic Ray Tracing 111

recursive path needs to hit one of the light sources in the scene. Since the
light sources usually are small compared to the other surfaces, this does
not occur very often, and very few of the paths will yield a contribution
to the radiance value to be computed. The resulting image will mostly be
black. Only when a path hits a light source will the corresponding pixel be
attributed a color. This is to be expected, since the algorithm generates
paths in the scene, starting at the point of interest, and slowly working
towards the light sources in a very uncoordinated manner.

In theory, this algorithm could be improved somewhat by choosing p(Ψ)
to be proportional to the cosine term or the BRDF, according to the prin-
ciple of importance sampling (see Section 3.6.1). In practice, the disad-
vantage of picking up mostly zero-value terms is not changing the result
considerably. Note, however, that this simple approach will produce an
unbiased image if a sufficient number of paths per pixel are generated.

5.3.2 Russian Roulette

The recursive path generator described in the simple stochastic ray-tracing
algorithm needs a stopping condition. Otherwise, the generated paths
would be of infinite length and the algorithm would not come to a halt.
When adding a stopping condition, one has to be careful not to introduce
any bias to the final image. Theoretically, light reflects infinitely in the
scene, and we cannot ignore these light paths of a long length, which might
be potentially very important. Thus, we have to find a way to limit the
length of the paths but still be able to obtain a correct solution.

In classic ray-tracing implementations, two techniques are often used to
prevent paths from growing too long. A first technique is cutting off the
recursive evaluations after a fixed number of evaluations. In other words,
the paths are generated up to a certain specified length. This puts an
upper bound on the number of rays that need to be traced, but important
light transport might have been ignored. Thus, the image will be biased.
A typical fixed path length is set at 4 or 5 but really should be dependent
on the scene to be rendered. A scene with many specular surfaces will
require a larger path length, while scenes with mostly diffuse surfaces can
usually use a shorter path length. Another approach is to use an adaptive
cut-off length. When a path hits a light source, the radiance found at the
light source still needs to be multiplied by all cosine factors and BRDF
evaluations (and divided by all PDF values) at all previous intersection
points before it can be added to the final estimate of the radiance through
the pixel. This accumulating multiplication factor can be stored along with
the lengthening path. If this factor falls below a certain threshold, recursive
path generation is stopped. This technique is more efficient compared to

�

�

�

�

�

�

�

�

112 5. Stochastic Path-Tracing Algorithms

the fixed path-length, because many paths will be stopped before, and
fewer errors are made, but the final image will still be biased.

Russian roulette is a technique that addresses the problem of keeping
the lengths of the paths manageable but at the same time leaves room
for exploring all possible paths of any length. Thus, an unbiased image
can still be produced. To explain the Russian roulette principle, let us
look at a simple example first. Suppose we want to compute the following
one-dimensional integral:

I =
∫ 1

0

f(x)dx.

The standard Monte Carlo integration procedure generates random points
xi in the domain [0, 1] and computes the weighted average of all function
values f(xi). Assume that for some reason f(x) is difficult or complex to
evaluate (e.g., f(x) might be expressed as another integral), and we would
like to limit the number of evaluations of f(x) necessary to estimate I. By
scaling f(x) by a factor of P horizontally and a factor of 1/P vertically, we
can also express the quantity I as

IRR =
∫ P

0

1
P
f(
x

P
)dx,

with P ≤ 1. Applying Monte Carlo integration to compute the new inte-
gral, using a unform PDF p(x) = 1 to generate the samples over [0, 1], we

Figure 5.3. Principle of Russian roulette.

�

�

�

�

�

�

�

�

5.3. Simple Stochastic Ray Tracing 113

get the following estimator for IRR:

〈IRR〉 =

{
1
P f(x

P) if x ≤ P
0 if x > P.

It is easy to verify that the expected value of 〈IRR〉 equals I. If f(x) would
be another recursive integral (as is the case in the rendering equation), the
result of applying Russian roulette is that recursion stops with a probability
equal to α = 1 − P for each evaluation point. α is called the absorption
probability. Samples generated in the interval [P, 1] will generate a function
value equal to 0, but this is compensated by weighting the samples in [0, P]
with a factor 1/P . Thus, the overall estimator still remains unbiased.

If α is small, the recursion will continue many times, and the final
estimator will be more accurate. If α is large, the recursion will stop
sooner, but the estimator will have a higher variance. For our simple path-
tracing algorithm, this means that either we generate accurate paths having
a long length, or very short paths, which provide a less accurate estimate.
However, the final estimator will be unbiased.

In principle, we can pick any value for α, and we can control the ex-
ecution time of the algorithm by picking an appropriate value. In global

// simple stochastic ray tracing

computeRadiance(x, dir)

find closest intersection point x of ray with scene;

estimatedRadiance = simpleStochasticRT(x, dir);

return(estimatedRadiance);

simpleStochasticRT (x, theta)

estimatedRadiance = 0;

if (no absorption) // Russian roulette

for all paths // N rays

sample direction psi on hemisphere;

y = trace(x, psi);

estimatedRadiance +=

simpleStochasticRT(y,-psi)*BRDF

*cos(Nx, psi)/pdf(psi);

estimatedRadiance /= #paths;

estimatedRadiance /= (1-absorption)

estimatedRadiance += Le(x, theta)

return(estimatedRadiance);

Figure 5.4. Simple stochastic ray-tracing algorithm.

�

�

�

�

�

�

�

�

114 5. Stochastic Path-Tracing Algorithms

Figure 5.5. Tracing paths using simple stochastic ray tracing.

illumination algorithms, it is common for 1 − α to be equal to the hemi-
spherical reflectance of the material of the surface. Thus, dark surfaces will
absorb the path more easily, while lighter surfaces have a higher chance of
reflecting the path. This corresponds to the physical behavior of light in-
cident on these surfaces.

The complete algorithm for simple stochastic ray tracing is given in
Figure 5.4 and is illustrated in Figure 5.5. Paths are traced starting at
point x. Path α contributes to the radiance estimate at x, since it reflects
off the light source at the second reflection and is absorbed afterwards.
Path γ also contributes, even though it is absorbed at the light source.
Path β does not contribute, since it gets absorbed before reaching the light
source.

5.4 Direct Illumination

The simple stochastic path tracer described in Section 5.3 is rather ineffi-
cient, since directions around each surface point are sampled without taking
the position of the light sources into account. It is obvious that light sources
contribute significantly to the illumination of any surface point visible to
them. By sending paths to the light sources explicitly, accurate pictures
are obtained much faster.

�

�

�

�

�

�

�

�

5.4. Direct Illumination 115

5.4.1 Direct and Indirect Illumination

As explained in Section 2.6, the reflected radiance term of the rendering
equation can be split into two parts: a term that describes the direct
illumination due to the light sources and one that describes the indirect
illumination. We first write the reflected radiance integral using exitant
radiance only:

Lr(x→ Θ) =
∫

Ωx

L(x← Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ

=
∫

Ωx

L(r(x,Ψ)→ −Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ.

Rewriting L(r(x,Ψ)→ −Ψ) as a sum of self-emitted and reflected radiance
at r(x,Ψ) gives us

Lr(x→ Θ) =
∫

Ωx

Le(r(x,Ψ)→ −Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ

+
∫

Ωx

Lr(r(x,Ψ)→ −Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ

= Ldirect(x→ Θ) + Lindirect(x→ Θ).

(5.2)

The direct term Ldirect(x → Θ) expresses the contribution to Lr(x → Θ)
directly from the light sources. Since the integrand of Ldirect(x→ Θ) con-
tains Le(r(x,Ψ)→ −Ψ), which only differs from zero at the light sources,
we can transform the hemispherical integral to an integral over the area of
the light sources only (Figure 5.6),

Ldirect(x→ Θ) =
∫

Asources

Le(y → −→yx)fr(x,Θ↔ −→xy)G(x, y)V (x, y)dAy,

(5.3)
or by explicitly summing over all NL light sources in the scene,

Ldirect(x→ Θ) =
NL∑
k=1

∫
Ak

Le(y → −→yx)fr(x,Θ↔ −→xy)G(x, y)V (x, y)dAy.

�

�

�

�

�

�

�

�

116 5. Stochastic Path-Tracing Algorithms

Figure 5.6. Area integration over light sources for direct illumination.

This integral over all light sources can now be computed using a very
efficient sampling scheme. By generating surface points on the area of the
light sources, we are sure that, if the light source is visible to the point x,
a nonzero contribution is added to the Monte Carlo estimator for x. If x
is in a shadow, the contribution to the estimator equals 0.

There are two options to sample surface points on the light sources:
we can compute the direct illumination for each light source separately,
or we can consider the combined light sources as one large light source,
treating it as a single integration domain. Surface points yi on the light
sources will be generated, and for each sample yi, the integrand Le(yi → x)
fr(x,Θ↔ −→xyi)G(x, yi)V (x, yi) has to be evaluated. Since V (x, yi) requires
a visibility check and represents whether the point x is in shadow relative
to yi, the paths generated between x and yi are often called shadow rays.

The following choices of settings will determine the accuracy of the
direct illumination computation:

• Total number of shadow rays. Increasing the number of shadow rays
will produce a better estimate.

• Shadow rays per light source. According to the principle of impor-
tance sampling, the number of shadow rays per light source should
be proportional to the relative contribution of the light source to the
illumination of x.

�

�

�

�

�

�

�

�

5.4. Direct Illumination 117

• Distribution of shadow rays within a light source. More shadow rays
should be generated for the parts of the light source that have a
greater impact on the direct illumination. For example, large area
light sources will have areas that are close to the surface points to be
illuminated. These areas should receive more shadow rays to obtain
a more accurate estimator for direct illumination.

5.4.2 Single Light Source Illumination
To compute the direct illumination due to a single light source in the scene,
i.e., a light source that consists of one continuous area, we need to define
a probability density function p(y) over the area of the light source, which
generates the shadow rays. We assume that such a PDF can be constructed,
irrespective of the geometrical nature of the light source.

Applying Monte Carlo integration (using NS shadow rays) to Equation
5.3 yields the following estimator:

〈Ldirect(x→ Θ)〉 =
1
Ns

Ns∑
i=1

Le(yi → −→yix)fr(x,Θ↔ −→xyi)G(x, yi)V (x, yi)
p(yi)

.

For each surface point yi sampled on the light source, the energy transfer
between yi and x needs to be computed. This requires evaluations of the

// direct illumination from a single light source

// for a surface point x, direction theta

directIllumination (x, theta)

estimatedRadiance = 0;

for all shadow rays

generate point y on light source;

estimatedRadiance +=

Le(y, yx) * BRDF * radianceTransfer(x,y)/pdf(y);

estimatedRadiance = estimatedRadiance / #shadowRays;

return(estimatedRadiance);

// transfer between x and y

// 2 cosines, distance and visibility taken into account

radianceTransfer(x,y)

transfer = G(x,y)*V(x,y);

return(transfer);

Figure 5.7. Computing direct illumination from a single light source.

�

�

�

�

�

�

�

�

118 5. Stochastic Path-Tracing Algorithms

BRDF at x, a visibility check between x and yi, the geometric coupling
factor, and the emitted radiance at yi. The whole energy transfer has to
be weighted by p(yi). An overview of the sampling procedure is given in
Figure 5.7.

The variance of this Monte Carlo integration, and thus the noise in the
final image, is mainly determined by the choice of p(y). Ideally, p(y) equals
the contribution each point y contributes to the final estimator, but in
practice, this is almost never possible, and more pragmatic choices have to
be made, mainly driven by ease of implementation. Interesting, and often
used, choices for p(y) are:

Uniform sampling of light source area. In this case, the points yi are dis-
tributed uniformly over the area of the light source, and p(y) = 1/Asource.
This is the easiest way of sampling a light source, and optimizations such
as stratified sampling can easily be used (Figure 5.8). Using this sampling
scheme, there are several sources of noise in the image. If a point x is
located in the penumbra region of a shadow, some of its shadow rays will
yield V (x, yi) = 0, and some will not. This causes most of the noise in these
soft-shadowed areas. On the other hand, if x is located outside any shadow
area, all the noise is caused in variations of the cosine terms, but most
importantly, variations in 1/r2xy. This is especially noticeable if the light

Figure 5.8. Uniform light-source sampling for direct illumination.

�

�

�

�

�

�

�

�

5.4. Direct Illumination 119

Figure 5.9. Uniform light source sampling. The images are generated with 1
viewing ray per pixel and 1, 9, 36, and 100 shadow rays. The difference in
quality between soft shadows and hard shadows is noticeable.

sources are large. The pictures in Figure 5.9 show a simple scene rendered
with 1, 9, 36, and 100 shadow rays, respectively. For each pixel, a single
viewing ray is cast through the center of the pixel, which produces the clos-
est intersection point x for which a radiance value needs to be computed.
It is obvious that when only one shadow ray is used, surface points either
lie in shadow or are visible for the light source. Some pixels in which the
penumbra is visible are therefore completely black, hence, the high amount
of noise in the soft shadow regions.

Uniform sampling of solid angle subtended by light source. To eliminate
noise caused by either the cosine terms or the inverse distance squared fac-

�

�

�

�

�

�

�

�

120 5. Stochastic Path-Tracing Algorithms

tor, sampling according to solid angle is an option. This requires rewriting
the integral over the area of the light source as an integral over the solid
angle subtended by the light source. This would remove one cosine term
and the distance factor from the integrand. However, the visibility term is
still present. This sampling procedure is useful for light sources that have
a significant foreshortening with regard to x, making sure these important
areas are not undersampled. This sampling technique is usually difficult to
implement, since generating directions over an arbitrary solid angle is not
straightforward [6].

Many scenes only contain diffuse light sources, and thus Le(y → −→yx)
does not add to any noise in the estimation of Ldirect(x→ Θ). If the light
source is nondiffuse, Le(y → −→yx) is not a constant function. There might
be areas or directions of the light source emission pattern that are much
brighter than others. It could be useful to apply importance sampling based
on the emission term, but in practice, this is difficult, since only directions
towards x need to be considered. However, a spatially variant light source
thbat is diffuse in its angular component could be importance-sampled,
reducing variance.

5.4.3 Multiple Light Source Illumination

When there are multiple light sources in the scene, the most simple way is
to compute the direct illumination separately for each of the light sources
in turn. We generate a number of shadow rays for each light source and
afterwards sum up the total contributions of each source. This way, the
direct illumination component of each light source will be computed in-
dependently, and the number of shadow rays for each light source can be
chosen according to any criterion (e.g., equal for all light sources, propor-
tional to the total power of the source, proportional to the inverse distance
squared between the point and the point x, etc.)

However, it is often better to consider all combined light sources as a
single integration domain and apply Monte Carlo integration to the com-
bined integral. When shadow rays are generated, they can be directed to
any of the light sources. It is, therefore, possible to compute the direct
illumination of any number of light sources with just a single shadow ray
and still obtain an unbiased picture (although, in this case, the noise in the
final image will probably be very high). This approach works because we
make complete abstraction of light sources as separate, disjunct surfaces
and just look at the entirety of the integration domain. However, in order
to have a working sampling algorithm, we still need access to any of the
light sources separately, because any individual light source might require
a separate sampling procedure for generating points over its surface.

�

�

�

�

�

�

�

�

5.4. Direct Illumination 121

Figure 5.10. Sampling multiple light sources for direct illumination.

Generally, a two-step sampling process is used for each shadow ray
(Figure 5.10):

• First, a discrete probability density function pL(k) is used to select a
light sources ki. We assign to each of NL light source a probability
value with which it will be chosen to send a shadow ray to. Typically,
this probability function is the same for all shadow rays we want to
cast but can be different for each different surface point x for which
we want to compute a radiance value.

• During the second step, a surface point yi on the light source k se-
lected during the previous step is generated using a conditional PDF
p(y|ki). The nature of this PDF is dependent on light source ki. For
example, some light sources might be sampled using uniform area
sampling, while others might be sampled by generating shadow rays
over the subtended solid angle.

The combined PDF for a sampled point yi on the combined area of all
light sources is then pL(k)p(y|k). This produces the following estimator for
N shadow rays:

�

�

�

�

�

�

�

�

122 5. Stochastic Path-Tracing Algorithms

// direct illumination from multiple light sources

// for surface point x, direction theta

directIllumination(x, theta)

estimatedRadiance = 0;

for all shadow rays

select light source k;

generate point y on light source k;

estimatedRadiance +=

Le(y, yx) * BRDF * radianceTransfer(x,y)/(pdf(k)

pdf(y|k));

estimatedRadiance = estimatedRadiance / #shadowRays;

return(estimatedRadiance);

// transfer between x and y

// 2 cosines, distance and visibility taken into account

radianceTransfer(x,y)

transfer = G(x,y)*V(x,y);

return(transfer);

Figure 5.11. Computing direct illumination from multiple light sources.

〈Ldirect(x→ Θ)〉 =
1
N

N∑
i=1

Le(yi → −→yix)fr(x,Θ↔ −→xyi)G(x, yi)V (x, yi)
pL(ki)p(yi|ki)

.

(5.4)

Figure 5.11 shows the algorithm for computing the direct illumination
due to multiple light sources. Note, however, that the algorithm for com-
puting the illumination due to a single source could be used as well, re-
peating it for each individual light source.

Although any PDFs pL(k) and p(y|k) will produce unbiased images, the
specific choice for which PDFs to use will have an impact on the variance of
the estimators and the noise in the final picture. Some of the more popular
choices are:

Uniform source selection, uniform sampling of light source area. Both PDFs
are uniform: pL(k) = 1/NL and p(y|k) = 1/ALk

. Every light source will
receive, on average, an equal number of shadow rays, and these shadow rays
are distributed uniformly over the area of each light source. This is easy to
implement, but the disadvantages are that the illumination of both bright
and weak light sources are computed with an equal number of shadow rays
and that light sources that are far away or invisible receive an equal number

�

�

�

�

�

�

�

�

5.4. Direct Illumination 123

of shadow rays as light sources that are close-by. Thus, the relative impor-
tance of each light source is not taken into account. Substituting the PDFs
in Equation 5.4 gives the following estimator for the direct illumination:

〈Ldirect(x→ Θ)〉 =
NL

N

N∑
i=1

ALk
Le(yi → −→yix)fr(x,Θ↔ −→xyi)G(x, yi)V (x, yi).

Power-proportional source selection, uniform sampling of light source area.
Here, the PDF pL(k) = Pk/Ptotal with Pk the power of light source k and
Ptotal the total power emitted by all light sources. Bright sources would
receive more shadow rays, and very dim light sources might receive very
few. This is likely to reduce variance and noise in the picture.

〈Ldirect(x→ Θ)〉 =

Ptotal

N

N∑
i=1

ALk
Le(yi → −→yix)fr(x,Θ↔ −→xyi)G(x, yi)V (x, yi)

Pk

If all light sources are diffuse, Pk = πAkLe,k, and thus

〈Ldirect(x→ Θ)〉 =
Ptotal

πN

N∑
i=1

fr(x,Θ↔ −→xyi)G(x, yi)V (x, yi).

This approach is typically superior since it gives importance to bright
sources, but it could result in slower convergence at pixels where the bright
lights are invisible and illumination is dominated by less bright lights at
these pixels. This latter occurrence can only be solved by using sampling
strategies that use some knowledge about the visibility of the light sources.

No matter what pL(k) is chosen, one has to be sure not to exclude any
light sources that might contribute to Ldirect(x→ Θ). Just dropping small,
weak, or faraway light sources might result in bias, and for some portions
of the image, this bias can be significant.

One of the drawbacks of the above two-step procedure is that three
random numbers are needed to generate a shadow ray: one random number
to select the light source k, and two random numbers to select a specific
surface point yi within the area of the light source. This makes stratified
sampling more difficult to implement. In [170], a technique is described
that makes it possible to use only two random numbers when generating
shadow rays for a number of disjunct light sources. The two-dimensional
integration domain covering all light sources is mapped on the standard
two-dimensional unit square. Each light source corresponds to a small

�

�

�

�

�

�

�

�

124 5. Stochastic Path-Tracing Algorithms

subdomain of the unit square. When a point is sampled on the unit square,
we find out what subarea it is in, and then transform the location of the
point to the actual light source. Sampling in a three-dimensional domain
has now been reduced to sampling in a two-dimensional domain, which
makes it easier to apply stratified sampling or other variance-reduction
techniques.

5.4.4 Alternative Shadow Ray Sampling

Area sampling of the light sources is the most intuitive and best known
algorithm for computing direct illumination in a scene. We expect the
variance to be low, since knowledge is used in the sampling procedure about
where light is coming from in the scene. However, some other sampling
techniques can be used to compute the direct illumination, which are often
less efficient, but are interesting from a theoretical point of view. These
techniques offer alternative ways of constructing paths between the point
of interest and the light source.
Shadow rays by hemisphere sampling. This sampling procedure is related
to the simple stochastic ray-tracing algorithm, explained in Section 5.3.
Directions Ψi are generated over the hemisphere Ωx, after which the near-
est intersection point r(x,Ψi) is found. If r(x,Ψi) belongs to a light source,
a contribution to the direct illumination estimator is recorded. In Figure

Figure 5.12. Shadow rays generated using hemisphere sampling.

�

�

�

�

�

�

�

�

5.4. Direct Illumination 125

5.12, only two out of seven rays reach the light source and yield a contri-
bution different from 0. This is actually the simple stochastic ray-tracing
algorithm, in which the recursion is ended after one level. Many rays will
be oriented towards surfaces that are not light sources. The noise and vari-
ance are mostly caused by this fact and not by any visibility considerations,
since the visibility will not be present in the final estimator. The visibility
term is implicitly contained in the computation of the nearest visible point
r(x,Ψi).

Shadow rays by global area sampling. The integral describing global illu-
mination (Equation 5.3) integrates over the area of all light sources. It is
also possible to write this integral as an integration over all surfaces in the
scene, since the self-emitted radiance equals 0 over surfaces that are not a
light source (Figure 5.13). Using this formulation, surface points can be
sampled over any surface in the scene. The evaluation is the same as for
regular shadow rays, except that the Le(yi) factor might be equal to 0,
introducing an extra source of noise.

Although these methods do not make much sense from an efficiency
point of view, they emphasize the basic principle of computing light trans-
port: paths need to be generated between the light sources and the receiving
point. The methods merely differ in how the paths are generated, but this
has a drastic impact on the accuracy of their corresponding estimators.

Figure 5.13. Shadow rays generated using global area sampling.

�

�

�

�

�

�

�

�

126 5. Stochastic Path-Tracing Algorithms

5.4.5 Further Optimizations
Many optimizations have been proposed to make the computation of direct
illumination more efficient. Most of these deal with trying to make the
evaluation of V (x, y) more efficient, or by preselecting the light sources to
which to send shadow rays.

Ward [223] accelerates the direct illumination due to multiple light
sources using a user-specified threshold to eliminate lights that are less
important. For each pixel in the image, the system sorts the lights accord-
ing to their maximum possible contribution, assuming the lights are fully
visible. Occlusion for each of the largest possible contributors at the pixel
is tested, measuring their actual contribution to the pixel and stopping at
a predetermined energy threshold. This approach can reduce the number
of occlusion tests; however, it does not reduce the cost of occlusion tests
that do have to be performed and does not do very well when illumination
is uniform.

The approach of Shirley et al. [230] subdivides the scene into voxels
and, for each voxel, partitions the set of lights into an important set and
an unimportant set. Each light in the important set is sampled explicitly.
One light is picked at random from the unimportant set as a representative
of the set and sampled. The assumption is that the unimportant lights all
contribute the same amount of energy. To determine the set of important
lights, they construct an influence box around each light. An influence
box contains all points on which the light could contribute more than the
threshold amount of energy. This box is intersected with voxels in the scene
to determine for which voxels the light is important. This is an effective
way to deal with many lights. However, the approach is geared towards
producing still images since many samples per pixel are required to reduce
the noise inherent in sampling the light set.

Paquette et al. [136] present a light hierarchy for rendering scenes with
many lights quickly. This system builds an octree around the set of lights,
subdividing until there is less than a predetermined number of lights in
each cell. Each octree cell then has a virtual light constructed for it that
represents the illumination caused by all the lights within it. They derive
error bounds that can determine when it is appropriate to shade a point
with a particular virtual light representation and when traversal of the hier-
archy to finer levels is necessary. Their algorithm can deal with thousands
of point lights. One major limitation of this approach is that it does not
take visibility into consideration.

Haines et al. [60] substantially accelerated shadow rays by explicitly
keeping track of occluding geometry and storing it in a cube around the
light source. However, their technique does not work for area lights and
also does no specific acceleration for many lights.

�

�

�

�

�

�

�

�

5.5. Environment Map Illumination 127

Fernandez et al. [45] use local illumination environments. For each
pixel in the image, and for each light source, a list of possible occluders
is built adaptively by casting shadow rays. Their technique works well for
interactive speeds. Hart et al. [65] use a similar approach, but information
about what geometry causes shadows in pixels is distributed in the image
using a flood-fill algorithm.

5.5 Environment Map Illumination

The techniques outlined in the previous section are applicable to almost
all types of light sources. It is sufficient to choose an appropriate PDF
to select one light source from amongst all light sources in the scene, and
to choose a PDF to sample a random surface point on the selected light
source. The total variance, and hence the stochastic noise in the image,
will be highly dependent on the types of PDFs chosen.

Environment maps (sometimes also called illumination maps or reflec-
tion maps) are a type of light source that has received significant attention.
An environment map encodes the total illumination present on the hemi-
sphere of directions around a single point. Usually, environment maps are
captured in natural environments using digital cameras.

An environment map can be described mathematically as a stepwise-
continuous function, in which each pixel corresponds to a small solid an-
gle ∆Ω around the point x at which the environment map is centered.
The intensity of each pixel then corresponds to an incident radiance value
L(x← Θ), with Θ ∈ ∆Ω.

5.5.1 Capturing Environment Maps

Environment maps usually represent real-world illumination conditions.
A light probe in conjunction with a digital camera or a digital camera
equipped with a fisheye lens are the most common techniques for captur-
ing environment maps.

Light Probe

A practical way to acquire an environment map of a real environment is the
use of a light probe. A light probe is nothing more than a specular reflective
ball that is positioned at the point where the incident illumination needs to
be captured. The light probe is subsequently photographed using a camera
equipped with an orthographic lens, or alternatively, a large zoom lens such
that orthographic conditions are approximated as closely as possible.

�

�

�

�

�

�

�

�

128 5. Stochastic Path-Tracing Algorithms

Figure 5.14. Photographing a light probe produces an environment map repre-
senting incident radiance from all directions. (Photograph courtesy of Vincent
Masselus.)

The center pixel in the recorded image of the light probe corresponds
with a single incident direction. This direction can be computed rather
easily, since the normal vector on the light probe is known, and a mapping
from pixel coordinates to incident directions can be used. A photograph
of the light probe can therefore results in a set of samples L(x ← Θ)
(Figure 5.14).

Although the acquisition process is straightforward, there are a number
of issues to be considered:

• The camera will be reflected in the light probe and will be present
in the photograph, thereby blocking light coming from directions di-
rectly behind the camera.

• The use of a light probe does not result in a uniform sampling of
directions over the hemisphere. Directions opposite the camera are
sampled poorly, whereas directions on the same side of the camera
are sampled densely.

• All directions sampled at the edge of the image of the light probe
represent illumination from the same direction. Since the light probe
has a small radius, these values may differ slightly.

• Since the camera cannot capture all illumination levels due to its
nonlinear response curve, a process of high dynamic range photogra-

�

�

�

�

�

�

�

�

5.5. Environment Map Illumination 129

Figure 5.15. Photographing a light probe twice, 90 degrees apart. The cam-
era positions are indicated in blue. Combining both photographs produces a
well-sampled environment map without the camera being visible. (Photographs
courtesy of Vincent Masselus.) (See Plate XIX.)

phy needs to be used to acquire an environment map that correctly
represents radiance values.

Some of these problems can be alleviated by capturing two photographs
of the light probe 90 degrees apart. The samples of both photographs can
be combined into a single environment map as is shown in Figure 5.15.

Fisheye Lens

An alternative for capturing an environment map is to make use of a camera
equipped with a fisheye lens. Two photographs taken from opposite view
directions result in a single environment map as well. However, there are
some limitations:

�

�

�

�

�

�

�

�

130 5. Stochastic Path-Tracing Algorithms

• Good fisheye lenses can be very expensive and hard to calibrate.

• Both images need to be taken in perfect opposite view directions,
otherwise a significant set of directions will not be present in the
photograph.

If the incident illumination of directions in only one hemisphere needs
to be known instead of the full sphere of directions, the use of a fisheye
lens can be very practical.

5.5.2 Parameterizations

When using environment maps in global illumination algorithms, they need
to be expressed in some parameter space. Various parameterizations can be
used, and the effectiveness of how well environments maps can be sampled
is dependent on the type of parameterization used. In essence, this is the
same choice one has to make when computing the rendering equation as
an integral over the hemisphere.

Various types of parameterizations are used in the context of environ-
ment maps, and we provide a brief overview here. A more in-depth analysis
can be found in [118].

• Latitude-longitude parameterization. This is the same parameteriza-
tion as the hemispherical coordinate system describes in Appendix
A but extended to the full sphere of directions. The advantage is
an equal distribution of the tilt angle θ, but there is a singularity
around both poles, which are represented as lines in the map. Addi-
tional problems are that the pixels in the map do not occupy equal
solid angles and that the φ = 0 and φ = 2π angles are not mapped
continuously next to each other (Figure 5.16(a)).

• Projected-disk parameterization. This parameterization is also known
as Nusselt embedding. The hemisphere of directions is projected on
a disk of radius 1. The advantages are the continuous mapping of
the azimuthal angle φ, and the pole being a single point in the map.
However, the tilt angle θ is nonuniformly distributed over the map
(Figure 5.16(b)). A variant is the paraboloid parameterization, in
which the tilt angle is distributed more evenly [72] (Figure 5.16(c)).

• Concentric-map parameterization. The concentric map parameteriza-
tion transforms the projected unit disk to a unit square [165]. This
makes sampling of directions in the map easier and keeps the conti-
nuity of the projected-disk parameterizations (Figure 5.16(d)).

�

�

�

�

�

�

�

�

5.5. Environment Map Illumination 131

(a)

(b)

(c)

(d)

Figure 5.16. Different parameterizations for the (hemi)sphere: (a) latitude-
longitude parameterization; (b) projected-disk parameterization; (c) paraboloid
parameterization; (d) concentric-map parameterization. (Diagrams courtesy of
Vincent Masselus.)

�

�

�

�

�

�

�

�

132 5. Stochastic Path-Tracing Algorithms

5.5.3 Sampling Environment Maps

The direct illumination of a surface point due to an environment map can
be expressed as follows:

Ldirect(x→ Θ) =
∫

Ωx

Lmap(x← Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ.

The integrand contains the incident illumination Lmap(x← Ψ) on point x,
coming from direction Ψ in the environment map.

Other surfaces present in the scene might prevent the light coming from
direction Ψ reaching x. These surfaces might belong to other objects, or
the object to which x belongs can cast self-shadows onto x. In these cases,
a visibility term V (x,Ψ) has to be added:

Ldirect(x→ Θ) =∫
Ωx

Lmap(x← Ψ)fr(x,Θ↔ Ψ)V (x,Ψ) cos(Ψ, Nx)dωΨ. (5.5)

A straightforward application of Monte Carlo integration would result
in the following estimator:

〈Ldirect(x→ Θ)〉 =

1
N

N∑
i=1

Lmap(x← Ψi)fr(x,Θ↔ Ψi)V (x,Ψi) cos(Ψi, Nx)
p(Ψi)

,

in which the different sampled directions Ψi are generated directly in the
parameterization of the environment map using a PDF p(Ψ).

However, various problems present themselves when trying to approxi-
mate this integral using Monte Carlo integration:

• Integration domain. The environment map acting as a light source
occupies the complete solid angle around the point to be shaded, and
thus, the integration domain of the direct illumination equation has
a large extent, usually increasing variance.

• Textured light source. Each pixel in the environment map represents a
small solid angle of incident light. The environment map can therefore
be considered as a textured light source. The radiance distribution in
the environment map can contain high frequencies or discontinuities,
thereby again increasing variance and stochastic noise in the final
image. Especially when capturing effects such as the sun or bright

�

�

�

�

�

�

�

�

5.5. Environment Map Illumination 133

windows, very high peaks of illumination values can be present in the
environment map.

• Product of environment map and BRDF. As expressed in Equation
5.5, the integrand contains the product of the incident illumination
Lmap(x ← Ψ) and the BRDF fr(x,Θ ↔ Ψ). In addition to the dis-
continuities and high-frequency effects present in the environment
map, a glossy or specular BRDF also contains very sharp peaks.
These peaks on the sphere or hemisphere of directions for both il-
lumination values and BRDF values are usually not located at the
same directions. This makes it very difficult to design a very efficient
sample scheme that takes these features into account.

• Visibility. If the visibility term is included, additional discontinuities
are present in the integrand. This is very similar to the handling of
the visibility term in standard direct illumination computations but
might complicate an efficient sampling process.

Practical approaches try to construct a PDF p(Ψ) that addresses these
problems. Roughly, these can be divided in three categories: PDFs based
on the distribution of radiance values Lmap(x← Ψ) in the illumination map
only, usually taking into account cos(Ψ, Nx) that can be pre-multiplied into
the illumination map; PDFs based on the BRDF fr(x,Θ↔ Ψ), which are
especially useful if the BRDF is of a glossy or specular nature; and PDFs
based on the product of both functions, but which are usually harder to
construct.

• Direct illumination map sampling. A first approach for constructing
a PDF based on the radiance values in the illumination map can be
simply to transform the piecewise-constant pixel values into a PDF
by computing the cumulative distribution in two dimensions and sub-
sequently inverting it. This typically results in a 2D look-up table,
and the efficiency of the method is highly dependent on how fast this
look-up table can be queried.
A different approach is to simplify the environment map by trans-
forming it to a number of well-selected point light sources. This has
the advantage that there is a consistent sampling of the environment
map for all surface points to be shaded, but can possibly introduce
aliasing artifacts, especially when using a low number of light sources.
In [97], an approach is presented in which a quadrature rule is gen-
erated automatically from a high dynamic range environment map.
Visibility is taken into account in the structured importance sam-
pling algorithm, in which the environment map is subdivided into a
number of cells [1].

�

�

�

�

�

�

�

�

134 5. Stochastic Path-Tracing Algorithms

• BRDF sampling. The main disadvantage of constructing a PDF based
only on the illumination map is that the BRDF is not included in the
sampling process but is left to be evaluated after the sample directions
have been chosen. This is particularly problematic for specular and
glossy BRDFs, and if this is the case, a PDF based on the BRDF will
produce better results.

This of course requires that the BRDF can be sampled analytically,
which is not always possible, except for a few well-constructed BRDFs
(e.g., a Phong BRDF or Lafortune BRDF). Otherwise, the inverse
cumulative distribution technique will have to be used for the BRDF
as well.

• Sampling the product. The best approach is to construct a sam-
pling scheme based on the product of both the illumination map and
the BRDF, possibly including the cosine and some visibility informa-
tion as well. In [21], bidirectional importance sampling is introduced,
which constructs a sampling procedure based on rejection sampling.
The disadvantage is that it is difficult to predict exactly how many
samples will be rejected, and hence the computation time. Resam-
pled importance sampling is a variant of this approach [195]. Wavelet
importance sampling [27] constructs a PDF based on the wavelet
representation of both the illumination map and the BRDF, but this
implies some restrictions on what type of map and BRDF can be
used.

5.6 Indirect Illumination

This section deals with the computation of indirect illumination in a scene.
As opposed to direct illumination computations, this problem is usually
much harder, since indirect light might reach a surface point x from all
possible directions. For this reason, it is very hard to optimize the indi-
rect illumination computations along the same lines as was done for direct
illumination.

Indirect illumination consists of the light reaching a target point x after
at least one reflection at an intermediate surface between the light sources
and x. The indirect illumination is a very important component of the total
light distribution in a scene and usually takes the largest amount of work
in any global illumination algorithm. A realistic rendering of the indirect
illumination is often necessary to judge any computer-generated picture as
being photorealistic.

�

�

�

�

�

�

�

�

5.6. Indirect Illumination 135

// indirect illumination
// for surface point x, direction theta
indirectIllumination (x, theta)

estimatedRadiance = 0;
if (no absorption)

for all indirect paths
sample direction psi on hemisphere;
y = trace(x, psi);
estimated radiance +=

computeRadiance(y, -psi) * BRDF *
cos(Nx, psi) / pdf(psi);

estimatedRadiance = estimatedRadiance / #paths;
return(estimatedRadiance/(1-absorption));

computeRadiance(x, dir)
estimatedRadiance = Le(x, dir);
estimatedRadiance += directIllumination(x, dir);
estimatedRadiance += indirectIllumination(x, dir);
return(estimatedRadiance);

Figure 5.17. Computing indirect illumination.

5.6.1 Uniform Sampling for Indirect Illumination

In Section 5.4.1, the rendering equation was split into a direct and indirect
part. The indirect illumination contribution to L(x→ Θ) is expressed as

Lindirect(x→ Θ) =
∫

Ωx

Lr(r(x,Ψ)→ −Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ.

The integrand contains the reflected radiances Lr from other points in the
scene, which are themselves composed of a direct and indirect illumination
part (according to Equation 5.2). Unlike what was done with the direct
illumination equation, we cannot reformulate this integral to a smaller in-
tegration domain. Lr(r(x,Ψ) → −Ψ) has (in a closed environment) a
nonzero value for all (x,Ψ) pairs. So, the entire hemisphere needs to be
considered as the integration domain and needs to be sampled accordingly.

The most general Monte Carlo procedure to evaluate the indirect illu-
mination is to use an arbitrary, hemispherical PDF p(Ψ) and to generate

�

�

�

�

�

�

�

�

136 5. Stochastic Path-Tracing Algorithms

Figure 5.18. Paths generated during indirect illumination computations. Shadow
rays for direct illumination are shown as dashed lines.

N random directions Ψi. This produces the following estimator:

〈Lindirect(x→ Θ)〉 =

1
N

N∑
i=1

Lr(r(x,Ψi)→ −Ψi)fr(x,Θ↔ Ψi) cos(Ψi, Nx)
p(Ψi)

.

To evaluate this estimator, for each generated direction Ψi, we need to
evaluate the BRDF and the cosine term, trace a ray from x in the direction
of Ψi, and evaluate the reflected radiance Lr(r(x,Ψi)→ −Ψi) at the closest
intersection point r(x,Ψi). This last evaluation shows the recursive nature
of indirect illumination, since this reflected radiance at r(x,Ψi) can be split
again into a direct and indirect contribution. The algorithm for evaluating
the indirect illumination is given in Figure 5.17 and graphically shown in
Figure 5.18.

The recursive evaluation can be stopped using Russian roulette, in the
same way as was done for simple stochastic ray tracing. Generally, the local
hemispherical reflectance is used as an appropriate absorption probability.
This choice can be explained intuitively: we only want to spend work (i.e.,
tracing rays and evaluating Lindirect(x)) proportional to the amount of
energy present in different parts of the scene.

�

�

�

�

�

�

�

�

5.6. Indirect Illumination 137

5.6.2 Importance Sampling for Indirect Illumination

The simplest choice for p(Ψ) is a uniform PDF p(Ψ) = 1/2π, such that di-
rections are sampled proportional to solid angles. This is easy and straight-
forward to implement. Noise in the resulting picture will be caused by vari-
ations in the BRDF and cosine evaluations, and variations in the reflected
radiance Lr at the distant points.

Uniform sampling over the hemisphere does not take into account any
knowledge we might have about the integrand in the indirect illumination
integral. In order to reduce noise, some form of importance sampling is
needed. We can construct a hemispherical PDF proportional (or approxi-
mately proportional) to any of the following factors:

• The cosine factor cos(Ψi, Nx).

• The BRDF fr(x,Θ↔ Ψi).

• The incident radiance field Lr(r(x,Ψi).

• A combination of any of the above.

Cosine Sampling

Sampling directions proportional to the cosine lobe around the normal
Nx prevents too many directions from being sampled near the horizon
of the hemisphere where cos(Ψ, Nx) equals 0. We can expect the noise to
decrease, since we reduce the probability of directions being generated that
contribute little to the final estimator. So

p(Ψ) = cos(Ψ, Nx)/π.

If we also assume that the BRDF fr is diffuse at x, we obtain the
following estimator:

〈Lindirect(x→ Θ)〉 =
πfr

N

N∑
i=1

Lr(r(x,Ψi)→ −Ψi).

In this estimator, the only sources of noise left are variations in the incident
radiance field.

BRDF Sampling

When sampling directions Ψ over the hemisphere proportional to the cosine
factor, we do not take into account that due to the nature of the BRDF at
x, some directions contribute much more to the value of Lindirect(x→ Θ).
Ideally, directions with a high BRDF value should be sampled more often.

�

�

�

�

�

�

�

�

138 5. Stochastic Path-Tracing Algorithms

BRDF sampling is a good noise-reducing technique when a glossy or
highly specular BRDF is present. It diminishes the probability that di-
rections are sampled where the BRDF has a low or zero value. Only for
a few selected BRDF models, however, is it possible to sample exactly
proportional to the BRDF.

Even better would be trying to sample proportional to the product of
the BRDF and the cosine term. Analytically, this is even more difficult to
do, except in a few rare cases where the BRDF model has been chosen care-
fully. Usually, a combination with rejection is needed to sample according
to such a PDF.

A time-consuming alternative is to build a numerical table of the cu-
mulative probability function and generate directions using this table. The
PDF value will not be exactly equal to the product of BRDF and cosine
factors, but a significant variance reduction can nevertheless be achieved.

A perfect specular material can be modeled using a Dirac impulse for
the BRDF. In this case, sampling the BRDF simply means we only have
one possible direction from which incident radiance contributes to the in-
direct illumination. However, such a Dirac BRDF is difficult to fit in a
Monte Carlo sampling framework, and a special evaluation procedure usu-
ally needs to be written.

As an example to illustrate proportional BRDF sampling, let’s consider
the modified Phong BRDF,

fr(x,Θ↔ Ψ) = kd + ks cosn(Ψ,Θs),

where Θs is the perfect specular direction of Θ relative to Nx. This BRDF
has a diffuse part kd and a glossy part ks cosn(Ψ,Θs). The indirect illumi-
nation integral can now be split into two parts, according to those terms
of the BRDF:

Lindirect(x→ Θ) =
∫

Ωx

Lr(r(x,Ψ)→ −Ψ)kd cos(Ψ, Nx)dωΨ

+
∫

Ωx

Lr(r(x,Ψ)→ −Ψ)ks cosn(Ψ,Θs) cos(Ψ, Nx)dωΨ.

Sampling this total expression proceeds as follows:

1. A discrete PDF is constructed with three events, with respective
probabilities q1, q2, and q3 (q1 + q2 + q3 = 1). The three events corre-
spond to deciding which part of the illumination integral to sample.
The last event can be used as an absorption event.

2. Ψi is then generated using either p1(Ψ) or p2(Ψ), two PDFs that
correspond, respectively, to the diffuse and glossy part of the BRDF.

�

�

�

�

�

�

�

�

5.6. Indirect Illumination 139

3. The final estimator for a sampled direction Ψi is then equal to:

〈Lindirect(x→ Θ)〉 =

⎧⎪⎨⎪⎩
L(x←Ψi)kd cos(Nx,Ψi)

q1p1(Ψi)
if event 1

L(x←Ψi)ks cosn(Ψi,Θs) cos(Nx,Ψi)
q2p2(Ψi)

if event 2

0 if event 3.

An alternative is to consider the sampled direction as part of a single
distribution and evaluate the total indirect illumination integral. The gen-
erated directions will have a subcritical distribution q1p1(Ψ)+q2p2(Ψ), and
the corresponding primary estimator is

〈Lindirect(x→ Θ)〉 =

1
N

N∑
i=1

Lr(r(x,Ψi)→ −Ψi)(kd + ks cosn(Ψi,Θs) cos(Nx,Ψi))
q1p1(Ψi) + q2p2(Ψi)

.

What are good choices for these different PDFs? When the diffuse
part of the BRDF is sampled with p1(Ψ), the obvious choice is to sample
according to the cosine distribution. The glossy part can either be sam-
pled according to the cosine distribution or proportional to the cosine lobe
cosn(Ψ,Θs), centered around Θs.

The choice of q1, q2, and q3 also has a significant influence on the vari-
ance of the estimator. In principle, any set of values provides an unbiased
estimator, but choosing these values carefully has an impact on the final
result. A good choice is to pick these values proportional to the (maximum)
reflected energy in the different modes. These values can be computed by
integrating the reflected energy for an incident direction along the normal
Nx on the surface:

q1 = πkd

q2 =
2π
n+ 2

ks.

Note that the value for q2 is actually larger than the real reflected
energy in the lobe for any other incident direction than Nx, since part
of the cosine lobe around Θs is located below the surface at x. Thus,
there will be more samples generated in the specular lobe relative to the
reflected energy in the lobe, but this can be adjusted by not resampling any
directions that are located in the part of the lobe below the surface, and
thus, keeping the correct balance between diffuse energy, specular energy,
and absorption.

�

�

�

�

�

�

�

�

140 5. Stochastic Path-Tracing Algorithms

Incident Radiance Field Sampling

A last technique that can be used to reduce variance when computing the
indirect illumination is to sample a direction Ψ according to the incident
radiance values Lr(x ← Ψ). Since this incident radiance is generally un-
known when we want to compute Lindirect(x→ Θ), an adaptive technique
needs to be used, where an approximation to Lr(x ← Ψ) is built during
the algorithm, and then this approximation is used to sample direction Ψi.
Lafortune et al. [103] build a five-dimensional tree (three dimensions for
position, two dimensions for direction) that does exactly this. At every
leaf of the tree, an approximation L∗r(x ← Ψ) of the incident radiance re-
sulting from earlier evaluations is used to construct a PDF. This PDF is
then used to generate a random direction.

Other algorithms, such as the photon map [83], can also be used to
guide the sampling of directions based on partial knowledge of the energy
distribution in the scene.

5.6.3 Area Sampling
Sampling the hemisphere is the most straightforward way to compute the
indirect illumination integral. For each sampled direction, a ray has to be
cast to determine the closest visible point. This is a costly operation, but
it also means that there will be no noise in the final image due to failed
visibility checks.

As with direct illumination, there are more ways to compute indirect
illumination. By writing the indirect illumination as an integral over all
surfaces in the scene, we can construct an estimator by sampling surface
points:

Lindirect(x→ Θ) =
∫

Ascene

Lr(y → −→yx)fr(x,Θ↔ −→xy)G(x, y)V (x, y)dAy.

The corresponding estimator when using a PDF p(y) is

〈Lindirect(x→ Θ)〉 =
1
N

N∑
i=1

Lr(yi → −→yix)fr(x,Θ↔ −→xyi)G(x, yi)V (x, yi)
p(yi)

.

How is this different from the hemispherical estimator? By sampling
areas, the visibility function V (x, yi) needs to be evaluated as part of the
estimator. When sampling the hemisphere, the visibility is hidden in the
ray-casting function for finding the closest visible point in each direction.
Putting the visibility in the estimator increases the variance for an equal
number of samples. This difference between area sampling and hemisphere
sampling is valid, in general, for any method that has to construct paths
in the scene.

�

�

�

�

�

�

�

�

5.6. Indirect Illumination 141

5.6.4 Putting It All Together
We now have all the algorithms in place to build a full global illumination
renderer using stochastic path tracing. The efficiency and accuracy of the
complete algorithm will be determined by all of the following settings.
Number of viewing rays per pixel. The number of viewing rays Np to be cast
through the pixel, or more generally, the support of h(p) (Equation 5.1).
A higher number of viewing rays eliminates aliasing and decreases noise.
Direct illumination. For direct illumination, a number of choices are neces-
sary that will determine the overall efficiency:

• The total number of shadow rays Nd cast from each point x.

• How a single light source is selected from among all the available light
sources for each shadow ray.

• The distribution of the shadow ray over the area of a single light
source.

Indirect illumination. The indirect illumination component is usually imple-
mented using hemisphere sampling:

• Number of indirect illumination rays Ni distributed over the hemi-
sphere Ωx.

• Exact distribution of these rays over the hemisphere (uniform,
cosine, ...).

• Absorption probabilities for Russian roulette in order to stop the
recursion.

The complete algorithm for computing the global illumination for the
entire image is given in schematic form in Figure 5.19.

It is obvious that the more rays we cast at each of the different choice
points, the more accurate the solution will be. Also, the better we make
use of importance sampling, the better the final image and the less objec-
tionable noise there will be. The interesting question is, when given a total
number of rays one can cast per pixel, how should they best be distributed
to reach a maximum level of accuracy for the full global illumination solu-
tion?

This is still very much an open problem in global illumination algo-
rithms. There are some generally accepted “default” choices, but there are
no hard and fast rules. It is generally accepted that branching out too much
(i.e., recursively generate multiple rays at every surface point) at all levels
of the tree is less efficient. Indeed, progressively more rays will be cast at

�

�

�

�

�

�

�

�

142 5. Stochastic Path-Tracing Algorithms

// global illumination algorithm

// stochastic ray tracing

computeImage(eye)

for each pixel

radiance = 0;

H = integral(h(p));

for each sample // Np viewing rays

pick sample point p within support of h;

construct ray at eye, direction p-eye;

radiance = radiance + rad(ray)*h(p);

radiance = radiance/(#samples*H);

rad(ray)

find closest intersection point x of ray with scene;

return(Le(x,eye-x) + computeRadiance(x, eye-x));

computeRadiance(x, dir)

estimatedRadiance += directIllumination(x, dir);

estimatedRadiance += indirectIllumination(x, dir);

return(estimatedRadiance);

directIllumination (x, theta)

estimatedRadiance = 0;

for all shadow rays // Nd shadow rays

select light source k;

sample point y on light source k;

estimated radiance +=

Le * BRDF * radianceTransfer(x,y)/(pdf(k)pdf(y|k));

estimatedRadiance = estimatedRadiance / #paths;

return(estimatedRadiance);

indirectIllumination (x, theta)

estimatedRadiance = 0;

if (no absorption) // Russian roulette

for all indirect paths // Ni indirect rays

sample direction psi on hemisphere;

y = trace(x, psi);

estimatedRadiance +=

compute_radiance(y, -psi) * BRDF *

cos(Nx, psi)/pdf(psi);

estimatedRadiance = estimatedRadiance / #paths;

return(estimatedRadiance/(1-absorption));

radianceTransfer(x,y)

transfer = G(x,y)*V(x,y);

return(transfer);

Figure 5.19. Total global illumination algorithm.

�

�

�

�

�

�

�

�

5.7. Light Tracing 143

each deeper level, while at the same time, the contribution of each of those
individual rays to the final radiance value of the pixel will diminish. For
indirect illumination, a branching factor of 1 is often used after the first
level. Many implementations even limit the indirect rays to one per surface
point but then compensate by generating more rays through the area of the
pixel. This approach is known as path tracing: Many paths, without any
branching (except for direct illumination), are cast. Each path by itself is
a bad approximation of the total radiance, but many paths combined are
able to produce a good estimate.

5.6.5 Classic Ray Tracing
Classic ray tracing, or Whitted-style ray tracing [194], as it is sometimes
called, is an often-used technique for computing photorealistic pictures.
However, it does not compute a full solution to the rendering equation. A
classic ray-tracing algorithm usually computes the following light transport
components when computing an estimator for the radiance L(x→ Θ):

• Shadows. In classic ray tracing, shadows are computed in the same
way as explained in this chapter for direct illumination. However,
when using point light sources, care has to be taken that the correct
radiometric properties are still being used.

• Reflections and refractions. This is usually the only indirect illumina-
tion component present. Instead of sampling the entire hemisphere
to look for incident illumination at x, only two interesting directions
are explicitly sampled: the perfect specular direction in case the sur-
face is specular, and the perfect refracted ray in case the surface is
transparent.

Thus, classic ray tracing only computes a small selected subset of the
indirect illumination, and is not able to deal with diffuse interreflections,
caustics, etc.

5.7 Light Tracing

Stochastic ray tracing, as described in the previous section, is derived from
a Monte Carlo evaluation of the rendering equation. The resulting algo-
rithm traces paths through the scene, starting at the point visible through
a pixel, and through recursion or shadow rays, these paths reach the light
sources, upon which a contribution to the radiance value to be computed
is found.

�

�

�

�

�

�

�

�

144 5. Stochastic Path-Tracing Algorithms

This tracing of rays from the eye to the light sources looks unnatural,
since light travels the other way: light particles originate at the light source
and finally hit the film surface or the human eye where they are recorded
and added to the measured intensity. This section explains the light-tracing
algorithm that proceeds exactly along those lines. Light tracing is the dual
algorithm of ray tracing, and many of the optimizations used in ray tracing
can also be used in light tracing.

5.7.1 Light-Tracing Algorithm

The basic light-tracing algorithm evaluates the potential or importance
equation for a single pixel. The importance equation, the dual of the
rendering equation, is written as

W (x→ Θ) = We(x→ Θ) +
∫

Ωx

W (x← Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ,

(5.6)
and the accompanying measurement equation for a single pixel is

P =
∫

sources

W (x→ Ψ)Le(x→ Ψ) cos(Nx,Ψ)dAxdωΨ. (5.7)

The light-tracing algorithm then proceeds as follows (Figure 5.20):

• The measurement equation (Equation 5.7) will be evaluated using
Monte Carlo integration. Points xi and directions Θi on the light
sources are generated (such that Le(xi,Θi) �= 0), for which the im-
portance W (x → Θ) will be evaluated. This will finally lead to an
estimator for the flux through a pixel.

• Evaluating the importance W (x → Θ) requires a Monte Carlo inte-
gration of the importance equation (Equation 5.6). This evaluation is
very similar to the evaluation of the rendering equation in stochastic
ray-tracing algorithms, and the same sampling schemes (hemisphere,
area, BRDF, ...) can be used.

• In the stochastic ray-tracing algorithm, a shadow ray is generated
for each surface point along the path to compute the direct illumi-
nation. The equivalent of this operation in light tracing is to send
a contribution ray from each surface point along a light path to the
eye of the camera and check whether it passes through the pixel un-
der consideration. If this is the case, a contribution to the pixel is
recorded.

�

�

�

�

�

�

�

�

5.7. Light Tracing 145

image plane

eye

light source

Figure 5.20. Paths traced during the light-tracing algorithm. Contribution rays
to the image plane are shown as dashed lines.

Figure 5.21. Images computed using light tracing using 100, 000, 1, 000, 000,
10, 000, 000 and 100, 000, 000 light rays, respectively.

�

�

�

�

�

�

�

�

146 5. Stochastic Path-Tracing Algorithms

The algorithm outlined above is rather inefficient, because the whole
algorithm has to be repeated for each individual pixel. However, it is clear
that all pixels can be processed in parallel: if a contribution ray passes
through any pixel, a contribution to that specific pixel is then recorded.
Thus, the image will form gradually, not by sequentially completing pixels
as was the case in the stochastic ray-tracing algorithm, but by accumulating
the contributions over the whole image plane (Figure 5.21).

5.7.2 Light Tracing versus Ray Tracing

Stochastic light tracing and ray tracing are dual algorithms and, in the-
ory, solve the same transport problem. The camera acts as a source of
importance during light tracing, while the light sources are the source of
radiance in stochastic ray tracing. Shadow rays and contribution rays are
each other’s dual mechanism for optimizing the computations of final flux
through a pixel.

Which algorithm performs better or is more efficient? It is generally
accepted that stochastic ray tracing will perform better, but there are sev-
eral factors that can contribute to the efficiency of one algorithm over the
other:

Image size versus scene size. If the image only shows a very small part
of the scene, it is to be expected that many particles shot from the light
sources during light tracing will end up in parts of the scene that are
only of marginal importance to the light transport relevant for the image.
Stochastic ray tracing will perform better, because the radiance values
to be computed are driven by the position of the camera and individual
pixels, and so we can expect less work to be wasted on computing irrelevant
transport paths.

Nature of the transport paths. The nature of transport paths also might
favor one transport simulation method over the other. Shadow rays or
contribution rays work best at diffuse surfaces, since the direction (towards
the light sources or towards the camera) cannot be chosen. At a specular
surface, there is a very high likelihood that those rays will yield a very small
contribution to the final estimator. Thus, we would like to trace rays as
much as possible over specular surfaces before we send out a shadow ray or
contribution ray. This means that for mirrored images (where the light hits
a diffuse surface before it hits a specular surface), we prefer ray tracing, and
for caustics (where the light hits specular surfaces before diffuse surfaces),
we would prefer light tracing. This principle is applied in building up
caustic-maps with the photon-mapping algorithm [83].

�

�

�

�

�

�

�

�

5.7. Light Tracing 147

Number of sources. In ray tracing, the sources for the transport we are
simulating are the light sources; in light tracing, the importance sources
are the individual pixels. This also has some effect on the efficiency of both
algorithms, especially when sources are to be moved, in conjunction with an
algorithm where partial information of the transport simulation is stored in
the scene. It can be imagined that when a light-tracing algorithm is used,
we could store all endpoints of all paths, and only retrace the contribution
rays when the camera moves.2 This is not as easy with ray tracing. On
the other hand, if we want to apply a similar scheme to ray tracing and
a moving light source, it will not be straightforward, since the number of
importance sources (or pixels) is much larger, and separate information
needs to be stored for all of them.

In theory, ray tracing and light tracing are dual algorithms, but in
practice, they are not equivalent, since we usually want to compute a final
image and not an “importance image” for each of the light sources. Only
in the latter case would the algorithms be really dual and equivalent.

5.7.3 Related Techniques and Optimizations

In global illumination literature, tracing rays starting at the light sources
has been used in many different forms and with different names (particle
tracing, photon tracing, backwards ray tracing, etc.), and has mostly been
used as part of multipass algorithms, and not so much as an algorithm to
compute images by itself.

In [23], light is distributed from light sources to immediate visible dif-
fuse surfaces, which are then classified as secondary light sources. These
new secondary light sources are then treated as regular light sources in the
subsequent ray-tracing pass. Complex interactions associated with caustics
have been computed using backwards beam tracing [225]. Beams, gener-
ated at the light sources, are reflected through the scene at specular surfaces
only, and a caustic polygon is stored at diffuse surfaces. Later, the caustic
polygon is taken into account when rendering pixels in which this caustic
is visible.

Two-dimensional storage maps for storing light-traced information have
also been proposed in various forms and in various algorithms. These
maps also result from a light-tracing pass and are used to read out illu-
mination information during a subsequent ray-tracing pass. Examples of
two-dimensional storage maps can be found in [24] and [5].

Bidirectional ray tracing combines ray tracing and light tracing. When
computing the radiance value for a pixel, both a path starting at a light
source and a path starting at the eye are generated in the scene. By

2This would be equivalent to a point-rendering of all end points of the light-paths.

�

�

�

�

�

�

�

�

148 5. Stochastic Path-Tracing Algorithms

linking up their end- and midpoints, an estimator for the radiance is found.
This technique is able to combine advantages of both light tracing and
ray tracing, and each of those can actually be seen as a special case of
bidirectional ray tracing.

The most successful applications of light tracing, however, are in the
photon-mapping and density-estimation algorithms. A more complete dis-
cussion of some of these techniques is given in Chapter 7.

The light-tracing algorithm itself has also been optimized using adaptive
sampling functions. Using several iterations of light,tracing passes, adap-
tive PDFs are constructed, such that particles are traced more efficiently
towards the camera ([41], [42]).

5.8 Summary

This chapter outlined stochastic path tracing, one of the most commonly
used algorithms to compute global illumination solutions to the rendering
equation. By applying Monte Carlo integration schemes to the render-
ing equation, various stochastic path tracing algorithms can be developed,
including simple stochastic ray tracing, optimizations through the use of
shadow rays, various schemes for indirect illumination, etc. An interest-
ing variant is stochastic light tracing, the dual algorithm of stochastic ray
tracing, which traces rays from the light sources towards the eye. For
more details on developing ray-tracing algorithms, Shirley’s book [170] is
an excellent starting point.

5.9 Exercises

All exercises listed here require the rendering of various images using a
ray tracer. When testing the various methods, it is usually a good idea to
render the images at a low resolution. Only when one is fully convinced
that the rendering computations are implemented correctly, images can be
rendered at a high resolution, and the number of samples for each rendering
component can gradually be increased.

1. Implement a simple stochastic ray tracer that is able to render scenes
with direct illumination only. The type of geometric primitives that
are included is not important; it can be limited to triangles and
spheres only. Surfaces should have a diffuse BRDF, and area light
sources should be included as well. This simple ray tracer can serve
as a skeleton ray tracer to use in subsequent exercises.

�

�

�

�

�

�

�

�

5.9. Exercises 149

2. Experiment with casting multiple shadow rays towards the light
sources. Vary the number of samples per light source, as well as
the sampling pattern (uniform, uniform stratified, etc.). Compare
images with and without explicit light source sampling for comput-
ing the direct illumination. Independent of the sampling strategy
used, the images should always converge to the same exact solution.

3. Experiment with multiple viewing rays cast per pixel, in order to
solve aliasing problems. Again, vary the number of rays, as well as
the sampling pattern. Zoom in on an area of the image containing
an object-object visual discontinuity and study the results.

4. Include the Cook-Torrance shader from Chapter 3 in the skeleton
ray tracer. The specular highlights should be visible especially on
rounded objects such as spheres. Is the computation of the highlights
affected by the sampling scheme used for direct illumination?

5. Add the computation of indirect illumination to your skeleton ray
tracer. This requires the implementation of a sampling scheme over
the hemisphere of directions around a surface point. As before, ex-
periment with various sampling schemes to examine the effect on the
indirect illumination component. Also change the absorption value
used in the Russian roulette termination scheme.

6. Using the hemisphere sampling from the previous exercise, implement
the direct illumination computation without explicitly sampling the
light sources. Only when a random ray accidently reaches the light
source, a contribution for the illumination of the pixel is found.

7. Add the direct and indirect illumination components together to ren-
der the full global illumination solution of a given scene. Design a user
interface such that all different sampling parameters can be adjusted
by the user before the rendering computation starts.

�

�

�

�

�

�

�

�

6

Stochastic Radiosity

The algorithms discussed in the previous chapter directly compute the in-
tensity of light passing though the pixels of the virtual screen. In contrast,
this chapter covers methods that compute a so-called world space repre-
sentation of the illumination in a three-dimensional scene. Very often, this
object space representation consists of the average diffuse illumination on
triangles or convex quadrilaterals into which a three-dimensional model
has been tessellated. There are, however, plenty of other possibilities, too.
Since diffuse illumination is best modeled by a quantity called radiosity
(see Section 2.3.1), such methods are usually called radiosity methods.

The main advantage of computing the illumination in object space is
that generating new views of a model takes less work, compared to render-
ing from scratch. For instance, graphics hardware can be used for real-time
rendering of an “illuminated” model, with colors derived from the precom-
puted average diffuse illumination. Also, path tracing can be augmented
to exploit precomputed illumination in object space, allowing very high
image quality. The combination of path tracing after a radiosity method
is an example of a two-pass method. Two-pass methods, and other hybrid
methods, are the topic of Chapter 7.

The most well-known algorithm for computing an object space repre-
sentation of illumination is the classic radiosity method [56, 28, 133]. In
this chapter, we will present a brief overview of the classic radiosity method
(Section 6.1). More introductory or more in-depth coverage of the classic
radiosity method can be found in textbooks such as [29, 172]. We will focus
on a range of radiosity methods that matured only recently, since the pub-
lication of these books. In particular, we describe three classes of radiosity
algorithms, based on stochastic sampling, introduced in Chapter 3.

The first class, called stochastic relaxation methods (Section 6.3),
is based on stochastic adaptations of classic iterative solution methods
for linear systems such as the Jacobi, Gauss-Seidel, or Southwell
iterative methods.

151

�

�

�

�

�

�

�

�

152 6. Stochastic Radiosity

The solution of linear systems, such as those that occur in the classic
radiosity method, is one of the earliest applications of the Monte Carlo
method [50, 224]. They are based on the notion of a discrete random walk.
Their application to radiosity, which leads to algorithms we call discrete
random walk radiosity methods, is discussed in Section 6.4.

The third class of Monte Carlo radiosity methods (Section 6.5) is very
similar to the random walk methods for linear systems but solves the radios-
ity or rendering integral equation directly, rather than the radiosity linear
system. The random walks of these methods are nothing but simulated
photon trajectories. The density of surface hit points of such trajectories
will be shown to be proportional to radiosity. Various density estimation
methods known from statistics [175] can be used in order to estimate ra-
diosity from the photon trajectory hit points.

These three classes of Monte Carlo radiosity methods can be made more
efficient by applying variance-reduction techniques and low-discrepancy sam-
pling, which have been discussed in general in Chapter 3. The main tech-
niques are covered in Section 6.6.

This chapter concludes with a discussion of how adaptive meshing, hi-
erarchical refinement, and clustering techniques can be incorporated into
Monte Carlo radiosity (Section 6.7). Combined with adaptive meshing,
hierarchical refinement, and clustering, Monte Carlo radiosity algorithms
allow us to precompute, on a state-of-the-art PC, the illumination in three-
dimensional scenes consisting of milions of polygons, such as models of large
and complex buildings.

Monte Carlo radiosity methods all share one very important feature:
unlike other radiosity algorithms, they do not require the computation and
storage of so-called form factors (Section 6.1). This is possible because
form factors can be interpreted as probabilities that can be sampled effi-
ciently (Section 6.2). The photon density estimation algorithms in Section
6.5 do not even require form factors at all. Because the nasty problems
of accurate form factor computation and their storage are avoided, Monte
Carlo radiosity methods can handle much larger models in a reliable way.
They are also significantly easier to implement and use than other radios-
ity methods. In addition, they provide visual feedback very early on and
converge gracefully. Often, they are much faster, too.

In this chapter, we will place a large number of (at first sight) unrelated
algorithms in a common perspective and compare them to each other. We
will do so by analyzing the variance of the underlying Monte Carlo esti-
mators (Section 3.4.4). The same techniques can be used to analyze other
Monte Carlo rendering algorithms, but they are easier to illustrate for dif-
fuse illumination, as is done in this chapter.

�

�

�

�

�

�

�

�

6.1. Classic Radiosity 153

6.1 Classic Radiosity

Let’s start with an overview of the classic radiosity method.

6.1.1 Outline
The basic idea of the classic radiosity method is to compute the average
radiosity Bi on each surface element or patch i of a three-dimensional model
(see Figure 6.1). The input consists of a list of such patches. Most often,
the patches are triangles or convex quadrilaterals, although alternatives
such as quadratic surface patches have been explored as well [2]. With each
patch i, the self-emitted radiosity Be

i (dimensions: [W/m2]) and reflectivity
ρi (dimensionless) are given. The self-emitted radiosity is the radiosity
that a patch emits “on its own,” even if there were no other patches in
the model, or all other patches were perfectly black. The reflectivity is
a number (for each considered wavelength) between 0 and 1. It indicates
what fraction of the power incident on the patch gets reflected (the rest
gets absorbed). These data suffice in order to compute the total emitted
radiosity Bi (dimensions: [W/m2]) by each patch, containing the radiosity
received via any number of bounces from other patches in the scene, as well
as the self-emitted radiosity.

The equations relating Bi with Be
i and ρi on all patches are solved, and

the resulting radiosities converted to display colors for the surfaces. Since
only diffuse illumination is computed, the surface colors are independent

Figure 6.1. The input of the classic radiosity method consists of a list of patches
(triangles, in this example) with their average self-emitted radiosity Be

i (left) and
reflectivity ρi (middle) given. These data suffice in order to compute the average
total radiosities Bi (right), including the effect of light bouncing around. The
computed radiosities are converted to display colors for each patch. The resulting,
“illuminated,” model can be rendered from any viewpoint, at interactive rates
using graphics hardware.

�

�

�

�

�

�

�

�

154 6. Stochastic Radiosity

from the viewing position. Visualization from an arbitrary viewpoint can
be done using graphics hardware, allowing interactive “walks” through an
“illuminated” model.

The classic radiosity method is an instance of a larger class of numerical
methods called finite element methods [69]. It is a well-known method in
heat transfer, and its application to image rendering was introduced in
1984–1985—a few years after the introduction of the classical ray-tracing
method [56, 28, 133]. Since these seminal papers appeared, hundreds of
follow-up papers have been published, proposing significant improvements
and alternatives for computation techniques. Excellent introductory and
in-depth overviews of the classic radiosity method can be found in [29, 172].
Here, only a concise derivation of the underlying equations are presented,
as well as the traditional way of solving the radiosity equations and a
discussion of the main problems of the method.

6.1.2 Mathematical Problem Description

The problem stated above can be described mathematically in three differ-
ent ways: by the general rendering equation, by a simplification of it for
purely diffuse environments, and by a discretized version of the latter.

The General Rendering Equation

As explained in Chapter 2, light transport in a three-dimensional environ-
ment is described by the rendering equation. The average radiosity Bi

emitted by a surface patch i with area Ai is therefore given by

Bi =
1
Ai

∫
Si

∫
Ωx

L(x→ Θ) cos(Θ, Nx)dωΘdAx, (6.1)

with (Section 2.6)

L(x→ Θ) = Le(x→ Θ) +
∫

Ωx

fr(x; Θ′ ↔ Θ)L(x← Θ′) cos(Θ′, Nx)dωΘ′ .

(6.2)

The Radiosity Integral Equation

On purely diffuse surfaces (Section 2.3.4), self-emitted radiance Le(x) and
the BRDF fr(x) do not depend on directions Θ and Θ′. The rendering
equation then becomes

L(x) = Le(x) +
∫

Ωx

fr(x)L(x← Θ′) cos(Θ′, Nx)dω′Θ.

�

�

�

�

�

�

�

�

6.1. Classic Radiosity 155

Of course, the incident radiance L(x ← Θ′) still depends on incident
direction. It corresponds to the exitant radiance L(y) emitted towards x
by the point y visible from x along the direction Θ′ (see Section 2.3.3). As
explained in Section 2.6.2, the integral above, over the hemisphere Ωx, can
be transformed into an integral over all surfaces S in the scene. The result
is an integral equation in which no directions appear anymore:

L(x) = Le(x) + ρ(x)
∫

S

K(x, y)L(y)dAy .

In a diffuse environment (Section 2.3.4), radiosity and radiance are re-
lated as B(x) = πL(x) and Be(x) = πLe(x). Multiplication by π of the
left- and right-hand sides of the above equation yields the radiosity integral
equation:

B(x) = Be(x) + ρ(x)
∫

S

K(x, y)B(y)dAy. (6.3)

The kernel of this integral equation is:

K(x, y) = G(x, y)V(x, y) with G(x, y) =
cos(Θxy, Nx) cos(−Θxy, Ny)

πr2xy

.

(6.4)
Θxy is the direction pointing from x to y. r2xy is the square distance between
x and y. V(x, y) is the visibility predicate (1 if x and y are mutually visible,
0 otherwise). Equation 6.1 now becomes

Bi =
1
Ai

∫
Si

L(x)
∫

Ωx

cos(Θ, Nx)dωΘdAx

=
1
Ai

∫
Si

L(x)πdAx

=
1
Ai

∫
Si

B(x)dAx. (6.5)

The Radiosity System of Linear Equations

Often, integral equations like Equation 6.3 are solved by reducing them to
an approximate system of linear equations by means of a procedure known
as Galerkin discretization [36, 98, 29, 172].

Let’s assume the radiosity B(x) is constant on each patch i, B(x) =
B′i, x ∈ Si. Equation 6.3 can be converted into a linear system as follows:

�

�

�

�

�

�

�

�

156 6. Stochastic Radiosity

B(x) = Be(x) + ρ(x)
∫

S

K(x, y)B(y)dAy

⇒ 1
Ai

∫
Si

B(x)dAx =
1
Ai

∫
Si

Be(x)dAx

+
1
Ai

∫
Si

∫
S

ρ(x)K(x, y)B(y)dAydAx

⇔ 1
Ai

∫
Si

B(x)dAx =
1
Ai

∫
Si

Be(x)dAx

+
∑

j

1
Ai

∫
Si

∫
Sj

ρ(x)K(x, y)B(y)dAydAx

⇔ B′i = Bei +
∑

j

B′j
1
Ai

∫
Si

∫
Sj

ρ(x)K(x, y)dAydAx.

If we now also assume that the reflectivity is constant over each patch,
ρ(x) = ρi, x ∈ Si, the following classical radiosity system of equations
results:

B′i = Bei + ρi

∑
j

FijB
′
j . (6.6)

The factors Fij are called patch-to-patch form factors:

Fij =
1
Ai

∫
Si

∫
Sj

K(x, y)dAydAx. (6.7)

The meaning and properties of these form factors are discussed in Sec-
tion 6.2. For the moment, the main thing to remember is that they are
nontrivial four-dimensional integrals.

Note that the radiosities B′i that result after solving the system of linear
equations (Equation 6.6) are only an approximation for the average radiosi-
ties (Equation 6.5). The true radiosity B(y), which was replaced by B′j in
the equations above, is in practice only very rarely piecewise constant! The
difference between Bi and B′i is, however, rarely visible in practice. For
this reason, we will denote both the average radiosity (Equation 6.5) and
the radiosity coefficients in Equation 6.6 by Bi in the remainder of this
text.

6.1.3 The Classic Radiosity Method

We are now ready to describe the steps of the classic radiosity method.
They are:

�

�

�

�

�

�

�

�

6.1. Classic Radiosity 157

1. Discretization of the input geometry into patches i. For each result-
ing patch i, a radiosity value (per considered wavelength) Bi will be
computed.

2. Computation of form factors Fij (Equation 6.7), for every pair of
patches i and j.

3. Numerical solution of the radiosity system of linear equations (Equa-
tion 6.6).

4. Display of the solution, including the transformation of the resulting
radiosity values Bi (one for each patch and considered wavelength)
to display colors. This involves tone mapping and gamma correction
(Section 8.2).

In practice, these steps are intertwined: for instance, form factors are
only computed when they are needed; intermediate results are displayed
during system solution; in adaptive and hierarchical radiosity [30, 64], dis-
cretization is performed during system solution, etc.

6.1.4 Problems

Each step of the classic radiosity method is nontrivial, but at first sight,
one would expect that Step 3, radiosity system solution, would be the
main problem: the size of the linear systems that need to be solved can
be very large (one equation per patch; 100,000 patches is quite common).
The radiosity system of linear equations is, in practice, very well-behaved,
so that simple iterative methods such as Jacobi or Gauss-Seidel iterations
converge after relatively few iterations.

The main problems of the radiosity method are related to the first
two steps:
Scene discretization. The patches should be small enough to capture illu-
mination variations such as near shadow boundaries: the radiosity B(x)
across each patch needs to be approximately constant. Figure 6.2 shows
the image artifacts that may result from an improper discretization. On
the other hand, the number of patches shouldn’t be too large, because this
would result in exaggerated storage requirements and computation times.

Form factor computation. First, even simple objects in a scene may have to
be tessellated into thousands of small patches each, on which the radiosity
can be assumed to be constant. For that reason, scenes with hundreds of
thousands of patches are quite normal. Between each pair of patches, a
form factor needs to be computed. The number of form factors can thus be
huge (billions) so that the mere storage of form factors in computer memory

�

�

�

�

�

�

�

�

158 6. Stochastic Radiosity

constant approximations "true" radiosity quadratic approximations

flat shaded Gouraud shaded

Figure 6.2. Meshing artifacts in radiosity with constant approximations (left) in-
clude undesired shading discontinuities along patch edges. Gouraud shading can
be used to blur these discontinuities. Wherever the radiosity varies smoothly, a
higher-order approximation of radiosity on each patch results in a more accurate
image on the same mesh (a quadratic approximation was used in the right col-
umn), but artifacts remain near discontinuities such as shadow boundaries. The
middle column shows the “true” radiosity solution (computed with bidirectional
path tracing).

is a major problem. Second, each form factor requires the solution of a
nontrivial, four-dimensional integral (Equation 6.7). The integral will be
singular for abutting patches, where the distance rxy in the denominator
of Equation 6.4 vanishes. The integrand can also exhibit discontinuities of
various degrees due to changing visibility (see Figure 6.3).

Figure 6.3. Form factor difficulties: The form factor integral (Equations 6.7
and 6.4) contains the square distance between points in the denominator. This
causes a singularity for abutting patches (left). Changing visibility introduces
discontinuities of various degrees in the form factor integrand (right). Due to
this problem, reliable form factor integration is a difficult task.

�

�

�

�

�

�

�

�

6.2. The Form Factors 159

Extensive research has been carried out in order to address these prob-
lems. Proposed solutions include custom algorithms form factor integration
(hemicube algorithm, shaft culling ray-tracing acceleration, etc.), discon-
tinuity meshing, adaptive and hierarchical subdivision, clustering, form
factor caching strategies, the use of view importance, and higher-order ra-
diosity approximations.

In the algorithms presented in this chapter, the latter problem is ad-
dressed by avoiding form factor computation and storage completely. This
results in more reliable algorithms (no problems with form factor compu-
tational error) that require less storage (no form factors need to be stored).
In addition, the presented algorithms are easier to implement and use and
result in images of reasonable quality, showing multiple interreflection ef-
fects, sometimes much more rapidly than other radiosity algorithms.

The former problem, discretization artifacts, will be addressed using
higher-order approximations, and—most importantly—hierarchical refine-
ment and clustering (Section 6.7).

6.2 The Form Factors

The robust and efficient computation of the form factors Fij between each
pair of input patches is a major problem with the classic radiosity method.
In this section, we will show that the form factors can be viewed as probabil-
ities, and we will present an overview of algorithms for sampling according
to form factor probabilities. The fact that form factors are probabilities
that can be sampled efficiently leads to algorithms that allow us to solve
the radiosity system of equations without the need to ever compute the
value of a form factor. These algorithms will be described in Sections 6.3
and 6.4.

6.2.1 Properties of the Form Factors

Recall that the form factor Fij is given by the following four-dimensional
integral (Equation 6.7):

Fij =
1
Ai

∫
Si

∫
Sj

K(x, y)dAxdAy

with

K(x, y) =
cos(Θxy, Nx) cos(−Θxy, Ny)

πr2xy

V(x, y).

�

�

�

�

�

�

�

�

160 6. Stochastic Radiosity

We will need the following properties of the form factors:

1. The form factors are all positive or zero in a scene consisting of closed,
opaque objects: they cannot be negative because the integrand is
positive or zero. They will be equal to zero for a pair of patches i
and j that are mutually invisible.

2. The form factors Fij between a patch i and all other patches j in a
scene sum to at most one. If the scene is closed, then

∑
j

Fij =
1
Ai

∫
Si

∑
j

∫
Sj

cos(Θxy, Nx) cos(−Θxy, Ny)
πr2xy

V(x, y)dAydAx

=
1
Ai

∫
Si

∫
S

cos(Θxy, Nx) cos(−Θxy, Ny)
πr2xy

V(x, y)dAydAx

=
1
Ai

∫
Si

1
π

∫
Ωx

cos(Θxy , Nx)dωΘxy
dAx

=
1
Ai

∫
Si

π

π
dAx

= 1.

If the scene is not closed, the sum of the form factors is less than 1.

3. The form factors satisfy the following reciprocity relation:

AiFij = Ai
1
Ai

∫
Si

∫
Sj

K(x, y)dAxdAy

= Aj
1
Aj

∫
Sj

∫
Si

K(y, x)dAydAx

= AjFji.

Any set of positive numbers that sums up to at most one can be re-
garded as probabilities. For that simple reason, the form factors Fij for
a fixed patch i with any other patch j can always be regarded as a set of
probabilities.

6.2.2 Interpretation of Form Factors

Let’s recall the radiosity equation (Equation 6.6):

Bi = Bei + ρi

∑
j

FijBj .

�

�

�

�

�

�

�

�

6.2. The Form Factors 161

This equation states that the radiosity Bi at a patch i is the sum of two
contributions. The first contribution consists of the self-emitted radiosity
Bei. The second contribution is the fraction of the irradiance (incident
radiosity, Section 2.3.1)

∑
j FijBj at i that gets reflected. The form factor

Fij indicates what fraction of the irradiance on i originates at j.
Recall also that radiosities and fluxes are related as Pi = AiBi and

Pei = AiBei (Chapter 2). By multiplying both sides of Equation 6.6 by Ai

and using the reciprocity relation (Equation 6.8) for the form factors, the
following system of linear equations relating the power Pi emitted by the
patches in a scene is obtained:

Bi = Bei + ρi

∑
j

FijBj

⇔ AiBi = AiBei + ρi

∑
j

AiFijBj

⇔ AiBi = AiBei + ρi

∑
j

AjFjiBj

⇔ Pi = Pei +
∑

j

PjFjiρi.

This system of equation states that the power Pi emitted by patch i also
consists of two parts: the self-emitted power Pei and the power received and
reflected from other patches j. The form factor Fji indicates the fraction of
power emitted by j that lands on i, or conversely, Fij indicates the fraction
of power emitted by i that lands on j.

Of course, since the form factor is a ratio of positive quantities (radiosity
or power), it can’t be negative, giving an intuitive explanation for the first
property of form factors above.

The second property (summation to 1) is also easy to see: since there
is conservation of radiance, the total amount of power emitted by i and
received on other patches j must equal Pi in a closed scene. In a nonclosed
scene, some part of the power Pi will disappear into the background, ex-
plaining why the sum of the form factors Fij will be less than 1 in that
case.

6.2.3 Form Factor Sampling Using Local Lines
The interpretation of a form factor being the fraction of power emitted by a
first patch i that lands on a second patch j immediately suggests that form
factors can be estimated by means of a very simple and straightforward
simulation (see Figure 6.4): Let i be the source of a number Ni of virtual
particles that behave like photons originating on a diffuse surface. The

�

�

�

�

�

�

�

�

162 6. Stochastic Radiosity

number Nij of these particles that land on the second patch j yields an
estimate for the form factor: Nij/Ni ≈ Fij .

Indeed, consider a particle originating at a uniformly chosen location
x on Si and being shot into a cosine-distributed direction Θ with regard
to the surface normal Nx at x. The probability density p(x,Θ) associated
with such a particle is

p(x,Θ) =
1
Ai
× cos(Θ, Nx)

π
.

Note that this PDF is properly normalized:∫
Si

∫
Ωx

p(x,Θ)dAxdωΘ =
∫

Si

1
Ai

∫
Ωx

cos(Θ, Nx)
π

dωΘdAx

=
1
Ai

∫
Si

π

π
dAx

= 1.

Now, let χj(x,Θ) be a predicate taking value 1 or 0 depending on
whether or not the ray shot from x into Θ hits a second patch j. The
probability Pij that such a ray lands on a second patch j then is

Pij =
∫

Si

∫
Ωx

χj(x,Θ)p(x,Θ)dAxdωΘ

=
∫

Si

∫
S

χj(x,Θ)
1
Ai

cos(Θxy , Nx) cos(−Θxy , Ny)
πr2xy

V(x, y)dAydAx

=
1
Ai

∫
Si

∫
Sj

cos(Θxy, Nx) cos(−Θxy, Ny)
πr2xy

V(x, y)dAydAx

= Fij .

When shooting Ni such particles from i, the expected number of hits on
patch j will be NiFij . As usual in Monte Carlo methods, the more particles
shot from i (greater Ni), the better the ratio Nij/Ni will approximate Fij .
The variance of this binomial estimator (Section 3.3.1) is Fij(1− Fij)/Ni.
This method of estimating form factors was proposed at the end of the
1980s as a ray-tracing alternative for the hemicube algorithm for form
factor computation [171, 167].

As mentioned before, however, we will not need to compute form factors
explicitly. The important thing for us is that the probability that a single
such particle hits a patch j equals the form factor Fij . In other words, if we
are given a patch i, we can select a subsequent patch j among all patches
in the scene, with probability equal to the form factor Fij , by shooting a
ray from i.

�

�

�

�

�

�

�

�

6.2. The Form Factors 163

Figure 6.4. Form factor sampling: (Left) The fraction of local lines hitting a
particular destination patch is an estimate for the form factor between source
and destination. Global lines (right) are constructed without reference to any of
the patches in the scene. Their intersection points with the surfaces in the scene
are, however, also uniformly distributed. The angle between these lines and the
normal on each intersected surface is cosine distributed, just like with local lines.
The intersection points define spans on each line. Each global line span can be
used bidirectionally for form factor computation between the connected patches.

6.2.4 Form Factor Sampling Using Global Lines

The algorithm of the previous section requires us to shoot so-called local
lines: lines with an origin and direction selected with regard to a particular
patch i in the scene. There exist, however, a number of algorithms for form
factor sampling based on uniformly distributed global lines. The origin and
direction of global lines is chosen irrespective of any particular surface in
the scene, for instance, by connecting uniformly distributed sample points
on a bounding sphere for the scene. It can be shown that the probability of
finding an intersection of such lines at any given surface location is uniform,
regardless of actual scene geometry. The construction and properties of
such lines have been studied extensively in the field of integral geometry
[155, 160, 161]. Several such sampling algorithms have been proposed for
use with radiosity (see, for instance, [160, 142, 128, 161, 189]).

Lines constructed like that will, in general, cross several surfaces in the
scene. The intersection points with the intersected surfaces define spans
of mutually visible patches along the line (see Figure 6.4). Each such
line span corresponds to two local cosine-distributed lines—one in both
directions along the line—because the global uniformly distributed lines
are uniformly distributed with regard to every patch in the scene. This is
unlike local lines, which are uniformly distributed only with regard to the
patch on which the origin was sampled.

It can be shown that the probability that a global uniform line, gen-
erated with the aforementioned algorithms, intersects a given patch i is

�

�

�

�

�

�

�

�

164 6. Stochastic Radiosity

proportional to the surface area Ai [161]. If N global lines are generated,
the number Ni of lines crossing a patch i will be

Ni ≈ N
Ai

AT
. (6.8)

It can also be shown that if Nij is the number of lines that have successive
intersections with the surfaces in the scene on patch i and j, then again

Nij

Ni
≈ Fij .

The main advantage of global lines over local lines is that geometric
scene coherence can be exploited in order to generate global lines more
efficiently; that is, for the same computation cost, more global line spans
can be generated than local lines.

The main limitation of global lines with regard to local lines is that
their construction cannot easily be adapted in order to increase or decrease
the line density on a given patch. In particular, when used for form factor
calculation, it can be shown that the form factor variance is approximately
inversely proportional to the area Ai of the source patch i. The variance
will be high on small patches.

6.3 Stochastic Relaxation Radiosity

This section and the next one (Section 6.4) cover radiosity algorithms that
solve the radiosity system of equations (Equation 6.6) using form factor
sampling as discussed in the previous section. We shall see that by doing
so, the form factor will appear in the numerator and denominator of the
mathematical expressions to be evaluated, so that their numerical value
will never be needed. Because of this, the difficult problems of accurately
computing form factors and their storage are simply avoided. These algo-
rithms therefore allow much larger models to be rendered with a fraction of
the storage cost of other radiosity algorithms. In addition, Monte Carlo ra-
diosity algorithms have a much better time complexity: roughly log-linear
in the number of patches rather than quadratic like their deterministic
counterparts. In short, they do not only require less storage, but for all
but the simplest models, they also finish in less computation time.

There are basically two approaches to solve the radiosity system of
linear equations (Equation 6.6) by means of Monte Carlo methods. This
section covers the first approach: stochastic relaxation methods; the next
section covers the second approach: discrete random walk methods.

�

�

�

�

�

�

�

�

6.3. Stochastic Relaxation Radiosity 165

The main idea of stochastic relaxation methods is that the radiosity
system is solved using an iterative solution method such as Jacobi, Gauss-
Seidel, or Southwell iterations [29, 172]. Each iteration of such a relaxation
method consists of sums: dot products of a row of the form factor matrix
with the radiosity or power vector. When these sums are estimated using a
Monte Carlo method, as explained in Section 3.4.2, a stochastic relaxation
method results.

6.3.1 The Jacobi Iterative Method for Radiosity

The Basic Idea

The Jacobi iterative method is a method to solve systems of linear equations
x = e + Ax using a very simple iteration scheme. Suppose a system with
n equations and n unknowns is to be solved. e, x, and any approximation
for x are n-dimensional vectors, or points in an n-dimensional Euclidean
space. The idea of the Jacobi iterative method is to start with an arbitrary
point x(0) in this space. During each iteration, a current point, say x(k), is
transformed into a next point x(k+1) by filling in x(k) into the right-hand
side of the equations: x(k+1) = e + Ax(k). It can be shown that if A is
a contraction, then the sequence of points x(k) will always converge to the
same point x, the solution of the system. The point x is also called the
fixed point of the iteration scheme. A is a contraction if its matrix norm is
strictly less than 1, meaning that repeated application of A will eventually
always reduce the distance between transformed points (see Figure 6.5).

The coefficient matrix in the radiosity or power system of equations
(Equation 6.6 or 6.8) fulfills this requirement. In the context of radios-
ity, vectors like x and e correspond to a distribution of light power over
the surfaces of a scene. L. Neumann [128] suggested viewing the distribu-
tion of light power in a scene as a point in such an n-dimensional space
and applying the iteration scheme sketched above. The radiosity or power
system matrix models a single bounce of light interreflection in the scene.
For instance, multiplication with the self-emitted radiosity or power vector
results in direct illumination. When applied to direct illumination, one-
bounce indirect illumination is obtained. Each Jacobi iteration consists of
computing a single bounce of light interreflection, followed by re-adding
self-emitted power. The equilibrium illumination distribution in a scene is
the fixed point of this process.

Neumann and others suggested numerous statistical techniques for sim-
ulating single-bounce light interreflection. The main advantage of these
methods over others to be discussed, based on random walks, lies in the
fact that simulating a single bounce of light interreflection is an easier
problem than simulating any number of bounces at once.

�

�

�

�

�

�

�

�

166 6. Stochastic Radiosity

Figure 6.5. The basic idea of the Jacobi iterative method in two dimensions. The
figure in the upper left has been repeatedly scaled down and rotated. As one
continues doing so, all points in the plane, including the figure, will be moved
towards the dot in the middle. The combination of a rotation and down-scaling
transform is a contractive transform. Eventually, all points in the plane are
moved closer to each other. The dot in the middle is the fixed point of the
transformation, applied repeatedly. In the same way, the right-hand side of the
radiosity or power system of equations contains a contractive transformation in
n-dimensional space, n being the number of patches. By repeatedly applying this
transformation to an arbitrary initial radiosity or power distribution vector, the
radiosity problem can be solved.

We will now make these statements concrete. First, we show three
slightly different ways that repeated single-bounce light interreflection steps
can be used in order to solve the radiosity problem. Then, we will focus
on the statistical simulation of single-bounce light interreflection.

Regular Gathering of Radiosity

Let’s first apply the above idea to the radiosity system of equations (Equa-
tion 6.6). As the starting radiosity distribution B

(0)
i = Bei, self-emitted

radiosity can be taken. A next approximation B
(k+1)
i is then obtained by

filling in the previous approximation B(k) in the right-hand side of Equa-
tion 6.6:

B
(0)
i = Bei

B
(k+1)
i = Bei + ρi

∑
j

FijB
(k)
j . (6.9)

�

�

�

�

�

�

�

�

6.3. Stochastic Relaxation Radiosity 167

A hemicube algorithm, for instance [28], allows us to compute all form
factors Fij for fixed patch i simultaneously. Doing so, iteration steps ac-
cording to the above scheme can be interpreted as gathering steps: in each
step, the previous radiosity approximations B(k)

j for all patches j are “gath-
ered” in order to obtain a new approximation for the radiosity B(k+1) at i.

Regular Shooting of Power

When applied to the power system, a shooting variant of the above iteration
algorithm follows:

P
(0)
i = Pei

P
(k+1)
i = Pei +

∑
j

P
(k)
j Fjiρi. (6.10)

Using a hemicube-like algorithm again [28], one can compute all form
factors Fji for fixed j and variable i at a time. In each step of the resulting
algorithm, the power estimate P (k+1)

i of all patches i, visible from j, will
be updated based on P (k)

j : j “shoots” its power towards all other patches i.

Incremental Shooting of Power

Each regular power-shooting iteration above replaces the previous approx-
imation of power P (k) by a new approximation P (k+1). Similar to progres-
sive refinement radiosity [31], it is possible to construct iterations in which
unshot power is propagated rather than total power. An approximation for
the total power is then obtained as the sum of increments ∆P (k) computed
in each iteration step:

∆P (0)
i = Pei

∆P (k+1)
i =

∑
j

∆P (k)
j Fjiρi

P
(k)
i =

k∑
l=0

∆P (l)
i .

Discussion

With deterministic summation, there is no difference between the results
after complete iterations with the above three iteration schemes. We will
see below, however, that they lead to quite different algorithms when the
sums are estimated stochastically.

�

�

�

�

�

�

�

�

168 6. Stochastic Radiosity

Note that the computation cost of each iteration is quadratic in the
number of patches.

6.3.2 Stochastic Jacobi Radiosity

We now discuss what happens if the sums in the above iteration formulae
are estimated using a Monte Carlo method. It was explained in Section
3.4.2 that sums can be estimated stochastically by randomly picking terms
from the sum according to some probability. The average ratio of the value
of the picked terms, over the probability by which they have been picked,
yields an unbiased estimate for the sum.

When applied to the above iteration formulae for radiosity, this pro-
cedure corresponds to a straightforward simulation of single bounce light
interreflection by tracing one-bounce photon paths (see Figure 6.6).

Stochastic Incremental Shooting of Power

Consider the incremental power shooting iterations above. For purely tech-
nical reasons, we write the sum

∑
j ∆P (k)

j Fjiρi above as a double sum, by
introducing Kronecker’s delta function δli = 1 if l = i and 0 if l �= i:

∆P (k+1)
i =

∑
j,l

∆P (k)
j Fjlρlδli. (6.11)

This double sum can be estimated stochastically using any of the form
factor sampling algorithms discussed in the previous section:

1. Pick terms (pairs of patches) (j, l) in either of the following ways:

(a) By local line sampling:

• Select a “source” patch j with probability pj proportional
to its unshot power:

pj = ∆P (k)
j /∆P (k)

T with: ∆P (k)
T =

∑
j

∆P (k)
j .

• Select a “destination” patch l with conditional probability
pl|j = Fjl by tracing a local line as explained in Section
6.2.3.

The combined probability of picking a pair of patches (j, l) is

pjl = pjpl|j = ∆P (k)
j Fjl/∆P

(k)
T . (6.12)

�

�

�

�

�

�

�

�

6.3. Stochastic Relaxation Radiosity 169

Algorithm 1 Incremental stochastic Jacobi iterative method.
1. Initialize total power Pi ← Pei, unshot power ∆Pi ← Pei, and received

power δPi ← 0 for all patches i and compute total unshot power ∆PT =�
i ∆Pi.

2. Until ‖∆Pi‖ ≤ ε or number of steps exceeds maximum, do

(a) Choose number of samples N .

(b) Generate a random number ξ ∈ (0, 1).

(c) Initialize Nprev ← 0; q ← 0.

(d) Iterate over all patches i, for each i, do

i. qi ← ∆Pi/∆PT .

ii. q ← q + qi.

iii. Ni ← �Nq + ξ� −Nprev.

iv. Do Ni times:

A. Sample random point x on Si.

B. Sample cosine-distributed direction Θ at x.

C. Determine patch j containing the nearest intersection point
of the ray originating at x and with direction Θ, with the
surfaces of the scene.

D. Increment δPj ← δPj + 1
N

ρj∆PT .

v. Nprev ← Nprev + Ni.

(e) Iterate over all patches i, increment total power Pi ← Pi + δPi, re-
place unshot power ∆Pi ← δPi, and clear received power δPi ← 0.
Compute new total unshot power ∆PT on the fly.

(f) Display image using Pi.

(b) By global line sampling (transillumination method [128, 191]), the
intersections of each global line (Section 6.2.4) with the surfaces in
the scene define spans of mutually visible pairs of points along the
line. Each such pair corresponds to a term (j, l) in the sum. The
associated probability is

pjl = AjFjl/AT .

2. Each picked term yields a score equal to the value of that term divided
by its probability pjl. The average score is an unbiased estimate for
∆P (k+1)

i . Estimation with N local lines, for instance, yields

1
N

N∑
s=1

∆P (k)
js
Fjs,lsρlsδls,i

∆P (k)
js
Fjs,ls/∆P

(k)
T

= ρi∆P
(k)
T

Ni

N
≈ ∆P (k+1)

i . (6.13)

Ni =
∑N

s=1 δls,i is the number of local lines that land on i.

�

�

�

�

�

�

�

�

170 6. Stochastic Radiosity

Figure 6.6. Stochastic Jacobi radiosity in action. (Top left) The initial approxi-
mation: self-emitted illumination; (top middle) propagation of self-emitted power
by shooting cosine-distributed rays from the light source; (top right) this step re-
sults in a first approximation of direct illumination. The next rows (1b)–(1d)
illustrate subsequent incremental shooting steps. In each step, the illumination
received during the previous step is propagated by shooting cosine-distributed
rays. The number of rays is chosen proportional to the amount of power to be
propagated so that all rays carry the same amount. After a while, the power to
be distributed, and the number of rays, drops below a small threshold. When
this happens ((1d), right), a first “complete” radiosity solution is available. This
initial solution shows the effect of all relevant higher-order interreflections of light
but can be noisy. From that point on, the total power is propagated in so-called
regular shooting steps (bottom row). Regular shooting iterations result in new
complete solutions, which are, to very good approximation, independent of the
input. Noise is reduced by averaging these complete solutions.

�

�

�

�

�

�

�

�

6.3. Stochastic Relaxation Radiosity 171

The procedure above can be used to estimate ∆P (k+1)
i for all patches i

simultaneously. The same samples (rays or photons) (js, ls) can be used.
The difference is only in the scores (Equation 6.13), which basically requires
us to count the number of rays hitting each patch. With stratified local
line sampling, Algorithm 1 results.

Stochastic Regular Shooting of Power

The sums in regular power-shooting iterations (Equation 6.10) can be es-
timated using a very similar Monte Carlo method as described above for
incremental power shooting. The first stochastic Jacobi radiosity algo-
rithms, proposed by L. and A. Neumann et al. [123], consisted entirely of
such iterations. Unlike its deterministic counterpart, the resulting radiosity
solutions of each iteration are averaged, rather than having the result of a
new iteration replace the previous solution. The main disadvantage of using
only regular iterations is that higher-order interreflections appeared in the
result only at a slow pace, especially in bright environments. This problem
has been called the warming-up or burn-in problem [123, 128, 124, 127].

The warming-up problem can be avoided by first performing a sequence
of incremental power-shooting iterations until convergence is obtained, as
explained above. This results in a first complete radiosity solution, includ-
ing higher-order interreflections. Especially when the number of samples
N is rather low, this first complete solution will exhibit noisy artifacts.
Stochastic regular power-shooting iterations can then be used in order to
reduce these artifacts. A regular power-shooting iteration can be viewed
as a transformation, transforming a first complete radiosity solution into a
new complete one. It can be shown that the output is largely independent
of the input. The average of the two radiosity distributions obtained sub-
sequently is to good approximation the same as the result of one iteration
with twice the number of samples. Figure 6.6 illustrates this process.

Stochastic Regular Gathering of Radiosity

Regular radiosity gathering iterations (Equation 6.9) can be converted into
a stochastic variant using the procedure outlined above. The main differ-
ence with power-shooting iterations is that now, a new radiosity estimate
is obtained as the average score associated with rays that are shot from
each patch i, rather than from rays that land on i. Gathering iterations
are mainly useful to clean up noisy artifacts from small patches, which have
a small chance of being hit by rays in a shooting iteration and therefore
exhibit a high variance.

�

�

�

�

�

�

�

�

172 6. Stochastic Radiosity

6.3.3 Discussion
Several questions remain to be answered: how shall the number of samples
N be chosen; when will the presented algorithms perform well and when
will they be suboptimal; and how do they compare? A variance analysis
allows us to answer these questions.

The most expensive operation in the algorithms above is ray shooting.
The number of rays that needs to be shot in order to compute the radiosities
in the scene to given accuracy with given confidence is determined by the
variance of the involved estimators.

Incremental Shooting

A detailed analysis of the stochastic incremental shooting algorithm is pre-
sented in Appendix C. The results of this analysis can be summarized as
follows:

• The variance on the resulting radiosity estimates B̃i for each patch i
is, to good approximation, given by

V [B̂i] ≈
PT

N

ρi(Bi −Bei)
Ai

. (6.14)

In particular, it is inversely proportional to the surface area Ai, mean-
ing that incremental shooting will not be the optimal solution for
small patches. Regular gathering does not have this drawback and
can be used in order to clean up noisy artifacts on small patches.

• The number of samples N in Step 2 (a) of Algorithm 1 shall be chosen
proportional to the amount of power ∆P (k)

T to be propagated in each
iteration, so that rays always carry the same amount of power. A
heuristic for the total number of rays in a sequence of iterations until
convergence is

N ≈ 9 ·max
i

ρiAT

Ai
. (6.15)

In practice, it makes a lot of sense to skip, for instance, the 10% of
patches in a scene with the largest ratio ρi/Ai. Note that a rough
heuristic for N suffices: a higher accuracy can always be obtained by
averaging the result of several independent runs of the algorithm.

• The time complexity of the stochastic Jacobi iterative algorithms for
radiosity is roughly log-linear. This is much lower than the quadratic
time complexity of deterministic Jacobi iterations.

Figure 6.7 illustrates that stochastic relaxation can yield useful images
faster than corresponding deterministic relaxation algorithms.

�

�

�

�

�

�

�

�

6.3. Stochastic Relaxation Radiosity 173

Figure 6.7. Stochastic relaxation methods can yield useful images much faster
than their deterministic counterparts. The environment shown consists of slightly
more than 30,000 patches. The top image was obtained with incremental stochas-
tic power-shooting iterations in about 10 seconds on a 2GHz Pentium-4 PC, using
about 106 rays. Even if only 1 ray were used for each form factor, 9 · 108 rays
would be required with a deterministic method. Noisy artifacts are still visible
but are progressively reduced using regular stochastic power-shooting iterations.
After about 3 minutes, they are not visible anymore.

This progressive variance reduction is illustrated in the bottom images,
shown without Gouraud shading to make noisy artifacts more visible. The
shown images have been obtained after 1, 4, 16, 64, and 252 (right-to-left, top-to-
bottom) iterations of about 10 seconds each. The model shown is an edited part
of the Soda Hall VRML model made available at the University of California at
Berkeley.

�

�

�

�

�

�

�

�

174 6. Stochastic Radiosity

Regular Shooting

A similar analysis of the variance of regular shooting iterations shows that
the variance of a regular shooting iteration, when used with a “complete”
radiosity solution as its input, is the same as for a whole sequence of in-
cremental iterations to convergence when the total number of rays being
shot is the same. The variance is also given by Equation 6.14. For this
reason, the “complete” radiosity results obtained by a sequence of incre-
mental iterations to convergence, and of subsequent regular iterations, are
optimally combined by simple averaging.

Regular Gathering

The variance of regular gathering is in practice most often higher than
that of shooting, but it does not depend on the patch area. Gathering can
therefore be useful in order to “clean” noisy artifacts from small patches,
which have a small chance of being hit by shooting rays from elsewhere
and can suffer from a large variance with shooting.

Other Stochastic Relaxation Methods for Radiosity

It is possible to design stochastic adaptations of other relaxation methods
in the same spirit. Shirley has investigated algorithms that can be viewed
as stochastic incremental Gauss-Seidel and Southwell algorithms [167, 169,
168]. Bekaert has studied stochastic adaptations of over-relaxation, Cheby-
shev’s iterative method, and the conjugate gradient method (suggested by
L. Neumann). These relaxation methods have been developed in the hope
of reducing the number of iterations to convergence. Since the determin-
istic iterations have a fixed computation cost, strongly related to the size
of a linear system, reducing the number of iterations clearly reduces the
total computation cost to convergence. This is, however, not so with the
stochastic variants. The computation cost of stochastic relaxation methods
is dominated by the number of samples to be taken. The number of sam-
ples is only loosely related to the size of the system. In the radiosity case,
it turns out that the simple stochastic Jacobi iterations described above
are at least as good as other stochastic relaxation methods.

6.4 Discrete Random Walk Methods for Radiosity

In the previous section, a first class of stochastic methods was described for
solving the radiosity system of equations (Equation 6.6) or the equivalent
power system (Equation 6.8) by means of stochastic variants of well-known
iterative solution methods for linear systems, such as the Jacobi iterative

�

�

�

�

�

�

�

�

6.4. Discrete Random Walk Methods for Radiosity 175

method. It was shown that form factor computation and storage is effec-
tively avoided, allowing us to compute radiosity in large models with less
computer storage and less computing time than their deterministic coun-
terparts.

This section covers a second class of methods with identical properties.
The methods discussed here are based on the concept of a random walk in
a so-called discrete state space, explained in Section 6.4.1. Unlike stochas-
tic relaxation methods, random walk methods for linear systems are well
covered in Monte Carlo literature [62, 183, 61, 43, 153]. They have been
proposed for solving linear systems similar to the radiosity system since the
beginning of the 1950s [50, 224]. Their application to radiosity has been
proposed in [161, 162].

It turns out that these algorithms are not better than the stochas-
tic Jacobi algorithm of the previous section. We will, however, introduce
a number of fundamental concepts that are needed in later sections and
chapters, but that are easier to understand first in this context.

6.4.1 Random Walks in a Discrete State Space

Consider the following experiment, involving a set of n urns, labeled i,
i = 1, . . . , n. One of the urns contains a ball, subject to the following
“game of chance”:

• The ball is initially inserted in a randomly chosen urn. The prob-
ability that the ball is stored in urn i, i = 1, . . . , n, is πi. These
probabilities are, of course, properly normalized:

∑n
i=1 πi = 1. They

are called source or birth probabilities.

• The ball is randomly moved from one urn to another. The probabil-
ity pij of moving the ball from urn i to urn j is called the transition
probability. The transition probabilities from a fixed urn i need not
sum to one. If the ball is in urn i, then the game will be terminated
with probability αi = 1 −

∑n
j=1 pij . αi is called the termination or

absorption probability at urn i. The sum of the transition probabil-
ities and the termination probability for any given urn is equal to
unity.

• The previous step is repeated until termination is sampled.

Suppose the game is played N times. During the games, a tally is kept
of how many times each urn i is “visited” by the ball. It is then interesting
to study the expected number of times Ci that the ball will be observed in

�

�

�

�

�

�

�

�

176 6. Stochastic Radiosity

each urn i. It turns out that

Ci = Nπi +
n∑

j=1

Cjpji.

The first term on the right-hand side of this equation indicates the
expected number of times that a ball is initially inserted in urn i. The
second term indicates the expected number of times that a ball is moved
to urn i from another urn j.

Usually, the urns are called states and the ball is called a particle. The
game of chance outlined above is an example of a discrete random walk
process. The process is called discrete because the set of states is countable.
In Section 6.5, we will encounter random walks in a continuous state space.
The expected number of visits Ci per random walk is called the collision
density χi . The collision density of a discrete random walk process with
source probabilities πi and transition probabilities pij is the solution of a
linear system of equations:

χi = πi +
n∑

j=1

χjpji. (6.16)

Note that χi can be larger than unity. For this reason, χi is called the
collision density rather than a probability. In summary, we have shown that
at least a certain class of linear systems of equations, like the one above,
can be solved by simulating random walks and keeping count of how often
each state is being visited. The states of the random walk correspond to
the unknowns of the system.

6.4.2 Shooting Random Walk Methods for Radiosity
The system of equations in Equation 6.16 is similar to the power system
(Equation 6.8):

Pi = Pei +
∑

j

PjFjiρi.

However, the source terms Pei in the power system do not sum to one.
Of course, the remedy is very easy: divide both sides of the equations by
the total self-emitted power PeT =

∑
i Pei:

Pi

PeT
=

Pei

PeT
+
∑

j

Pj

PeT

Fjiρi.

�

�

�

�

�

�

�

�

6.4. Discrete Random Walk Methods for Radiosity 177

This system of equations suggests a discrete random walk process with:

• Birth probabilities πi = Pei/PeT : particles are generated randomly
on light sources, with a probability proportional to the self-emitted
power of each light source.

• Transition probabilities pij = Fijρj : first, a candidate transition
is sampled by tracing, for instance, a local line (Section 6.2.3).1

After candidate transition, the particle is subjected to an accep-
tance/rejection test with survival probability equal to the reflectivity
ρj . If the particle does not survive the test, it is said to be absorbed.

By simulating N random walks in this way, and keeping a count Ci of
random walk visits to each patch i, the light power Pi can be estimated as

Ci

N
≈ Pi

PeT
. (6.17)

Because the simulated particles originate at the light sources, this ran-
dom walk method for radiosity is called a shooting random walk method.
It is called a survival random walk estimator because particles are only
counted if they survive the rejection test (see Figure 6.8).

Usually, particles at the light source are not counted, because they
estimate the self-emitted light distribution, which is known. We call this
source term estimation suppression.

Collision Estimation

Transition sampling as described above is suboptimal. Candidate transition
sampling involves an expensive ray-shooting operation. If the candidate
transition is not accepted, this expensive operation has been performed in
vain. This will often be the case if a dark surface is hit. It will always be
more efficient to count the particles visiting a patch, whether they survive
or not. The estimates (Equation 6.17) then, of course, need to be reduced
in order to compensate for the fact that too many particles are counted.
The resulting collision random walk estimates are

ρi
C′i
N
≈ Pi

PeT
. (6.18)

C′i denotes the total number of particles hitting patch i. The expected
number of particles that survive on i is ρiC

′
i ≈ Ci.

1Similar algorithms based on global line sampling have been proposed as well [157,
161].

�

�

�

�

�

�

�

�

178 6. Stochastic Radiosity

absorption collision survival

Figure 6.8. Absorption, collision, and survival random walk estimators differ by
when particle hits are counted: only when they are absorbed, only when they
survive impact with a surface, or always. The black dots indicate when a particle
is counted; a white dot indicates hits at which it is not counted. The score,
recorded when a particle is counted, reflects this choice. Absorption, collision,
and survival estimation are not the only possibilities. The bottom row shows
some alternatives described in the literature.

Absorption Estimation

A third, related, random walk estimator only counts particles if they are
absorbed. The resulting absorption random walks estimates are

ρi

1− ρi

C ′′i
N
≈ Pi

PeT

. (6.19)

C′′i denotes the number of particles that are absorbed on i. It fulfills
C ′i = Ci + C′′i . The expected number of particles being absorbed on i
is (1 − ρi)C ′i ≈ C′′i . The collision estimator is usually, but not always,
more efficient than the absorption estimator. A detailed comparison can
be made by computing the variance of the random walk methods (Section
6.4.4).

6.4.3 Adjoint Systems, Importance or Potential,
and Gathering Random Walk Methods for Radiosity

The estimators above are called shooting estimators, because they simu-
late the trajectory of imaginary particles that originate at a light source.
The particles are counted whenever they hit a patch of which we want
to estimate the light power. Alternatively, it is also possible to estimate

�

�

�

�

�

�

�

�

6.4. Discrete Random Walk Methods for Radiosity 179

the radiosity on a given patch i, by means of particles that originate at i
and that are counted when they hit a light source. Such gathering random
walk estimators can be derived in a brute force manner, analogous to the
development of the path-tracing algorithm in Chapter 5. There is, how-
ever, also a more elegant, although slightly more abstract, interpretation
of gathering random walk estimators: a gathering random walk estimator
corresponds to a shooting random walk estimator for solving an adjoint
system of equations.

Adjoint systems of equations. Consider a linear system of equations Cx =
e, where C is the coefficient matrix of the system, with elements cij ; e is
the source vector; and x is the vector of unknowns. A well-known result
from algebra states that each scalar product 〈x,w〉 =

∑n
i=1 xiwi of the

solution x of the linear system, with an arbitrary weight vector w, can also
be obtained as a scalar product 〈e,y〉 of the source term e with the solution
of the adjoint system of linear equations C
y = w:

〈w,x〉 = 〈C
y,x〉 = 〈y,Cx〉 = 〈y, e〉.

C
 denotes the transpose of the matrix C: if C = {cij}, then C
 = {cji}.
The second equality in the derivation above is a fundamental property of
scalar products, which is extremely easy to verify yourself.

Adjoints of the radiosity system, and the concept of importance or poten-
tial. Adjoint systems corresponding to the radiosity system of equations
(Equation 6.6) look like:

Yi = Wi +
∑

j

YjρjFji. (6.20)

These adjoint systems and the statement above can be interpreted as
follows (see Figure 6.9): Consider the power Pk emitted by a patch k.
Pk can be written as a scalar product Pk = AkBk = 〈B,W 〉 with Wi =
Aiδik: all components of the direct importance vector W are 0, except
the kth component, which is equal to Wk = Ak. The statement above
implies that Pk can also be obtained as Pk = 〈Y,E〉 =

∑
i YiBei, which

is a weighted sum of the self-emitted radiosities at the light sources in
the scene. The solution Y of the adjoint system (Equation 6.20) indicates
to what extent each light source contributes to the radiosity at k. Y is
called the importance or potential in the literature [181, 140, 25]; see also
Section 2.7.

Gathering random walk estimators for radiosity. The adjoints (Equation
6.20) of the radiosity system also have the indices of the form factors in the

�

�

�

�

�

�

�

�

180 6. Stochastic Radiosity

Figure 6.9. Duality between gathering and shooting in radiosity. The light flux
emitted by the patch shown in bright in the top right image can be obtained
in two ways: 1) as the scalar product of radiosity B (top left) and the response
or measurement function W (top right), and 2) as the scalar product of the
self-emitted radiosity E (bottom left) with importance Y (bottom right).

right order, so they can be solved using a random walk simulation with tran-
sitions sampled with local or global lines. The particles are now, however,
shot from the patch of interest (πi = δki), instead of from the light sources.
The transition probabilities are pji = ρjFji: First, an absorption/survival
test is performed. If the particle survives, it is propagated to a new patch,
with probabilities corresponding to the form factors. A nonzero contribu-
tion to the radiosity of patch k results whenever the imaginary particle hits
a light source. Its physical interpretation is that of gathering.

The gathering random walk estimator described here is a collision esti-
mator. It is possible to construct a survival or absorption gathering esti-
mator as well. A survival gathering random walk estimator will only count
particles that survive on a hit light source, for instance.

6.4.4 Discussion
Discrete random walk estimators for radiosity thus can be classified accord-
ing to the following criteria:

• Whether they are shooting or gathering.

�

�

�

�

�

�

�

�

6.4. Discrete Random Walk Methods for Radiosity 181

estimator score s̃(j0, . . . , jτ) variance V [s̃]

absorption ρk

Ak

PeT

1−ρk
δjτ k

ρk

Ak

PeT

1−ρk
bk − b2k

collision ρk

Ak
PeT

∑τ
t=1 δjtk

ρk

Ak
PeT (1 + 2ζk)bk − b2k

survival 1
Ak
PeT

∑τ−1
t=1 δjtk

1
Ak
PeT (1 + 2ζk)bk − b2k

Table 6.1. Score and variance of discrete shooting random walk estimators for
radiosity.

• According to where they generate a contribution: at absorption, sur-
vival, at every collision.

In order to make statements about how these variants compare with
each other and with the stochastic Jacobi method discussed in the previ-
ous section, the variance of these methods needs to be computed. Except
for the variance of the absorption estimators, which are simple hit-or-miss
estimators, the calculation of random walk variances is fairly complicated
and lengthy. The results are summarized in Tables 6.1 and 6.2. The deriva-
tion of these results can be found in [161, 162, 15].

In Table 6.1, j0 is the patch at which a random walk originates. It is a
patch on a light source in the scene, chosen with probability proportional to
its self-emitted power. j1, . . . , jτ are the patches subsequently visited by the
random walk. Transitions are sampled by first doing a survival/absorption
test, with survival probability equal to the reflectivity. After survival, the
next visited patch is selected with probability equal to the form factor,
by tracing local or global lines. τ is the length of the random walk: The
random walk is absorbed after hitting the patch jτ . The expectation of all
these estimators is equal to the non-self-emitted radiosity bk = Bk − Bek

at a patch k (source term estimation is suppressed). ζk is the recurrent
radiosity at k: If k is the only source of radiosity, with unit strength, the
total radiosity on k would be larger than 1, say Ik, because other patches
in the scene reflect part of the light emitted by k back to k. The recurrent
radiosity then would be ζk = Ik − 1. The recurrent radiosity also indicates
the probability that a random walk visiting a patch k will return to k.
Usually, this probability is very small, and the terms containing ζk can be
ignored.

Table 6.2 shows the score and variance of discrete gathering random
walks. The expectation is bk = Bk − Bek, as well, but this time k refers
to the patch on which the random walk originates: k = j0. Transitions are
sampled exactly as for shooting random walks. bks is the radiosity at k

�

�

�

�

�

�

�

�

182 6. Stochastic Radiosity

estimator score s̃(j0 = k, . . . , jτ) variance V [s̃k]

absorption ρk
Bejτ

1−ρjτ
ρk

∑
s

Bes

1−ρs
bks − b2k

collision ρk

∑τ
t=1Bejt ρk

∑
s (Bes + 2bs)bks − b2k

survival ρk

∑τ−1
t=1

Bejt

ρjt
ρk

∑
s

Bes+2bs

ρs
bks − b2k

Table 6.2. Score and variance of discrete gathering random walk estimators for
radiosity.

due to the light source s, received directly or via interreflections from other
patches: bk =

∑
s bks.

Shooting versus Gathering

The variance expressions in Tables 6.1 and 6.2 allow us to make a detailed
theoretical comparison of discrete shooting and gathering random walks.
The shooting estimators have lower variance, except on small patches,
which have low probability of being hit by rays shot from light sources.
Unlike shooting estimators, the variance of gathering estimators does not
depend on the patch area Ak. For sufficiently small patches, gathering will
be more efficient. Gathering could, like in the case of stochastic relaxation
methods, be used in order to “clean” noisy artifacts on small patches after
shooting.

Absorption, Survival, or Collision?

The variance results in Tables 6.1 and 6.2 also indicate that the survival
estimators are always worse than the corresponding collision estimators,
because the reflectivity ρk (shooting) or ρs (gathering) is always smaller
than 1.

As a rule, the collision estimators also have lower variance than the
absorption estimators:

• Shooting estimators: the recurrent radiosity ζk is, in general, negli-
gible and 1− ρk < 1.

• Gathering estimators: as a rule, self-emitted radiosity Bes of a light
source is much larger than the non-self-emitted radiosity bs, and
again, 1− ρs < 1.

These results hold when transitions are sampled according to the form
factors. When the transition probabilities are modulated, for instance, to
shoot more rays into important directions (Section 6.6.1), an absorption

�

�

�

�

�

�

�

�

6.4. Discrete Random Walk Methods for Radiosity 183

estimation can sometimes be better than a collision estimator. In particu-
lar, it can be shown that a collision estimator can never be perfect, because
random walks can contribute a variable number of scores. An absorption
estimator always yields a single score, so it does not suffer from this source
of variance. For this reason, absorption estimators can be made perfect, at
least in theory.

Discrete Collision Shooting Random Walks versus
Stochastic Jacobi Relaxation

According to Table 6.1, the variance of NRW discrete collision shooting
random walks is approximately

V RW

NRW
≈ 1
NRW

ρk

Ak
PeT (Bk −Bek).

The variance of incremental power shooting (Equation 6.14) with NSR

rays is approximately

V SR

NSR
≈ 1
NSR

ρk

Ak
PT (Bk −Bek).

It can be shown that NRW random walks result on the average in
NRWPT /PeT rays to be shot. Filling in NSR = NRWPT/PeT in the ex-
pression above thus indicates that for the same number of rays, discrete
collision shooting random walks and incremental power-shooting Jacobi it-
erations are approximately equally efficient. This observation has been
confirmed in experiments [11].

This rather unexpected result can be understood as follows. Both algo-
rithms have an intuitive interpretation in the sense of particles being shot
from patches. The particles have a uniform starting position on the patches,
and they have cosine-distributed directions with regard to the normal on
the patches. The number of particles shot from each patch is proportional
to the power propagated from the patch. Since the two methods compute
the same result, the same number of particles will be shot from each of the
patches. If the same random numbers are also used to shoot particles from
each patch, the particles themselves can also be expected to be the same.
The main difference is the order in which the particles are shot: they are
shot in “breadth-first” order in stochastic relaxation and in “depth-first”
order with random walks (see Figure 6.10). For the variance, this makes
no difference.

There are, however, other, more subtle differences between the algo-
rithms, in particular in the survival sampling: In the random walk algo-
rithm, the decision whether a particle will survive on a patch or not is

�

�

�

�

�

�

�

�

184 6. Stochastic Radiosity

Stochastic Jacobi Random Walk

Figure 6.10. This figure illustrates the difference in order in which particles are
shot in stochastic Jacobi iterations (“breadth-first” order) and in collision shoot-
ing random walk radiosity (“depth-first” order). Eventually, the shot particles
are very similar.

made independently for all particles. In stochastic relaxation radiosity, the
decision is made once for a group of particles that landed on a patch dur-
ing a previous iteration step. For instance, if 10 particles land on a patch
with reflectivity 0.45, in the random walk method, any number of particles,
ranging from 0 to 10, might survive on the patch. In the stochastic relax-
ation algorithm, the number of surviving particles will be 4 or 5. In both
cases, the average will be 4.5. Experiments with very simple scenes, such
as an empty cube, where recurrent radiosity ζk is important, do reveal a
different performance [11].

The conclusion that stochastic Jacobi iterations and random walks are
equally efficient is also no longer true when higher-order approximations
are used, or with low-discrepancy sampling, or in combination with vari-
ance reduction techniques. Many variance-reduction techniques and low-
discrepancy samplings are easier to implement and appear more effective
for stochastic relaxation than with random walks (see Section 6.6).

6.5 Photon Density Estimation Methods

The algorithms discussed in Sections 6.3 and 6.4 solved the radiosity system
of linear equations (Equation 6.6) stochastically. By sampling according to
the form factors, the numerical value for the form factors was never needed.
In this section, we will discuss a number of random walk methods that are
highly related to those of Section 6.4, but that solve the radiosity integral
equation (Equation 6.3), or the general rendering equation (Equation 6.2),
rather than the radiosity system of equations. Indeed, just like discrete
random walks are used to solve linear systems, random walks in a contin-
uous state space can be used to solve integral equations like the radiosity
or rendering integral equation. They are, therefore, sometimes also called
continuous random walk radiosity methods.

�

�

�

�

�

�

�

�

6.5. Photon Density Estimation Methods 185

The random walks that are introduced in this section are nothing but
simulated trajectories of photons emitted by light sources and bouncing
throughout a scene, as dictated by the laws of light emission and scattering
described in Chapter 2. The surface hit points of these photons are recorded
in a data structure, for later use. An essential property of such particle hit
points is that their density at any given location (the number of hits per
unit of area) is proportional to the radiosity at that location (Section 6.5.1).
This density can be estimated at any surface location where this needs to
be done, by means of density estimation methods known from statistics
[175]. The basic density estimation methods that have been used for global
illumination are covered in Sections 6.5.2 through 6.5.5. In addition, the
instant radiosity algorithm by Keller [91] fits in this class (Section 6.5.6).

The main benefit of this approach is that nondiffuse light emission and
scattering can be taken into account to a certain extent. Just like the meth-
ods of the previous sections, the methods described here do not allow us
to solve the rendering equation exactly at every surface point. Still, some
world-space representation of the illumination on the surfaces in the scene
needs to be chosen, with corresponding approximation errors like blurred
shadow boundaries or light leaks. However, photon density estimation
methods open the way to more sophisticated and pleasing representations
of the illumination than the average radiosity on surface patches. For this
reason, they have gained considerable importance and attention in the last
years. In the photon-mapping method, for instance, [83], the representa-
tion of illumination is independent of scene geometry. This allows us to
use nonpolygonized geometry representations, procedural geometry such as
fractals, and object instantiation in a straightforward manner.

6.5.1 Photon Transport Simulation and Radiosity

Photon trajectory simulation, according to the laws of physics as outlined
in Chapter 2, is called analog photon trajectory simulation. We start by
explaining how analog photon trajectory simulation works and how it can
be used for computing radiosity. Figure 6.11 illustrates this process.

We start out (1a) by selecting an initial particle location x0 on a light
source. We do that with a (properly normalized) probability proportional
to the self-emitted radiosity:

S(x0) =
Be(x0)
PeT

. (6.21)

x0 is the starting point for a random walk. S(x0) is called the birth or
source density.

�

�

�

�

�

�

�

�

186 6. Stochastic Radiosity

Figure 6.11. Analog photon transport simulation, from the selection of an initial
particle location to absorption.

Next, an initial particle direction Θ0 is selected using the directional
light emission distribution of the light source at x0, times the outgoing
cosine. For a diffuse light source (1b),

T (Θ0|x0) =
cos(Θ0, Nx0)

π
.

Consider now a ray shot from the sampled location x0 into the selected
direction Θ0. The density of hit points x1 of such rays with object surfaces
depends on surface orientation, distance, and visibility with regard to x0:

T (x1|x0,Θ0) =
cos(−Θ0, Nx1)

r2x0x1

V(x0, x1).

The transparent surface in (1c) shows this density on the bottom surface
of the shown model. In (1d), the density of incoming hits is shown, taking

�

�

�

�

�

�

�

�

6.5. Photon Density Estimation Methods 187

into account these geometric factors as well as the (diffuse) light emission
characteristics at x0:

T in(x1|x0) = T (Θ0|x0)T (x1|x0,Θ0)

=
cos(Θ0, Nx0) cos(−Θ0, Nx1)

πr2x0x1

V(x0, x1) = K(x0, x1).

Next, (2a), a survival test is carried out at the obtained surface hit point
x1: A random decision is made whether or not to sample absorption (and
path termination) or reflection. We take the probability σ(x1) of sampling
reflection equal to the albedo ρ(x1,−Θ0), the fraction of power coming in
from x0 that gets reflected at x1. For a diffuse surface, the albedo is the
same as the reflectivity ρ(x1). The full transition density from x0 to x1 is
thus

T (x1|x0) = T in(x1|x0)σ(x1) = K(x0, x1)ρ(x1). (6.22)

If survival is sampled, a reflected particle direction is chosen according
to the BRDF times the outgoing cosine. For a diffuse surface, again only
the outgoing cosine remains (2b).

Subsequent transitions are sampled in the same way, by shooting a ray,
performing a survival test, and sampling reflection if the particle is not
absorbed. Image (2c) shows the influence of surface orientation, distance,
and visibility on the left surface of the scene with regard to x1. (2d) shows
the combined effect of the cosine distribution at x1 and the former. The
third and fourth rows of Figure 6.11 illustrate the process twice more, this
time for nondiffuse reflection.

Now, consider the expected number χ(x) of particle hits resulting from
such a simulation, per unit of area near a surface location x. This particle
hit density consists of two contributions: the density of particles being
born near x, as given by S(x), and the density of particles visiting x after
visiting some other surface location y. The density of particles coming from
elsewhere depends on the density χ(y) elsewhere and the transition density
T (x|y) to x:

χ(x) = S(x) +
∫

S

χ(y)T (x|y)dAy.

For a diffuse environment, the birth and transition density are given by
Equations 6.21 and 6.22:

χ(x) =
Be(x)
PeT

+
∫

S

χ(y)K(y, x)ρ(x)dAy ⇒ χ(x) =
B(x)
PeT

. (6.23)

In other words, the number of particle hits per unit area expected near
a surface location x is proportional to the radiosity B(x). We have derived

�

�

�

�

�

�

�

�

188 6. Stochastic Radiosity

Figure 6.12. The density of particle hits after a photon transport simulation
according to the physics of light emission and scattering, is proportional to the
radiosity function. These images show the particle hits of 1,000, 10,000, 100,000,
and 1,000,000 paths, respectively.

this result for diffuse environments here, but also with nondiffuse light
emission and scattering, the particle hit density after analog simulation will
be proportional to the radiosity. This is illustrated in Figure 6.12. This is,
of course, not a surprise: it is our mental model of how nature works, and
which we simulate in a straightforward manner on the computer.

The problem of computing radiosity has thus been reduced to the prob-
lem of estimating particle hit densities: to estimating the number of particle
hits per unit area at a given surface location. The problem of estimating a
density like that, given nothing more than a set of sample point locations,
has been studied intensively in statistics [175]. The next sections cover
the main density estimation methods that have been applied in the con-
text of rendering: histogram methods, orthogonal series estimation, kernel
methods, and nearest neighbor methods.

An alternative, equivalent point of view is to regard the problem at hand
as a Monte Carlo integration problem: we want to compute integrals of the
unknown radiosity function B(x) with a given measurement, or response,
function M(x) (see also Section 2.8):

BM =
∫

S

M(x)B(x)dAx.

The radiosity B(x), and thus the integrand, cannot be evaluated a
priori, but since analog simulation yields surface points xs with density
χ(xs) = B(xs)/PeT , M can be estimated as

BM ≈
1
N

nr of hits∑
s=1

M(xs)B(xs)
B(xs)/PeT

=
PeT

N

nr of hits∑
s=1

M(xs).

�

�

�

�

�

�

�

�

6.5. Photon Density Estimation Methods 189

Basically, all we have to do is simulate a number of photon trajec-
tories and accumulate the value of measurement function M(xs) at the
photon surface hit points xs.2 The measurement functions corresponding
to histogram methods, orthogonal series estimation, and kernel methods
are described below.

Note that the procedure explained here corresponds closely with the
survival estimator in Section 6.4.1: Particles are only taken into account
after surviving impact on a surface. Just like before, absorption and col-
lision estimators can be defined, and source term estimation can be sup-
pressed. In practice, collision estimation, that is, counting all particles that
land on a surface, is preferred. Like before, this “over-counting” shall be
compensated by multiplying all resulting expressions by the reflectivity.

6.5.2 Histogram Methods
The easiest, and probably most often used, way of estimating density func-
tions is by subdividing the domain of the samples into bins—surface patches
in our case—and to count the number of samples Ni in each bin (Figure
6.13). The ratio Ni/Ai yields an approximation for the particle density in
each bin.

Figure 6.13. The histogram method, illustrated for the particle hits on the bottom
side of the cube shown in Figure 6.12.

2Note that the sum is over the sample points, while division is by the number of
photon trajectories!

�

�

�

�

�

�

�

�

190 6. Stochastic Radiosity

1

4

3

2

Figure 6.14. Image 4 shows the result of a real-world lighting simulation in a
car model. A histogram method (Section 6.5.2) was used. Real-world lighting
was captured by photographing a mirror sphere at various shutter speeds (1),
and combining these images into a single high dynamic range environment map.
Image 2 shows a mirror sphere, ray traced using this environment map. Image
3 shows the color-coded illumination levels from Image 2, which vary between
200 and 30,000 nits. The histogram method, like most other stochastic radios-
ity methods, handles arbitrary light sources such as this high dynamic range
environment map with ease. (See Plate II.)

Figure 6.15. These images have been rendered using a histogram method [206]
taking into account measured BRDFs. Specular effects have been added by ray
tracing in a second pass. (Images courtesy of F. Drago and K. Myszkowski,
Max-Planck-Institute for Informatics, Saarbrücken, Germany.) (See Plate III.)

�

�

�

�

�

�

�

�

6.5. Photon Density Estimation Methods 191

An alternative explanation is as follows: Recall that the average radios-
ity on a patch i is by definition given by the following integral of B(x):

Bi =
1
Ai

∫
Si

B(x)dAx.

A random walk constructed as outlined is a technique to sample points x
with density χ(x) = B(x)/PeT . With N random walks, Bi can be esti-
mated as

PeTNi

NAi
≈ Bi,

where Ni is the number of visits to the patch i. The measurement functions
Mhist(x) of histogram methods are the so-called characteristic functions
of the surface patches: functions taking value 1 for points on the surface
patch, and 0 for other points.

Histogram methods for radiosity computations have been proposed in
[5, 70, 138] and by others later on. This form of density estimation is very
popular because of its simplicity.

6.5.3 Orthogonal Series Estimation

Histogram methods yield a single average radiosity value for each surface
patch. It is possible to obtain linear, quadratic, cubic, or other higher-
order approximations for the radiosity function B(x), too. The problem
of computing such higher-order approximations comes down to computing
the coefficients Bi,α in the following decomposition of B(x):

B̃i(x) =
∑
α

Bi,αψi,α(x).

The functions ψi,α(x) are called basis functions. The sum is over all
basis functions defined on patch i. A constant approximation is obtained
when using just one basis function ψi(x) per patch, which is 1 on the patch
and 0 outside. In that case, we will again obtain the histogram method
of the previous section. Figure 6.16 illustrates higher-order basis functions
that can be used on quadrilaterals. The idea is to approximate B(x) as a
linear combination of such functions.

The coefficients Bi,α can be obtained as scalar products with so-called
dual basis functions ψ̃i,α:

Bi,α =
∫

S

B(x)ψ̃i,α(x)dAx. (6.24)

�

�

�

�

�

�

�

�

192 6. Stochastic Radiosity

Figure 6.16. The top image shows a set of orthogonal functions, usable for or-
thogonal series estimation on quadrilaterals. The bottom image shows a linear
approximation for the density of the particle hits on the bottom side of the cube
shown in Figure 6.12.

Each dual basis function ψ̃i,α is the unique linear combination of the
original basis functions ψi,β that fulfills the relations (fixed α, variable β)∫

Si

ψ̃i,α(x)ψi,β(x)dAx = δα,β .

In the case of a constant approximation, the dual basis function is ψ̃i(x) =
1/Ai if x ∈ Si and 0 elsewhere.

With N photon trajectories, Equation 6.24 can be estimated as

PeT

N

∑
s

ψ̃i,α(xs) ≈ Bi,α.

�

�

�

�

�

�

�

�

6.5. Photon Density Estimation Methods 193

Figure 6.17. Two images generated from the same converged cubic approximation
solution. Once the solution has been obtained, a new image for a new viewpoint
can be generated in fractions of a second. These images illustrate that orthogonal
series estimation (as well as stochastic relaxation methods for higher-order ap-
proximations) can result in very high image quality in regions where illumination
varies smoothly. In the neighborhood of discontinuities, however, image artifacts
may remain. Discontinuity meshing would eliminate these artifacts.

The sum is over all points xs visited by the random walks. The mea-
surement functions of orthogonal series estimation are the dual basis func-
tions ψ̃i,α.

Radiosity computation by orthogonal series estimation, as such methods
are called, has been proposed by Bouatouch et al. [18] and Feda [44].

The main advantage of orthogonal series estimation over the histogram
method is that a smoother approximation of radiosity is possible on a
fixed mesh. Its main disadvantage is the cost. One can show [44, 13]
that the cost of computing a higher-order approximation with K basis
functions to fixed statistical error is about K times the cost of computing
a constant approximation. The increase in computation time for higher-
order approximations is larger than in deterministic methods [69, 228], but
the resulting algorithms are significantly easier to implement, still require
no form factor storage, and are much less sensitive to computational errors
(see Figure 6.17).

6.5.4 Kernel Methods

The radiosity B(z) at a point z could also be written as an integral involving
a Dirac impulse function:

B(z) =
∫

S

B(x)δ(x− z)dAx.

�

�

�

�

�

�

�

�

194 6. Stochastic Radiosity

Estimating the latter integral with random walks wouldn’t work, be-
cause the Dirac pulse function is zero everywhere, except when its argu-
ment is zero. The chance of finding a particle hitting exactly the point z
is zero in theory.3 Even if we could find a particle hitting exactly at z, the
value of the Dirac pulse is not determinate. It can’t be finite because the
Dirac function is zero everywhere except at one point and its integral is
equal to 1. An approximation for the radiosity at z can, however, be ob-
tained by using a different, normalized density kernel or footprint function
F (x, z) with nonzero width centered around z:

BF (z) =
∫

S

B(x)F (x, z)dAx ≈ B(z). (6.25)

Usually, a symmetric kernel is chosen, which depends only on the distance
between x and z: F (x, z) = F (z, x) = F (rxz). Examples include a cylin-
drical kernel (F (r) = 1/2πR if r < R and 0 otherwise) or a Gaussian
bell.

With N photon trajectories, the integral in Equation 6.25 can be esti-
mated as

PeT

N

∑
s

F (xs, z) ≈ BF (z).

The sum is again over all points xs visited by the random walks. The
measurement functions this time are the kernels F (x, z), centered at the
query locations z.

For symmetric kernels, one can also interpret this result as follows:
A kernel Fs(z) = F (xs, z) is placed at every particle hit point xs. The
radiosity estimate at a surface point z is then obtained by summing the
value of these kernels at z.

This form of kernel density estimation has been used by Chen [24],
Collins [32], and Shirley and Walter et al. [166, 210].

The main advantage of kernel methods is that they allow a represen-
tation of illumination that is not necessarily mesh-based, or that allows a
suitable mesh to be constructed a posteriori. This allows us to get rid of
edge discontinuities (see Figure 6.2). On the other hand, the choice of the
kernel bandwidth is a difficult problem, and a lot of effort is required in
order to avoid underestimation at surface edges, called boundary bias (see
Figure 6.18). The cost of kernel evaluation can be considerable too, for
instance, for a Gaussian kernel.

3In practice, the chance is not zero because of finite-precision arithmetic.

�

�

�

�

�

�

�

�

6.5. Photon Density Estimation Methods 195

Figure 6.18. Kernel methods can be viewed as follows: A normalized kernel
function is placed centered at each particle hit point. Radiosity is estimated by
summing these kernels. The bottom rows of this figure show the result with a
cylindrical kernel (middle row) and a Gaussian kernel (bottom row). The kernels
have the same bandwidth. A Gaussian kernel results in a smoother result but
at a higher computation cost than a cylindrical kernel. Note that the resulting
radiosity estimates at the edges are only half of what they should be. This effect,
due to the fact that the area on which particles are found around a query location
is constrained (no particles beyond the edge), is called boundary bias.

Figure 6.19. Images obtained with the kernel density estimation method from
[210]. Kernel density estimation allows for a posteriori meshing: A mesh cap-
turing the illumination variations in the scene accurately is constructed after
particle tracing and density estimation. The resulting mesh can be rendered in
real time using graphics hardware. (Images courtesy of B. Walter, Ph. Hubbard,
P. Shirley, and D. Greenberg, Cornell Program of Computer Graphics.) (See
Plate IV.)

�

�

�

�

�

�

�

�

196 6. Stochastic Radiosity

6.5.5 Nearest Neighbor Methods

The photon-mapping algorithm by Jensen et al. [81] and Keller’s instant
radiosity algorithm [91] are based on a similar principle.

Photon mapping uses a technique called nearest neighbor estimation.
Nearest neighbor estimation can be understood as follows (see Figure 6.20):
Rather than fixing a certain area A and counting the number of particles N
on that area like in the histogram method, one fixes a number of particles N
and looks for an area that contains this number of particles. If N particles
can be found on a small area, the density (N/A) will be high. If they are
only found on a large area, the density will be low. The main advantage
of nearest neighbor estimation is that one can entirely get rid of surface
meshes. All one needs to store is the set of particle hit-point locations.
Photon mapping will be explained in detail in Section 7.6.

The measurement functions corresponding to nearest neighbor estima-
tion are more complex than for the previous density estimation methods.
They depend on the whole set of sample locations and therefore can only
be evaluated a posteriori [175, Chapter 1].

Figure 6.20. Two ways to estimate the density of samples D1 and D2 near the
indicated locations (top row): 1) histogram methods (bottom left) first subdivide
the domain into bins (the size of the bins here is L = 1) and count the number
of samples N1 and N2 in the bins where density needs to be estimated; and 2)
nearest neighbor estimation methods (bottom right) fix a number of samples N
(here: N = 5) and find regions at the query locations that contain this number
of samples (size L1 and L2). In both cases, density is estimated as the number
of samples N over the size L of the considered regions. In the limit for a large
number of samples and small bins, these methods will yield identical results.

�

�

�

�

�

�

�

�

6.5. Photon Density Estimation Methods 197

6.5.6 Instant Radiosity

Instant radiosity [91] is based on the following observation: The right-hand
side of the radiosity integral equation (Equation 6.3) is also an integral
containing the radiosity function

B(z) = Be(z) + ρ(z)
∫

S

K(z, x)B(x)dAx.

Here too, this integral can be estimated by tracing a number of photon
trajectories. This results in estimates for B(z) of the following form:

B(z) ≈ Be(z) + ρ(z)
PeT

N

∑
s

K(z, xs).

The sum in the right-hand side can be interpreted as the direct illumina-
tion at z due to point light sources with strength PeT /N placed at every
photon hit point xs. Instant radiosity will be explained in more detail in
Section 7.7.

6.5.7 Discussion

We now discuss gathering variants and compare the algorithms with each
other and with discrete random walk methods for radiosity.

Continuous Gathering Random Walks

The algorithms explained in this section are shooting algorithms. Just like
with discrete random walk methods (Section 6.4.3), gathering variants can
be obtained by introducing adjoints of an integral equation. Adjoints of
the radiosity integral equation, for instance, look like

I(x) = M(x) +
∫

S

I(y)ρ(y)K(y, x)dAy. (6.26)

Their interpretation is exactly the same as explained in Section 6.4.3.
Continuous gathering random walks are the basis of path-tracing algo-
rithms discussed in Chapter 5. They have received little attention for the
computation of world-space illumination representations. They may, how-
ever, help to “clean up” noisy artifacts on small patches in the histogram
method, or when orthogonal series estimation is used. They might also be
valuable in the context of bidirectional algorithms for object-space illumi-
nation computation, complementing shooting random walks.

�

�

�

�

�

�

�

�

198 6. Stochastic Radiosity

Variance

A detailed comparison of various continuous random walk estimators among
each other, or continuous versus discrete random walks, requires that the
variance of the continuous random walk estimators be calculated. The cal-
culation of continuous random walk variances can be done in exactly the
same way as for a discrete random walk. A compact derivation, based on
Green’s function for the radiosity integral equation, can be found in [11].
The result for a continuous collision shooting random walk method with
source term estimation suppression and using measurement function M(x)
is

V [b̂M] = PeT

∫
S

ρ(x) [M(x) + 2ζ(x)]M(x)b(x)dAx −
(∫

S

M(x)b(x)dAx

)2

.

(6.27)
In this equation, ζ(x) = I(x) − M(x), with I(x) the solution of the

adjoint integral equation (Equation 6.26) with source term M(x). Most of-
ten, ζ(x) is much smaller than 1, so it can be ignored. The expected value
is bM =

∫
M(x)b(x)dAx with b(x) = B(x) − Be(x), the non-self-emitted

radiosity. By filling in the appropriate response functions M(x), the vari-
ance can be computed for any of the aforementioned density estimation
methods.

Bias

All density estimation algorithms described here compute a kind of convo-
lution of the radiosity function:

BM (z) =
∫

S

M(z, x)B(x)dAx �= B(z).

The approximations are visible in the images in the form of artifacts such
as blurred shadow boundaries, edge discontinuities and light or shadow
leaks, and boundary bias artifacts. For this reason, the density estimates
are often not directly visualized, but a final gathering step is performed in
order to avoid artifacts. Final gathering, and other hybrid methods, are
the topic of Chapter 7.

It can be shown that all density estimation methods discussed here
share a similar bias versus variance trade-off (see Figures 6.21 and 6.22): A
response function with a large support, for instance, a histogram method
on large patches, or a kernel method with wide kernels, will yield a lower
variance. On the down side, however, a large support in general also means
worse blurring of the radiosity function. The converse is true as well: nar-
row response functions reduce blurring and therefore result in, for instance,
sharper shadow boundaries, but at the cost of a higher variance.

�

�

�

�

�

�

�

�

6.5. Photon Density Estimation Methods 199

Figure 6.21. Variance versus bias trade-off of density estimation algorithms: The
same scene is shown in all images, with increasingly fine discretization top-to-
bottom and increasing number of samples left-to-right. The number of patches
is 256 in the top row, 1024 in the middle row, and 4096 in the bottom row. The
number of samples has been taken proportional to the number of patches: 10
times the number of patches (left), 40 times, 160 times, and 640 times (right).
These images illustrate that the variance of the histogram method is inversely
proportional to the patch area: images in the same column have the same vari-
ance. All other photon density estimation algorithms exhibit a similar variance
versus bias trade-off as well.

Figure 6.22. Variance versus bias trade-off in a kernel density estimation method:
The number of particles is kept the same. The kernel bandwidth has been in-
creased from left to right. A large bandwidth (right) yields low noise but blurred
radiosity results. (Image courtesy of B. Walter, Ph. Hubbard, P. Shirley, and D.
Greenberg, Cornell Program of Computer Graphics).

�

�

�

�

�

�

�

�

200 6. Stochastic Radiosity

Continuous versus Discrete Random Walks

Continuous random walks with the histogram method and discrete ran-
dom walks solve different problems. Continuous random walks with the
histogram method estimate the area average of the continuous radiosity
function B(x) over a patch. Discrete random walks estimate the solution
of a linear system of equations. The difference in practice, however, is only
rarely noticeable: both methods can suffer from light leaks, for instance,
but leaked light will illuminate other surfaces with a discrete random walk,
whereas it won’t with a continuous random walk method.

The algorithmic difference is quite small, also, with a continuous ran-
dom walk; a particle is always reflected from its point of incidence on a
patch. In a discrete random walk, a particle is reflected from a uniformly
chosen different location on the patch on which it lands (see Figure 6.23).

Experiments in which a continuous and discrete collision shooting ran-
dom walk have been compared indicate that there is also no significant
difference in variance. This can be explained by comparing Equation 6.27
to the histogram method with the variance of the discrete collision shoot-
ing random walk in Table 6.1 on page 181. The response function for
the histogram method is M(x) = χk(x)/Ak with χk(x), the characteristic
function of a patch k.

Low-discrepancy sampling, however, appears to be significantly more
effective with the discrete random walk than with the continuous random
walk [15].

Figure 6.23. Continuous (left) versus discrete (right) random walks differ slightly
in the way particles are reflected: Particles reflect off their point of incidence
in continuous random walks. In discrete random walks, they emerge from a
uniformly chosen new location on the patch they hit.

�

�

�

�

�

�

�

�

6.5. Photon Density Estimation Methods 201

6.5.8 Stochastic Iteration Variants of Density Estimation Algorithms
The stochastic Jacobi method of Section 6.3 only allows us to compute
the average radiosity on surface patches. The continuous random walk
methods in this section allow for more advanced radiosity representations.
In this paragraph, we show how to extend the stochastic Jacobi method
to compute more advanced radiosity representations as well. By doing so,
low-discrepancy sampling becomes more effective, and variance reduction
is easier to obtain.

A general recipe for designing stochastic Jacobi methods based on the
radiosity measurement equation,

BM (z) =
∫

S

M(z, x)B(x)dAx,

is as follows. We first replace B(x) by the right-hand side of the radiosity
equation,

B(x) = Be(x) + ρ(x)
∫

S

K(x, y)B(y)dAy.

This yields

BM (z) =
∫

S

M(z, x)Be(x)dAx +
∫

S

∫
S

M(z, x)ρ(x)K(x, y)B(y)dAydAx.

Now suppose that some approximation B
(k)
M (y) for B(y) is available.

We substitute this approximation in the right-hand side of the expression
above. What comes out on the left-hand side then becomes the next ap-
proximation B(k+1)

M (z):

B
(k+1)
M (z) =

∫
S

M(z, x)Be(x)dAx

+
∫

S

∫
S

M(z, x)ρ(x)K(x, y)B(k)
M (y)dAydAx.

This iteration formula can be used in order to construct stochastic iter-
ative algorithms in the same way as explained in Section 6.3. In particular,
the double integral on the right-hand side suggests the following sampling
approach:

1. Sample points y on the surfaces of the scene with a probability density
proportional to B(k)

M (y).

2. Sample a point x conditional on y according to the conditional prob-
ability density K(y, x) = K(x, y). This can be done by shooting a
cosine-distributed ray from y. The first surface point hit by this ray
is x.

�

�

�

�

�

�

�

�

202 6. Stochastic Radiosity

3. The score contributed by each sample is essentially M(z, x)ρ(x).
There’s a nonzero score to every z for which M(z, x) is nonzero.

This approach has been shown to work very well for computing higher-
order radiosity approximations [13]. Similar stochastic iterative methods
have also been proposed for nondiffuse illumination [193].

6.6 Variance Reduction and
Low-Discrepancy Sampling

The basic algorithms in the previous sections can be made more effective by
using variance reduction techniques and low-discrepancy sampling. In this
section, we will discuss variance reduction by view-importance sampling,
by control variates, by combining gathering and shooting estimators using
the same random walks or rays, and by weighted importance sampling.
The material covered in this section is of a great practical importance and
also serves as an illustration of the variance reduction techniques discussed
in Chapter 3.

6.6.1 View-Importance–Driven Shooting
View Importance

In the basic algorithms in the previous sections, transitions are sampled
using probabilities that reflect the laws of physics. The quality of the
computed result mainly depends on the area and reflectivity of the patches
but is furthermore uniform in the whole scene. Sometimes, however, one
would like to save computation time by having high quality only in a part
of the scene, for instance, the part of the scene that is visible in a view,
while compromising on the quality in unimportant parts of the scene (see
Figure 6.24). For example, when computing an image inside a single room
in a large building with several floors, each containing many rooms, the
basic estimators would spend a lot of work in computing the illumination
in all rooms on all floors to similar quality. One might prefer to concentrate
the computation work on the room one is in, at the expense of a lower
quality of the radiosity solution in other rooms and other floors of the
building. With view-importance sampling, the sampling probabilities in
our Monte Carlo radiosity algorithms are modulated in such a way that
more samples are taken in important regions of a scene and fewer in less
important regions.

This requires a measure for the importance of the illumination across
the surfaces in the scene. As explained in Section 6.4.3, the adjoints of the

�

�

�

�

�

�

�

�

6.6. Variance Reduction and Low-Discrepancy Sampling 203

Figure 6.24. View-importance–driven stochastic Jacobi radiosity. The top images
have been obtained using approximately the same total amount of work (3.3 106

rays, under 1 minute of computation time). The top left image, computed with
view importance, is significantly less noisy than the top right image, which has
been obtained without computing and taking advantage of view importance. The
bottom left image shows an overview of the scene in which the view was taken.
The scene was subdivided into 162,000 patches. The bottom-right image shows
the importance distribution for the view. High intensity indicates high view
importance. The model shown is an edited part of the Soda Hall VRML model,
available from the University of California at Berkeley.

radiosity system of equations yield such a measure. Here, it will be more
convenient to use adjoints of the power system of equations (Equation (6.8):

Ii = Vi +
∑

j

FijρjIj .
4 (6.28)

The importance Ii is always defined with regard to some direct impor-
tance distribution Vi. When choosing Vi = 1 for the patches i that are
visible in a view and Vi = 0 for patches that are not visible in a view, Ii is
called view importance and indicates what fraction of the radiosity Bi will

4Adjoint radiosity systems (Equation 6.20) are obtained by multiplying the left- and
right-hand side of Equation 6.28 with the patch area Ai. Yi and Wi in Equation 6.20
are related to Ii and Vi here as Yi = AiIi and Wi = AiVi.

�

�

�

�

�

�

�

�

204 6. Stochastic Radiosity

be contributed to the patches visible in a view, directly or via interreflec-
tions.

A continuous view-importance function I(x) on the surfaces of the scene
can be defined in a very similar way by means of adjoints of the radiosity
integral equation (Equation 6.3):

I(x) = V (x) +
∫

S

I(y)ρ(y)K(y, x)dAy. (6.29)

The equations from which importance is to be solved are of the same form
as the equations that describe light transport, and therefore the same al-
gorithms as for light transport can be used for computing importance in
a scene. This can happen either in separate phases or at the same time.
Moreover, the computation of importance can possibly be sped up by tak-
ing advantage of the adjoint of importance: the radiosity. In practice, one
should take care that importance is only used for computing radiosity (and
vice versa) if the importance solution is sufficiently stable.

View-Importance–Driven Shooting Random Walks

View importance Ii can be used in various ways during random walk sam-
pling:

• For modulating the transition probabilities, so that random walks are
scattered preferentially towards regions of high importance. Unfor-
tunately, this can no longer be done using uniformly distributed local
or global lines and requires that incoming importance at every patch
is stored or can be queried efficiently in some way [103, 192].

• For modulating the survival probabilities only, so particles near im-
portant regions get a higher chance of survival. In regions of low
importance, particles will be killed off with a higher probability than
according to the reflectivity (Russian roulette). In interesting regions,
it is even possible to split a particle into two or more new particles
of which the scores are appropriately combined (splitting).

• For modulating the birth probabilities, so that more random walks
are started from important light sources and fewer from unimportant
sources. This can be combined with importance-modulated transition
sampling or can be done with analog transition sampling. In the latter
case, the best results are obtained by modulating the analog birth
probabilities at light sources (proportional to self-emitted power) by
the square root of view importance [163].

�

�

�

�

�

�

�

�

6.6. Variance Reduction and Low-Discrepancy Sampling 205

In order to keep the estimation unbiased, scores shall be decreased when
probabilities are increased and vice versa. If the survival chance of a par-
ticle is reduced in Russian roulette, for instance, the contribution of a
particle that survives the test shall be increased in order to compensate.
View-importance–based sampling has been studied for continuous as well
as discrete random walks [140, 42, 163, 158, 15].

View-Importance–Driven Stochastic Relaxation Radiosity

In the context of incremental and regular power shooting (Section 6.3.2),
view importance can be used to:

• Aim particles preferentially towards interesting regions. The problem
is the same as with random walks: local or global line sampling is
no longer helpful, and incoming importance needs to be stored with
each patch.

• Increase or decrease the probability of shooting a ray from a given
patch: this yields the same effect as Russian roulette, splitting and
modulating birth probabilities together in random walks. It is very
easy to implement with local line sampling.

In general, view-importance–driven stochastic relaxation methods can
be derived in exactly the same way as analog stochastic relaxation methods
by considering the power system of equations (Equation 6.8) modified as

PiIi = PeiIi +
∑

j

Pj(Ij − Vj)Fji
ρiIi

Ij − Vj
.

Non–view-importance–driven stochastic relaxation radiosity corresponds
with the choices Ii = 1/ρi and Vi = 1/ρi − 1 (these choices are always a
valid solution of Equation 6.28 in closed environments). Figure 6.24 shows
some results, obtained with algorithms developed by Neumann and Bekaert
[126, 15].

6.6.2 Control Variates
Recall that the main idea of control variate variance reduction (Section
3.6.6) is as follows. Suppose a function f(x) is to be numerically integrated
and that we know the integral G of a similar function g(x). If the difference
f(x)− g(x) is to good approximation constant, it will be more efficient to
use a Monte Carlo method for integrating the difference f(x) − g(x) and
add G afterwards. The function g(x) is called a control variate. Control
variates have been proposed for variance reduction in stochastic ray tracing
by Lafortune [101]. We discuss here the application to discrete random
walks and stochastic relaxation.

�

�

�

�

�

�

�

�

206 6. Stochastic Radiosity

Control Variates for Linear Systems

This idea can be applied to the solution of linear systems (and integral
equations) in the following way: Suppose we know an approximation x̃ for
the solution x of x = e + Ax. The correction ∆x = x− x̃ then fulfills

∆x = (e + Ax̃− x̃) + A ·∆x. (6.30)

Proof:

∆x = (I−A) ·∆x+A ·∆x ; (I−A) ·∆x = x−Ax+Ax̃− x̃ = e+Ax̃− x̃.

This is true regardless of the error in the approximation x̃. Now suppose
∆x is computed using, for instance, a random walk method. The resulting
estimate ∆x̃ for the correction ∆x will not be exact, so that ˜̃x = x̃ + ∆x̃
will not be exactly equal to the solution x of the system to be solved,
either. However, regardless of the error on the first approximation x̃, the
error on the new approximation ˜̃x is only determined by the error on the
computed correction ∆x̃! Sometimes, the correction ∆x̃ can be estimated
more efficiently than x itself.

Constant Control Variates in Random Walk Radiosity

The only choice for x̃ that allows Ax̃ to be calculated analytically in the
case of radiosity is the constant choice B̃i = β. With this choice, we get

∆Bi =

⎛⎝Bei +
∑

j

ρiFijβ − β

⎞⎠+
∑

j

ρiFij∆Bj

= (Bei − (1− ρi)β) +
∑

j

ρiFij∆Bj .

The question now is how to determine an optimal value for β. Heuristics
for choosing β can be derived by minimizing the expected mean square error
of random walk estimators. Several crude approximations need to be made,
however, and the benefits are not very significant in practice.

Constant Control Variates in Stochastic Relaxation Radiosity

In stochastic Jacobi relaxation, however, constant control variate variance
reduction is easier to obtain and more effective. Monte Carlo summation
shall be applied to the following modified power equation:

P ′i = Pei +Aiρiβ +
∑

i

∑
j

Aj(Bj − β)Fjiρiδik.

�

�

�

�

�

�

�

�

6.6. Variance Reduction and Low-Discrepancy Sampling 207

A good value for the control radiosity β can be obtained by numerical
optimization of F (β) =

∑
sAs |Bs − β | [15, 125].

One disadvantage of constant control variates in radiosity is that the
scene being rendered needs to fulfill certain requirements:

• It needs to be closed, because otherwise
∑

j Fijβ �= β for some patches
i in the scene.

• There cannot be closed “holes” in a scene that do not receive any
light, e.g., the interior of a box.

The speed-up that can be obtained with a constant control variate typ-
ically is in the range of 5–50%.

6.6.3 Gathering for Free

If more than one Monte Carlo estimator is at hand for a given quantity, their
combination can also reduce variance considerably. In Monte Carlo radios-
ity in particular, one will always find a gathering estimator corresponding
with each shooting estimator. Gathering is, in general, less efficient than
shooting except on small patches, but by combining gathering and shoot-
ing over random walks and rays sampled for shooting, variance reduction
is possible at negligible additional cost.

Recall that there are basically two ways to combine estimators (see
Section 3.6.5).

The classic way. The classic way of combining two estimators Ŝ1 and Ŝ2

for a quantity S is based on the observation that any linear combination
w1Ŝ1 + w2Ŝ2 with constant weights w1 + w2 = 1 will also be an unbiased
estimator for S. For independent estimators, the optimal combination
weights can be shown to be inversely proportional to the variance:

w1

w2
=
V [Ŝ2]
V [Ŝ1]

.

In practice, the weights can be obtained in two different ways:

• Using analytical expressions for the variance of the involved estima-
tors (such as presented in this text).

• Using a posteriori estimates for the variances based on the samples
in an experiment themselves (Section 3.4.5). By doing so, a slight
bias is introduced. As the number of samples is increased, the bias
vanishes: the combination is asymptotically unbiased or consistent.

�

�

�

�

�

�

�

�

208 6. Stochastic Radiosity

In general, the combination of M estimators, with Nm samples each, looks
like

M∑
m=1

wm
1
Nm

Nm∑
k=1

S̃k
m ≈ S.

Multiple importance sampling. It is neither necessary, nor optimal, to take
the combination weights wm the same for all samples. By using potentially
different sets of weights wk

m for each sample k, more robust combination
will often be possible:

M∑
m=1

1
Nm

Nm∑
k=1

wk
mS̃

k
m ≈ S.

The result is unbiased as long as
∑M

m=1w
k
m = 1 for every sample.

An often-used heuristic for choosing the combination weights is the
balance heuristic. With this heuristic, the weights wk

m are chosen propor-
tional to the probability that the sample k would be generated with the
mth technique Ŝm times Nm.

Combining Gathering and Shooting in Discrete Random Walk Radiosity

Combining gathering and shooting over a single set of random walks can
be done in several ways:
Using multiple importance sampling. The basic observation is that gath-
ering radiosity over a path segment jt, jt+1, . . . , js is identical to shooting
power over the reverse segment js, js−1, . . . , jt. Multiple importance sam-
pling can be applied if the probability of having a subpath originating at
the endpoints jt and js are both known. In practice, combined gathering
and shooting based on multiple importance sampling is useful only with
global lines, in global multipath algorithms [157, 161]. With local lines,
the required probabilities are unfortunately not known in advance.
Using a posteriori variance estimates. Such estimates can be obtained by
approximating analytical expressions [159]. Alternatively, sample-based
variance estimation is also possible [15]. Sample-based variance estimation
yields very good weights eventually, but the weights are unreliable in the
beginning of the computations, when only few random walks have been
visiting a patch. A posteriori variance estimation allows us to combine
shooting and gathering also with local line sampling. Figure 6.25 shows
the shooting and gathering contributions associated with a single path.

Combining gathering and shooting in random walk radiosity yields mod-
erate variance reduction, again 5–50%, but the additional computation cost
is negligible.

�

�

�

�

�

�

�

�

6.6. Variance Reduction and Low-Discrepancy Sampling 209

j0

(a)

j2

j1

j0

j2

j1

j0

j2

j1

j0

j2

j1

j0

j2

j1

j0

j2

j1

j0

j2

j1

j0

j2

j1

j0

j2

j1

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 6.25. The main idea of “gathering for free.” A single random walk
j0, j1, j2, j3 yields multiple scores, which are combined in a provable good way,
yielding lower variance at a negligible additional computation cost: (a, b, c)
gathering at j0; (d) shooting at j1; (e, f) gathering at j1; (g) shooting at j2; (h)
gathering at j2; and (i) shooting at j3.

Combining Gathering and Shooting in Stochastic Jacobi Radiosity

Combining gathering and shooting in stochastic Jacobi iterations is again
very simple [15]. Each line shot in power-shooting iterations (Section 6.3.2)
yields a contribution to the patch that it hits, while in gathering iterations,
the line yields a contribution to the patch from where it was shot. Also
here, gathering corresponds with shooting over the reverse line. Unlike
with random walks, the probability of shooting a line from every patch is
known, so multiple importance sampling can be used. The result is that a
score can be recorded at both ends of each shot line. For a line connecting
the patches i and j, the scores at both endpoints are

wijS
←
ij =

ρiPj

piAj + pjAi
on i

wijS
→
ij =

ρjPi

piAj + pjAi
on j.

As before, pi and pj indicate the probability of shooting a line from i
and j. With local lines, we can choose pi proportional to the power to be
shot from i. With global lines, pi is proportional to the patch area Ai.

�

�

�

�

�

�

�

�

210 6. Stochastic Radiosity

The technique is extremely simple to implement, it is always safe to
use, it comes at no additional cost, and can yield fair speed-ups: up to a
factor of 2.

In Section 7.3, we will discuss bidirectional path tracing. Bidirectional
path tracing combines light tracing and path tracing (Chapter 5), which
are also a pair of shooting and corresponding gathering algorithms. The
techniques just described use single shooting or gathering paths for shooting
and gathering at the same time. In bidirectional path tracing, separate
pairs of a shooting path and a gathering path will be combined.

6.6.4 Weighted Importance Sampling

The basic idea of weighted importance sampling can be explained intu-
itively as follows: Suppose one needs to compute an integral F =

∫
f(x)dx

and that one knows a second, similar, integral G =
∫
g(x)dx with the same

domain. Both integrals can then be estimated using the same samples.
The resulting Monte Carlo estimate G̃ for G can then be compared with
the true, known value of G. Due to its random nature, the estimate G̃ will
sometimes be larger than G and sometimes be smaller. Suppose that one
knows that the corresponding estimate F̃ for F will also be larger than F
in case G̃ is larger than G, a more accurate estimate for F than may be
F̃G/G̃: F̃ is decreased if G̃ > G and it is increased if G̃ < G. In short,
weighted importance sampling is a multiplicative rather than an additive
control variate variance reduction technique.

Unlike the variance reduction techniques described before, weighted im-
portance sampling is biased, but it is consistent if f and g fulfill certain
requirements. The bias vanishes as 1/N (N is the number of samples).
This is much faster than the statistical error, which vanishes as 1/

√
N .

A more elaborate exposition of this idea, with application to form factor
integration and stochastic relaxation radiosity, can be found in [14].

6.6.5 Low-Discrepancy Sampling
As discussed in Section 3.6.7, it is often possible to obtain convergence
rates considerably faster than O(1/

√
N) by using low-discrepancy sampling

[132]. The main idea of low-discrepancy sampling is to use sample num-
ber sequences that are more uniform than random numbers.5 Integration
using low-discrepancy number sequences is also called quasi–Monte Carlo

5Numbers generated with so-called random number algorithms are not truly random.
They merely pass a certain set of statistical tests that truly random numbers would pass
as well. Truly random numbers can only be generated with specialized electronic devices
(or on certain defective computer equipment).

�

�

�

�

�

�

�

�

6.7. Hierarchical Refinement and Clustering 211

integration. Unlike Monte Carlo integration, which is based on statistics,
quasi–Monte Carlo methods have a very different origin, in number theory.

In practice, however, improved convergence rates are often obtained
by little more than replacing the random number generator by a low-
discrepancy number sequence. Local line sampling (Section 6.2.3), for in-
stance, requires four-dimensional random vectors: two random numbers
are needed for choosing a ray origin and two more for sampling a cosine-
distributed direction. Keller [89] showed that using four-dimensional low-
discrepancy vectors instead yields speed-ups of about an order of magnitude
when computing form factors with local lines. Neumann et al. observed
a similar speed-up when using quasi-random numbers instead of random
numbers in stochastic relaxation radiosity [127]. The speed-up obtained
with quasi-random sampling in continuous shooting random walk radiosity
[90] is much smaller. In discrete shooting random walk radiosity, it is of
the same magnitude as in stochastic relaxation radiosity, and often much
higher than in continuous random walks [15]. A theoretical study of the
convergence rate of quasi-random sampling in radiosity has been carried
out by Szirmay-Kalos [190].

There are several important differences between random and quasi-
random sampling. The main difference in practice is that quasi-random
samples are not statistically independent. They can even be very strongly
correlated, leading to disturbing aliasing patterns. Fortunately, there exist
very simple and effective techniques to break these correlations, while still
maintaining fast convergence [96, 127].

6.7 Hierarchical Refinement and Clustering

All mesh-based algorithms covered so far in this chapter share a common
drawback, illustrated in Figure 6.26. If patches are chosen too small,
variance will be high. If they are chosen too large, however, disturb-
ing discretization artifacts, such as too smooth illumination and blurred
shadow boundaries, result. We discuss here how hierarchical refinement
[30, 64, 164] and clustering [182, 174] can be incorporated in stochastic
radiosity algorithms. Doing so significantly reduces these problems and
considerably boosts the performance of stochastic radiosity algorithms.

Hierarchical refinement and clustering have been introduced in radios-
ity with two goals in mind: automatic, adaptive meshing and a reduction
of the number of form factors. First, it splits up large patches into smaller
ones so that a more accurate radiosity solution is obtained where neces-
sary. Collections of small patches, on the other hand, can also be grouped

�

�

�

�

�

�

�

�

212 6. Stochastic Radiosity

Figure 6.26. The left image illustrates meshing difficulties with stochastic radios-
ity. On the one hand, high variance on small patches leads to disturbing noisy
artifacts: some of these patches will receive no rays, so that they will be rendered
black, while other small patches appear overly bright. Large patches, such as the
walls and floor in this image, for instance, appear too smooth as only a single
radiosity value is computed for the whole patch. Adaptive meshing, hierarchical
refinement, and clustering reduce these problems (right image). (The conference
room model shown is by Anat Grynberg and Greg Ward, Lawrence Berkeley
Laboratory, Berkeley, California).

into single cluster elements behaving like a larger patch. The second key
idea is to compute a multiresolution representation of radiosity. A so-called
oracle function predicts whether or not light transport can be computed
accurately enough between a given pair of elements (patches or clusters)
in this multiresolution representation. It ensures that light transport will
always be computed at the right level of detail. Doing so leads to signifi-
cant reduction of the number of form factors to be computed compared to

Figure 6.27. Per-ray hierarchical refinement in stochastic Jacobi radiosity. For
each ray shot, connecting two points x and y, the algorithm will determine which
level of the element hierarchies at x and y is appropriate for computing light
transport from x to y. The element hierarchies are lazily constructed. In non-
hierarchical Monte Carlo radiosity, light transport would always be computed
between the top-level patches containing the endpoints x and y of the ray.

�

�

�

�

�

�

�

�

6.7. Hierarchical Refinement and Clustering 213

Figure 6.28. Images rendered with hierarchical Monte Carlo radiosity [12]. The
number of elements in the shown images varies from 88,000 (theater) to more
than 500,000 (cubicle office space). The radiosity computations for these images
took less than 1 minute on a 2GHz Pentium-4 PC with 256MB of RAM. Once
computed, the illuminated model can be rendered from new viewpoints in real
time, using a low-cost PC three-dimensional graphics accelerator.

Model credits: Candlestick Theater. Design: Mark Mack Architects. Three-
dimensional model: Charles Ehrlich and Greg Ward (work conducted as a re-
search project during the Architecture 239X course taught by Kevin Matthews
formerly at UC Berkeley, College of Environmental Design). Conference room
and cubicle space models by Anat Grynberg and Greg Ward. (Courtesy of
Lawrence Berkeley Laboratory, Berkeley, California.) (See Plate I.)

the classic radiosity method: O(N logN) rather than O(N2), with N the
number of patches.

Adaptive meshing has been integrated with local line form factor com-
putation (Section 6.2.3) by several authors [106, 94, 92]. The basic idea in
these three proposals is identical: A large number of rays is shot from the
source patch. The surrounding scene is subdivided into receiver elements
so that each receiver element (a surface or cluster) receives the same num-
ber of rays. The disadvantage is that these techniques will only work if a
large number of rays is shot simultaneously from the shooting patch. This
is not the case in more recent stochastic relaxation algorithms.

�

�

�

�

�

�

�

�

214 6. Stochastic Radiosity

Tobler et al. [197] have presented an adaptive meshing scheme for the
histogram method (Section 6.5.2). By simultaneously keeping track of inci-
dent particles on successive hierarchical element levels, smoothness assump-
tion violations can be detected. Also, Myszkowski et al. have proposed
adaptive meshing for the histogram method [121].

A truly multiresolution Monte Carlo radiosity algorithm was proposed
in [12]. The basic observation is that each line cast in nonhierarchical
stochastic Jacobi radiosity carries some light flux from the patch containing
its origin to the patch containing its destination point (see Figure 6.27).
With hierarchical refinement, a whole stack of elements is located at both
endpoints. The same refinement oracles as in deterministic hierarchical
radiosity can be used in order to predict for each cast line, at what level of
the element stack containing the destination point of a line, the flux carried
by the line shall be deposited. Elements are refined lazily, on the fly during
the computations.

Per-ray refinement works extremely well with a cheap oracle, such as
based on transported power [64]. Some results are presented in Figure 6.28.
Hierarchical stochastic Jacobi radiosity has been used in order to rapidly
compute radiosity solutions in scenes containing millions of polygons, such
as entire building and car models, on commodity PCs.

6.8 Exercises

1. Compute the form factor for the following configuration. Two iden-
tical rectangular plates are positioned parallel to each other (Fig-
ure 6.29). Compute the form factor using Monte Carlo integration
and compare with the analytical solution. Make a plot of absolute

2

1

h

w

w

X=w/h

Figure 6.29. Two parallel rectangular plates.

�

�

�

�

�

�

�

�

6.8. Exercises 215

2

1

w
w

l

X=w/l

Figure 6.30. Two perpendicular rectangular plates.

error as a function of the number of sample lines used. Compare
empirically stratified, non-stratified, and low-discrepancy sampling
(e.g., Halton or Niederreiter; see Section 3.6.7).

F12 =
2

πX2

(
ln
(

1 +X2

√
1 + 2X2

)
+2X

√
1 +X2 tan−1 X√

1 +X2
− 2X tan−1X

)
.

2. Repeat the Exercise 1, but now the plates are perpendicular to each
other (Figure 6.30).

F12 =
1
πX

(
2X tan−1 1

X
−X
√

2 tan−1 1
X
√

2

+
1
4

ln

(
(1 +X2)2

1 + 2X2

(
1 + 2X2

2(1 +X2)

)2X2))
.

3. When comparing the Monte Carlo results of the configurations in
Exercises 1 and 2, is there a difference in the convergence speed for
the two cases? If there is, explain this difference. If there is no
difference in convergence speed, why not?

4. Given is the scene in Figure 6.31 containing 3 diffuse polygons with
diffuse reflectivity values of 0.3, 0.4 and 0.5; and 1 diffuse light source
emitting 500 watts, covering the complete ceiling.

Compute the relevant form factors using the analytic expressions
given above, and compute the radiosity solution for this scene. You

�

�

�

�

�

�

�

�

216 6. Stochastic Radiosity

ρ = 0.5

1 meter

1 meter

1 meter

ρ = 0.4ρ = 0.3

ρ = 0.0; P = 500 W

Figure 6.31. Four diffuse square plates.

can solve the linear system by hand or use a mathematical software
tool.

5. Increase the diffuse reflectivity for all surfaces in the scene by 10%.
What is the result on the new radiosity values? Do the new radiosity
values increase by more or less than 10%.? Why?

6. Compare the radiosity solution for the scene given above to a solution
that only computes direct illumination (assume all form factors are
zero except the ones encoding transport starting at the light source).

7. Instead of using analytic form factors, insert the form factors com-
puted with Monte Carlo integration. If the Monte Carlo evaluation
of form factors in a general scene results in overestimates for the form
factors, what could the resulting effect be for the radiosity algorithm?

8. Consider a closed environment (there is no loss of radiative energy),
for which the average reflectivity ρaverage over all surfaces is known.
Find a general expression for the total amount of emitted and re-
flected power over all surfaces in the scene.

9. Write a basic radiosity program, using deterministic shooting Jacobi
iterations for system solution, as explained in Section 6.3.1. Use the
local lines approach described in Section 6.2.3 for computing the form
factors. Compare with pairwise form factor Monte Carlo integration
as in the previous exercises. (Hint: since most of the work in this

�

�

�

�

�

�

�

�

6.8. Exercises 217

exercise is in writing the code for reading in a 3D model, for tracing
rays, and for displaying images, it is a good idea to start with a simple
ray-tracing program and extend that.)

10. Adapt the basic radiosity program of the previous exercise to compute
radiosity in other ways discussed in the radiosity chapter, for instance:

• Implement stochastic regular shooting, incremental shooting,
and regular gathering by means of local lines. Compare em-
pirically.

• Implement and compare local and global line sampling.

• Implement discrete random walk radiosity: compare shooting
and gathering, absorption versus survival versus collision sam-
pling.

• Implement photon density estimation algorithms. Compare the
histogram method with discrete random walk radiosity. In or-
thogonal series estimation, compare image quality and compu-
tation times with constant, linear, quadratic, and cubic approx-
imation. (Hint: display the resulting images either through ray
casting or by means of a fragment shader on a GPU). Experi-
ment with the kernel method comparing a cylindrical, Gaussian,
Epanechnikov, and other kernels you find in cited literature.

• Try out view-importance–driven sampling in its variants, control
variates, and gathering for free in discrete random walk radiosity
and stochastic Jacobi.

11. For the math-inclined: Familiarize yourself with variance calculation
by starting with some simple cases. For instance, derive the variance
of:

• regular gathering stochastic Jacobi radiosity;

• absorption random walk radiosity: compare shooting versus gath-
ering, discrete versus continuous.

12. Give an intuitive explanation of why collision random walks are gen-
erally more efficient than absorption or survival random walks.

13. Give an intuitive explanation of why shooting is generally more effi-
cient than gathering.

�

�

�

�

�

�

�

�

7

Hybrid Algorithms

Chapters 5 and 6 described two of the most popular global illumination
algorithms: ray tracing and radiosity. These algorithms have evolved sig-
nificantly since they were first introduced, but mainly, the core ideas for
both are still the same: a ray-tracing algorithm computes radiance values
for every pixel in the final image by generating paths between the pixel and
the light sources; a radiosity algorithm computes a radiance value for every
mesh element in the scene, after which this solution is displayed using any
method that can project polygons to the screen.

This chapter focuses on algorithms that try to combine the best of both
worlds. These algorithms often use various elements from the previously
mentioned approaches, and therefore we call them hybrid algorithms.

7.1 Final Gathering

Once a radiosity solution is computed and an image of the scene is gener-
ated, Gouraud shading is often used to interpolate between radiance values
at vertices of the mesh, thus obtaining a smoothly shaded image. This tech-
nique can miss significant shading features. It is often difficult to generate
accurate shadows; shadows may creep under surfaces (shadow leaks and
light leaks), Mach-band effects may occur, and other secondary illumina-
tion effects containing features with a frequency higher than that which
the mesh can represent are also possible.

One way of solving this is to consider the radiosity solution to be a
coarse precomputed solution of the light distribution in the scene. During
a second phase, when the image is actually generated, a more accurate
per-pixel illumination value is computed, which is based on the ray-tracing
algorithm.

219

�

�

�

�

�

�

�

�

220 7. Hybrid Algorithms

As was explained in Chapter 5, the ray-tracing set-up for computing
the radiance for a pixel is given by

Lpixel =
∫

imageplane

L(p→ eye)h(p)dp.

L(p → eye) equals L(x → Θ) with x being the visible point in the scene
and Θ the direction from x towards the eye. Suppose we have a precom-
puted radiance solution in a diffuse scene, given by L̃(y) for every surface
point y. We can then acquire the value of L(x → Θ) by writing the ren-
dering equation, approximating the radiance distribution in the kernel of
the transport equation by L̃(y):

L(x→ Θ) = L(x) = Le(x) + fr(x)
∫

A

L̃(y)G(x, y)V (x, y)dAy (7.1)

or equivalently, using integration over the hemisphere,

L(x) = Le(x) + fr(x)
∫

Ωx

L̃(r(x,Ψ)) cos(Nx,Ψ)dωΨ. (7.2)

This integral can now be evaluated using Monte Carlo integration. The
main difference with the stochastic ray-tracing algorithm is that there is
no recursive evaluation of the radiance distribution, since it is substituted
by the precomputed radiosity solution. Thus, one gains the advantage of
using an accurate per-pixel method, using a fast precomputed finite element
method.

Various sampling strategies can now be used to evaluate either Equation
7.1 or 7.2. In a diffuse scene, with a constant radiance value L̃j for each
surface element j, the above equation can also be rewritten as

L(x) = Le(x) + fr(x)
∑

j

L̃j

∫
Aj

G(x, y)V (x, y)dAy. (7.3)

7.1.1 Simple Hemisphere Sampling
The most straightforward approach is to sample random directions over
the hemisphere and evaluate L̃ at the nearest intersection point. This
strategy is very similar to simple stochastic ray tracing (Section 5.3) and
will result in a lot of noise in the final image. The reason is the same as
with stochastic ray tracing: light sources will be missed by just randomly
sampling the hemisphere. Therefore, splitting the integral into a direct and
indirect term is a good approach for increasing the accuracy.

To save time, only the direct illumination can be computed using a per-
pixel gathering step [167], and the indirect illumination can be read out

�

�

�

�

�

�

�

�

7.1. Final Gathering 221

directly from the interpolated radiosity solution. However, the distinction
between primary and secondary light sources is rather arbitrary. There-
fore, illumination from the most important secondary light sources can be
directly re-evaluated as well [93].

7.1.2 Importance Sampling
Importance sampling can be used to evaluate Equation 7.3 or its equiv-
alent. We want to construct a probability density function that matches
the kernel of the integral as closely as possible. Generally, since we have
a precomputed solution, it can be used to sample surface elements and di-
rections to bright areas in the scene. Depending on the radiosity algorithm
used, the following data may be available to construct a PDF:

• The average radiance value for each surface element j,

L̃j =
1
Aj

∫
Ak

L̃(y)dAy.

• The form factors Fi→j between surface elements i and j. This is only
the case in classic radiosity, in which links between surface elements
are stored explicitly.

An importance sampling procedure can then be constructed by first
selecting a surface element, and then sampling a surface point within that
surface element.

1. The probability of picking surface element j should be proportional
to ∫

Aj

L̃(y)G(x, y)V (x, y)dAy ≈ πFi→jL̃j ,

with surface element i containing point x.

Thus, each surface element j is assigned a probability

Pj =
Fi→jL̃j∑
j Fi→jL̃j

.

2. The second step then involves the evaluation of

1
Pj

∫
Aj

L̃(y)G(x, y)V (x, y)dAy (7.4)

for the surface element j selected in Step 1. Several methods for
evaluating this integral are possible. We list just a few possibilities:

�

�

�

�

�

�

�

�

222 7. Hybrid Algorithms

(a) Choosing a sample point y with uniform probability 1/Aj on
surface element j. The total estimator for Equation 7.4 is then
given by

AjL̃(y)G(x, y)V (x, y)
Pj

.

(b) In [6], an algorithm is presented to sample a random direction
with uniform probability 1/Ωj on a spherical triangle Ωj . This
sampling procedure can be used to sample a surface point y by
first selecting a direction Θx ∈ Ωj ; y is the point on surface
element j along Θx. The total estimator is then

ΩjL̃(y) cos(Nx,Θx)V (x, y)
Pj

.

(c) The cosine factor cos(Nx,Θx) can be taken into account as well
by using rejection sampling. A direction is sampled on a bound-
ing region Ωj for Ωj on the hemisphere. The bounding region
needs to be chosen such that sampling according to a cosine dis-
tribution is possible. If the sampled direction falls outside Ωj ,
the estimator evaluates to 0. Alternatively, one can also gen-
erate samples until a nonrejected sample is generated. In both
cases, care has to be taken to use the correct sampling densities.

(d) When surface element j is fully visible from point x, the point-
to-surface form factor can be computed analytically, and thus
no Monte Carlo sampling is needed.

Figure 7.1. Final gathering: radiosity solution on the left, final gathering
on the right. (Courtesy of Frank Suykens-De Laet, Dept. of Computer Science,
K. U. Leuven.)

�

�

�

�

�

�

�

�

7.2. Multipass Methods 223

7.1.3 Results

Figure 7.1 shows the result of applying final gathering to a precomputed
radiosity solution. The scene on the left shows the precomputed radiosity
solution. Meshing artifacts in the shading and shadows are clearly visible.
The image on the right is computed using final gathering. All illumination
features are much more smooth.

Final gathering techniques can also be extended for scenes with nondif-
fuse surfaces. In that case, the nondiffuse BRDF should be included in the
integral evaluations.

7.2 Multipass Methods

The final gathering algorithm is an example of a broader class of meth-
ods, called multipass methods. A multipass method uses various algo-
rithms (finite-element–based, image-based) and combines them into a sin-
gle image-generation algorithm. Care has to be taken that light transport
components are not counted twice, since this would introduce errors in the
image. At the same time, all possible light transport modes need to be
covered by at least one pass. A good multipass algorithm tries to exploit
the various advantages of the different individual passes.

In this section, we follow the explanation of multipass algorithms as
given in [99].

7.2.1 Regular Expressions

Regular expressions are often used to express which light transport modes
are covered by which pass. One can introduce the following notations:

• L: One of the light sources in the scene.

• D: A diffuse reflection component of the BRDF.

• G: A semidiffuse or glossy reflection component of the BRDF.

• S: A perfect specular component of the BRDF.

• E: The eye or virtual camera.

A light transport path between a light source and the camera, only
reflecting at diffuse surfaces, can then formally be written as being of type

�

�

�

�

�

�

�

�

224 7. Hybrid Algorithms

LD+E. D+ indicates the path bounces off of at least one diffuse surface. A
diffuse surface, reflected in a visible specular material, would be described
by the path of type LDSE. All possible paths in the scene are described
by L(D|G|S)∗E, with ∗ indicating zero or more reflections.

Algorithms can now be characterized by describing what light trans-
port paths they cover. Radiosity algorithms cover all paths of type LD∗E,
or all diffuse bounces. A classic ray-tracing algorithm, stopping the re-
cursion of reflected rays at nonspecular surfaces, covers all paths of type
LD0...1(G|S)E, with D0...1 indicating 0 to 1 reflections at a diffuse surface.

7.2.2 Construction of a Multipass Algorithm

A multipass algorithm usually starts with one or more object-space meth-
ods, which store a partial approximation of the light transport in the scene.
For example, a radiosity method might only store the diffuse light interac-
tions and might ignore all other types of light transport. More sophisticated
algorithms might include some nondiffuse reflections as well.

The image-space algorithms compute radiance values per pixel, but they
rely on the partially computed and stored light transport approximations of
the previous passes. To access these stored solutions, they need a read-out
strategy. This read-out strategy might itself include some computations or
interpolations, and this is determined by the nature of the stored partial
solution. The read-out strategy also determines the nature of the paths
that are covered by the image-space pass.

Some typical read-out strategies include:

• Direct visualization of the stored solution. For each pixel, the stored
light transport solution is accessed directly and the resulting value
attributed to the pixel. Radiosity solutions are often displayed this
way. The covered light transport paths are exactly the same as those
covered by the object-space pass.

• Final gathering. The final gathering method reconstructs the incoming
radiance values over the hemisphere for each point visible through
the pixel. These radiance values are read from the stored radiance
solution. Suppose the stored radiance solution only covers paths of
type LD∗. Because the final gathering takes into account the full
BRDF at the visible point through the pixel, the paths covered by
this multipass algorithm are of type LD∗(D|G|S)E, and LE when
the light sources are directly visible.

�

�

�

�

�

�

�

�

7.2. Multipass Methods 225

• Recursive stochastic ray tracing. A recursive ray-tracing algorithm
is used as a read-out strategy, but paths are only reflected at those
surfaces; use only those reflection components that are not covered
by the object-space pass. For example, if the first pass stores a ra-
diosity solution, covering all paths of type LD∗, then the recursive
ray-tracing pass would only reflect rays at G or S surfaces. At each
D surface, the stored value in the precomputed solution is read out
and incorporated in the estimator at that reflection point. Thus, the
covered paths are of type LD∗(G|S)∗E.

7.2.3 Weighted Multipass Algorithms

Most multipass strategies make sure that the light transport paths covered
in the different passes do not overlap. Otherwise, some light transport
might be counted twice, and the resulting image will look too bright in
some parts of the scene. Every pass of the multipass algorithm covers
distinct, separate types of light transport.

An alternative approach is to have some overlap between the different
passes, but weigh them appropriately, such that the correct image is still ob-
tained. The problem is now to find the right weighting heuristics, such that
the strengths of each individual pass are used in the optimal way. A very
good strategy assigns weights to the different types of paths in each pass,
based on the respective probability density functions for generating these
paths. Thus, caustic effects might predominantly use their results from a
bidirectional ray-tracing pass, while direct illumination effects might origi-
nate mostly from a ray-tracing or radiosity pass. A very detailed discussion
and good overview of this technique can be found in [99].

An example is given in Figure 7.2. A total of three passes are used.
First, a radiosity solution is computed, which is subsequently enhanced
by a stochastic ray tracer (image in upper left). This specific example
covers only paths of type LD(G|S)(D|G|S)∗E. A third pass involves a
bidirectional ray tracer (image in upper right), which generates paths of
the same type but with different probabilities due to the nature of the
sampling process.

When applying the weighting heuristic, one can see that the caustic on
the floor (due to refraction through the glass sphere) is mostly assigned
to bidirectional path tracing, while the direct illumination is mostly as-
signed to the radiosity and stochastic ray-tracing solution. Some difficult
effects, which are not well covered by either method, are weighted more
equally, such as the reflection in the right wall of the white panel above the
light source.

�

�

�

�

�

�

�

�

226 7. Hybrid Algorithms

Figure 7.2. Radiosity and stochastic ray tracing is shown in the right column;
bidirectional path tracing is shown in the left column. The resulting image, which
is the sum of the two weighted images, is shown at the bottom. (Courtesy of
Frank Suykens-De Laet, Dept. of Computer Science, K. U. Leuven.)

�

�

�

�

�

�

�

�

7.3. Bidirectional Tracing 227

7.3 Bidirectional Tracing

In Chapter 5, path-tracing algorithms are described in detail. Ray tracing
traces paths through the scene starting at the surface points, which eventu-
ally end at the light sources (whether or not explicit light source sampling
is used). Light tracing, another path-tracing algorithm, does the opposite:
paths start at the light sources and end up in any relevant pixels.

Bidirectional ray tracing combines both approaches in a single algorithm
and can be viewed as a two-pass algorithm in which both passes are tightly
intertwined. Bidirectional ray tracing generates paths starting at the light
sources and at the surface point simultaneously and connects both paths in
the middle to find a contribution to the light transport between the light
source and the point for which a radiance value needs to be computed.
Thus, it combines the specific advantages of ray tracing as well as light
tracing. Bidirectional ray tracing was developed independently by both
Lafortune [102] and Veach [200].

Bidirectional path tracing is one of the few algorithms that start from
the formulation of the global reflection distribution function (GRDF) as
described in Chapter 4. The flux Φ(S) (consider S to be defined by the
surface points visible through a pixel) is given by Equation 4.7:

Φ(S) =
∫

A

∫
Ωx

∫
A

∫
Ωy

Le(x→ Θ)Gr(x← Θ, y → Ψ)We(y ← Ψ)

× cos(Nx,Θ) cos(Ny,Ψ)dωΨdAydωΘdAx.

The core idea of the algorithm is that one has the availability of two
different path generators when computing a Monte Carlo estimate for the
flux through a certain pixel:

• An eye path is traced starting at a sampled surface point y0 visible
through the pixel. By generating a path of length k, the path consists
of a series of surface points y0, y1, . . . , yk. The length of the path is
controlled by Russian roulette. The probability of generating this
path can be composed of the individual PDF values of generating
each successive point along the path.

• Similarly, a light path of length l is generated starting at the light
source. This path, x0, x1, . . . , xl, also has its own probability density
distribution.

By connecting the endpoint yk of the eye path with the endpoint xl

of the light path, a total path of length k + l + 1 between the importance
source S and the light sources is obtained. The probability density function

�

�

�

�

�

�

�

�

228 7. Hybrid Algorithms

for this path is the product of the individual PDFs of the light and eye
paths.

Thus, an estimator for the Φ(S) using this single path is given by

Φ(S) =
K

pdf(y0, y1, . . . , yk, xl, . . . , x1, x0)
,

with

K = Le(x0 → −−→x0x1)G(x0, x1)V (x0, x1)fr(x1,
−−→x1x0 ↔ −−→x1x2) . . .

G(xl, yk)V (xl, yk)fr(yk,
−−→ykxl ↔ −−−−→ykyk−1) . . .

fr(y1,−−→y1y0 ↔ −−→y1y2)G(y1, y0)V (y1, y0)We(y0 ← −−→y0y1).

Paths of a certain length can now be generated by using different com-
binations. For example, a path of length 3 could be generated by a light
path of length 2 and an eye path of length 0 (this is a single point y0);
or by a light path of length 1 and an eye path of length 1; or by a light
path of length 0 (a single point at the light source) and an eye path of
length 2. As such, stochastic ray tracing and light tracing are special cases
of bidirectional ray tracing. When tracing a shadow ray in stochastic ray
tracing, we actually generate a light path of length 0, which is connected
to an eye path. These different combinations of generating a path of given
length are shown in Figure 7.3.

Figure 7.3. Different combinations for a path of length 3: eye path is of length
2, light path of length 1 (upper left), both of length 1 (middle), eye path is of
length 0, light path of length 2 (upper right).

�

�

�

�

�

�

�

�

7.3. Bidirectional Tracing 229

Depending on the light transport mode, and the sequence of G, V , and
fr functions, some light distribution effects are better generated using either
light paths or eye paths. For example, when rendering a specular reflection
that is visible in the image, it is better to generate those specular bounces
in the eye path. Similarly, the specular reflections in caustics are better
generated in the light path. Generally, it is better to use the BRDF fr to
sample the next point or direction if fr has sharp peaks. If fr is mainly
diffuse, the energy transport along the connection between the two paths
will not be influenced by the value of the BRDF and thus will not possibly
yield a low contribution to the overall estimator. Another advantage is that
if light sources are concealed, it might be easier to generate light paths to
distribute the light, rather than count on shadow rays to be able to reach
the light source.

When implementing bidirectional path tracing, an eye or light path of
length k − 1 can be extended to a path of length k. Thus, we use the
same subpath more than once. Intuitively, this means that if we have a
light path and an eye path, we not only connect the endpoints, but also all
possible subpaths to each other (Figure 7.4). Care has to be taken that the
Monte Carlo estimators are still correct. This can be achieved by optimally
combining the sampling methods of each of the individual subpaths. More
details and an extensive discussion can be found in [204].

Figure 7.5 shows a simple scene, with a comparison of images generated
by stochastic ray tracing, light tracing, and bidirectional ray tracing. In
both images, the total number of paths is the same, so each image took an

Figure 7.4. Reuse of all subpaths of both the eye path and the light path in a
bidirectional ray-tracing algorithm.

�

�

�

�

�

�

�

�

230 7. Hybrid Algorithms

Figure 7.5. Left: stochastic ray tracing; middle: light tracing; right: bidirectional
ray tracing. (Courtesy of F. Suykens-DeLaet, Dept. of Computer Science, K. U.
Leuven.) (See Plate V.)

equal time to compute. Figure 7.6 shows a picture generated by bidirec-
tional ray tracing, with a significant amount of caustics, which would have
taken a long time to generate using stochastic ray tracing only.

Figure 7.6. Bidirectional ray tracing. Note the extensive caustics, an effect dif-
ficult to achieve using stochastic ray tracing. (Courtesy of F. Suykens-De Laet,
Dept. of Computer Science, K. U. Leuven.) (See Plate VI.)

�

�

�

�

�

�

�

�

7.4. Metropolis Light Transport 231

7.4 Metropolis Light Transport

Metropolis light transport (MLT) [202] aims for robust global illumination
that can handle light transport paths that are difficult to capture. MLT
demonstrates the application of Metropolis sampling [119] to image gen-
eration by sampling the extremely high-dimensional (infinite dimensions!)
space of all possible paths.

The Metropolis sampling technique, first introduced in 1953, can gen-
erate a sequence of samples from a non-negative function f such that the
samples are distributed according to f , i.e., there are more samples where
f is large and vice-versa. This important property of Metropolis sampling
is achieved without any knowledge of f or its PDF; the only requirement
is that it should be possible to evaluate the function f at each generated
sample.

MLT applies this sampling technique to the infinite-dimensional space
of paths. The key idea of MLT is that paths are sampled according to
the contribution they make to the final image. The algorithm generates
a sequence of light transport paths by applying random mutations to the
previous path. Example mutations are adding a vertex in the path, deleting
an existing vertex, etc. Each proposed mutation could be accepted or
rejected; the probabilities that determine acceptance/rejection are chosen
so that paths are sampled according to their contribution to the image
plane. The image is computed by sampling many paths and recording
their contributions to the image plane.

The main advantage of the MLT algorithm is that it is an unbiased
algorithm that can handle hard-to-compute illumination situations. For
example, MLT is efficient in computing images for scenes with strong indi-
rect illumination that only arises through a small set of paths. The reason
for this is that once the algorithm finds an important, but hard to find,
light transport path, it explores other paths “near” that path through mu-
tations. The assumption is that exploring that part of the path space
will find other important light transport paths. This local exploration
of the space of paths can result in faster convergence in scenes as com-
pared to other approaches such as bidirectional path tracing . Additionally,
the fundamental framework of Metropolis sampling ensures that this
faster convergence is achieved while still maintaining an unbiased tech-
nique.

Another (relatively minor) benefit of this approach is that the contri-
bution of a new path can be computed relatively inexpensively. This is
because only a small part of the entire path is changed by the mutation,
and the visibility information for the unchanged segments of the path do
not need to be recomputed.

�

�

�

�

�

�

�

�

232 7. Hybrid Algorithms

Detailed Balance

Stated more formally, given a state space Ω, a non-negative function
f : Ω → R+, and an initial seed x0 ∈ Ω, the Metropolis sampling algo-
rithm generates a random walk x0, x1, . . ., such that the xi are eventually
distributed according to f , irrespective of the choice of x0. To achieve
this steady-state distribution of samples, mutations have to be accepted
or rejected carefully. The acceptance probability a(x→ y) gives the prob-
ability that a mutation from x to y is accepted. A transition function
T (x → y) gives the probability density that a mutation technique would
propose a mutation from state x to y. For a random walk in steady-state,
the transition density between two states must be equal:

f(x)T (x→ y)a(x→ y) = f(y)T (y → x)a(y → x).

This condition is known as detailed balance. Since f and T are given,
the following choice of a results in equilibrium being achieved the fastest:

a(x→ y) = min(1,
f(y)T (y → x)
f(x)T (x→ y)

).

The Algorithm

The MLT algorithm starts with a set of n random paths, constructed using
bidirectional path tracing, from the lights to the image plane.1 These
paths are then mutated using mutation strategies described below. When
a path x is mutated to produce a path y, the mutation is accepted based
on the probability a given above. In particular, if the new path y does not
contribute to the image (e.g., f(y) = 0 because two adjacent vertices of
the path are not mutually visible), then the acceptance probability will be
zero and the mutation will be rejected.

Veach defined several ways in which paths can be mutated; each of
these mutation strategies optimizes for finding some set of of light transport
paths.

• Bidirectional mutation. This mutation deletes a subpath of the path,
extends the ends of the two remaining subpaths with one or more ver-
tices, and then connects these ends together. The paths are accepted
based on the acceptance probability a.

• Perturbations. Perturbations try to make small changes to a path,
say by moving one or more vertices of the path, while leaving most of

1There are some important details to eliminate start-up bias that must be considered;
we refer the reader to Veach’s thesis [204] for a description.

�

�

�

�

�

�

�

�

7.4. Metropolis Light Transport 233

Figure 7.7. Metropolis light transport example with caustics. (Courtesy of
Eric Veach.) (See Plate VII.)

the path the same. Veach defined caustic perturbations, lens pertur-
bations, and multichain perturbations to capture different light paths
more efficiently. For example, the caustic perturbation might change
the outgoing light direction in the path to try to mutate all the paths
that focus light to form a caustic.

The basic MLT algorithm is:

MLT () {
clear pixels in image to 0;
x = initialSeedPath(); // actually n such paths are chosen
for i = 1 to N {

y = mutate (x);
a = acceptanceProbability (x,y);
if (random() < a) x = y; // accept mutation
recordSample (image, x);

}
}

Discussion

MLT is an unbiased technique to compute light transport that is efficient at
computing images of scenes that include hard-to-find light transport paths.
This is because once a hard-to-find path is found, mutations explore that
part of the path space thoroughly before going to another part of the space.
However, the implementation of MLT is quite complicated, and care must

�

�

�

�

�

�

�

�

234 7. Hybrid Algorithms

be taken to get several important details of the algorithm right [204, 79] for
it to work. Additionally, it is unclear how MLT performs for scenes that
include multiple important paths; it is possible that the mutations will
result in slower convergence by exploring only a few of the many important
paths thoroughly.

7.5 Irradiance Caching

Monte Carlo rendering can take a long time to converge to images of rea-
sonable quality. Irradiance caching, introduced by Ward [219], is an ef-
fective technique for accelerating the computation of indirect illumination
in diffuse scenes. Using pure Monte Carlo sampling to compute irradi-
ance (incoming radiosity) at a point could require hundreds of ray-tracing
operations. Each of these operations, in turn, could result in more rays
being traced in the scene. Thus, this computation could be extremely
slow. Irradiance caching exploits the insight that the irradiance at diffuse
surfaces, while expensive to compute, varies smoothly in most scenes. In
this technique, irradiance is cached in a data structure, and when possible,
these cached values are interpolated to approximate irradiance at nearby
surfaces.

Interpolation

Irradiance gradients [217] are used to determine when cached values can
be interpolated to produce reasonably accurate results. The translation
and rotation gradient estimate how irradiance changes with position and
direction. An error estimate, based on the split-sphere model (see [107] for
details), is used to determine which samples can be used for interpolation
without (hopefully) introducing visible artifacts. Using this model, the
error at a point P due to a cached sample i at location Pi is given as

εi(P) =
||P − Pi||

Ri
+
√

1−NP ·NPi
,

where Ri is the mean harmonic distance of objects visible from the cached
sample i, and NP and NPi are the normals at P and the sample at Pi,
respectively. Note that this error term penalizes samples whose normals
differ significantly from the normal of the point whose irradiance is being
approximated. Similarly, samples that are far away are penalized. Also,
samples that are close to other surfaces, i.e., their mean harmonic distance
is small, are penalized.

�

�

�

�

�

�

�

�

7.5. Irradiance Caching 235

Irradiance at the point P is interpolated using the cached irradiance
values of nearby samples using the weight wi for the ith sample:

wi(P) =
1

εi(P)
.

If a point has a large error, its weight is small, and vice-versa. A user-
specified parameter a is further used to eliminate samples whose weights
are too small.

The interpolated irradiance at point P is then

E(P) =
∑N

i=1 wi(P)Ei(P)∑N
i=1 wi(P)

,

where Ei(P) is the computed illuminance at Pi extrapolated to P ; the
extrapolation is computed using the rotation and translation gradients of
the cached values. For a detailed description of these terms, refer to [107].

The Irradiance Cache

The cached samples are stored in an octree constructed over the scene.
This data structure permits the decoupling of geometry from illumination
values. When the irradiance at a point must be computed, the octree is
searched to find “nearby” cached samples that are accurate enough to be
used to approximate irradiance; the user-specified weight cutoff a specifies a

Figure 7.8. Temple scene rendered with irradiance caching. Temple modeled by
Veronica Sundstedt and Patrick Ledda. (Courtesy of Greg Ward.) (See Plate
VIII.)

�

�

�

�

�

�

�

�

236 7. Hybrid Algorithms

radius over which the samples are searched. If such samples are found, they
are used to interpolate irradiance using the weighting algorithm described
above. If such samples do not exist, a sample is computed for the current
point. This sample is then stored in the irradiance cache to be reused for
interpolation later, if possible.

This algorithm is extremely effective at accelerating rendering for diffuse
scenes. See Figure 7.8 for results.

7.6 Photon Mapping

Photon mapping, introduced by Jensen [77, 82, 81], is a practical two-pass
algorithm that, like bidirectional path tracing, traces illumination paths
both from the lights and from the viewpoint. However, unlike bidirectional
path tracing, this approach caches and reuses illumination values in a scene
for efficiency. In the first pass, “photons” are traced from the light sources
into the scene. These photons, which carry flux information, are cached
in a data structure, called the photon map. In the second pass, an image
is rendered using the information stored in the photon map. A detailed
description of the photon mapping technique can be found in [83].

Photon mapping decouples photon storage from surface parameteriza-
tion. This representation enables it to handle arbitrary geometry, including
procedural geometry, thus increasing the practical utility of the algorithm.
It is also not prone to meshing artifacts.

By tracing or storing only particular types of photons (i.e., those that
follow specific types of light paths), it is possible to make specialized pho-
ton maps, just for that purpose. The best example of this is the caustic
map, which is designed to capture photons that interact with one or more
specular surfaces before reaching a diffuse surface. These light paths cause
caustics. Traditional Monte Carlo sampling can be very slow at correctly
producing good caustics. By explicitly capturing caustic paths in a caustic
map, the photon mapping technique can find caustics efficiently.

One point to note is that photon mapping is a biased technique. Recall
that in a biased technique, the bias is the potentially nonzero difference
between the expected value of the estimator and the actual value of the
integral being computed. However, since photon maps are typically not
used directly, but are used to compute indirect illumination, increasing the
photons eliminates most artifacts.

Tracing Photons: Pass 1

The use of compact, point-based “photons” to propagate flux through the
scene is key in making photon mapping efficient. In the first pass, photons

�

�

�

�

�

�

�

�

7.6. Photon Mapping 237

light source

Caustic Map

light source

Global Photon Map

Figure 7.9. Caustic map and global photon map. The caustic map captures
photons that traverse the paths LS+D, while the global photon map represents
all paths.

are traced from the light sources and propagated through the scene just as
rays are in ray tracing; i.e., they are reflected, transmitted, or absorbed.
Russian roulette and the standard Monte Carlo sampling techniques de-
scribed earlier are used to propagate photons.2

When the photons hit nonspecular surfaces, they are stored in a global
data structure called the photon map. To facilitate efficient searches for
photons, a balanced kd-tree is used to implement this data structure.

As mentioned before, photon mapping can be efficient for computing
caustics. A caustic is formed when light is reflected or transmitted through
one or more specular surface before reaching a diffuse surface. To improve
the rendering of scenes that include caustics, the algorithm separates out
the computation of caustics from global illumination. Thus, two photon
maps, a caustic photon map and a global photon map, are computed for
each scene. The caustic map includes photons that traverse the paths
LS+D, while the global photon map represents all paths L(S|D)∗D, as
shown in Figure 7.9.

Caustic photon maps can be computed efficiently because caustics occur
when light is focused; therefore, not too many photons are needed to get
a good estimate of caustics. Additionally, the number of surfaces resulting
in caustics in typical scenes is often very small. Efficiency is achieved by
shooting photons only towards this small set of specular surfaces.

2There are some differences between tracing photons and tracing rays. The main
difference is that when a photon undergoes refraction, the power carried by the photon
does not change. In contrast, the radiance of a ray must be weighted by the square of
the relative indices of refraction (see Chapter 2 and [204]).

�

�

�

�

�

�

�

�

238 7. Hybrid Algorithms

Reflected Radiance using Photon Maps

The reflected radiance at each point in the scene can be computed from
the photon map as follows. The photon map represents incoming flux at
each point in the scene; therefore, the photon density at a point estimates
the irradiance at that point. The reflected radiance at a point can then be
computed by multiplying the irradiance by the surface BRDF.

To compute the photon density at a point, the n closest photons to that
point are found in the photon map (refer to Section 6.5.5 for more detail
on nearest-neighbor estimation.). This search is efficiently done using the
balanced kd-tree storing the photons. The photon density is then computed
by adding the flux of these n photons and dividing by the projected area
of the sphere containing these n photons. Thus, the reflected radiance at
the point x in the direction ω is

L(x→ ω) =
n∑

i=1

fr(x, ω ↔ ωi)
∆Φi(x← ωi)

πr2
. (7.5)

Computing Images: Pass 2

The simplest use of the photon map would be to display the reflected radi-
ance values computed above for each visible point in an image. However,
unless the number of photons used is extremely large, this display approach
can cause significant blurring of radiance, thus resulting in poor image qual-
ity. Instead, photon maps are more effective when integrated with a ray
tracer that computes direct illumination and queries the photon map only
after one diffuse or glossy bounce from the viewpoint is traced through the
scene.

Thus, the final rendering of images could be done as follows. Rays
are traced through each pixel to find the closest visible surface. The radi-
ance for a visible point is split into direct illumination, specular or glossy
illumination, illumination due to caustics, and the remaining indirect illu-
mination. Each of these components is computed as follows:

• Direct illumination for visible surfaces is computed using regular
Monte Carlo sampling as described in Chapter 4.

• Specular reflections and transmissions are ray traced.

• Caustics are computed using the caustic photon map. Since caustics
occur only in a few parts of the scene, they are computed at a higher
resolution to permit direct high-quality display.

�

�

�

�

�

�

�

�

7.6. Photon Mapping 239

light source

Pass 1: Shoot Photons

eye

image plane

Pass 2: Find Nearest Neighbors

caustic lookup

global photon
map lookup

Figure 7.10. Two passes of photon mapping in a Cornell box with a glass sphere.
In Pass 1, photons are traced and deposited on nonspecular surfaces. In Pass
2, global illumination is indirectly computed using the global photon map (as
shown). For each indirect ray, the N closest photons in the global photon map
are found. Caustics are also found by doing a similar look-up in the caustic map
at the visible point. Direct illumination, specular, and glossy reflections (not
shown) are computed using ray tracing.

• The remaining indirect illumination is computed by sampling the
hemisphere; the global photon map is used to compute radiance at
the surfaces that are not directly visible using Equation 7.5. This
extra level of indirection decreases visual artifacts.

Figure 7.10 shows a visualization of both passes of the photon-mapping
algorithm. See Figure 7.11 for results.

(a) (b)

Figure 7.11. Examples of images produced using photon mapping. Figure (a)
shows caustics, while Figure (b) shows a scene rendered with global illumination
and displacement mapping. (Courtesy of Henrik Wann Jensen.) (See Plate IX.)

�

�

�

�

�

�

�

�

240 7. Hybrid Algorithms

The use of the global photon map for indirect illumination is reminis-
cent of the final gathering approaches in radiosity algorithms. However,
by storing caustic maps that can be visualized directly, this algorithm is
able to capture challenging caustic paths. Several extensions, such as us-
ing irradiance caching, are important to achieve performance with photon
mapping. These extensions and others (for example, photon maps have
been extended to handle participating media and subsurface scattering) are
detailed in the book Realistic Image Synthesis Using Photon Mapping [83].

7.7 Instant Radiosity

Instant radiosity is the name of another interesting hybrid algorithm, re-
lated to bidirectional path tracing and two-pass methods [91]. The key idea
of instant radiosity is to replace indirect diffuse illumination in a scene by
direct diffuse illumination from a set of point sources. The point sources
are placed at the locations where a number of simulated photon trajectories
hit the surfaces of objects. Figure 7.12 illustrates this approach.

We showed in Section 6.5.6 that this approach can be viewed as a kind
of kernel method for density estimation, using the kernel of the radiosity
integral equation (Equation 6.3) as a footprint function. Instant radiosity
can also be viewed as a kind of bidirectional path tracing. The eye paths
are only one segment long, or are allowed to scatter specularly only. On
the other hand, more than one light path is combined with each eye-path
vertex. The same set of light paths is used for all eye paths.

The main advantage of instant radiosity is in the so-called positively
correlated sampling for all pixels. Because the same light paths are used
for all pixels, images computed with instant radiosity look smoother and
lack the typical noisy artifacts of (bidirectional) path tracing. An example
is shown in Figure 7.13.

In addition, the shadow rays traced between eye-path vertices and the
light-path vertices are highly coherent, similar to eye rays traced in ray
casting. They can be traced significantly faster than in (bidirectional)
path tracing. With an efficient ray-casting engine, high-quality results can
be obtained in seconds on a single processor.

One potential problem with this approach is in the singularity of the
kernel of the radiosity equation, which needs to be evaluated between each
light-path and eye-path vertex:

G(x, y) =
cos(Θxy, Nx) cos(Θyx, Ny)

πr2xy

.

�

�

�

�

�

�

�

�

7.7. Instant Radiosity 241

Figure 7.12. The basic idea of Keller’s instant radiosity algorithm. First, a small
number of photon trajectories is traced. Point light sources are placed at the
locations where these trajectories hit object surfaces. The direct illumination
due to these point light sources (Images 1 to 20) is accumulated. Image A shows
the result of accumulating the Images 1 to 10, with light source points at the
origin of the simulated trajectories, on the extended light source. This results
in direct illumination due to the extended light source. Accumulating Images 11
to 20, corresponding to the other places visited by the photon trajectories, adds
indirect diffuse illumination (Image B). (Images courtesy of A. Keller, University
of Kaiserslautern, Germany.)

Figure 7.13. These images show two views of the same scene, with only direct dif-
fuse illumination besides specular reflections (left), and including indirect diffuse
illumination (right). The right image shows that indirect diffuse illumination can
be a very important effect. The indirect diffuse illumination in this image was
computed with a ray-tracing version of instant radiosity. (Image courtesy of I.
Wald, T. Kollig, C. Benthin, A. Keller, and Ph, Slusallek, Saarland University,
Saarbrücken, and University of Kaiserslautern, Kaiserslautern, Germany.) (See
Plate X.)

�

�

�

�

�

�

�

�

242 7. Hybrid Algorithms

When the distance rxy tends to zero (x and y move closer to each
other, as shown in Figure 6.3), G(x, y) becomes very large. In bidirectional
path tracing, this singularity is avoided by multiplying with appropriate
weight factors favoring alternative path combinations. As a solution, a
small constant can be added to the denominator, similar to certain classic
integration schemes for point-to-patch form factors in radiosity. Doing so
introduces a small, but hardly noticeable, bias.

As an alternative to ray tracing, Keller proposed computing the illu-
mination from the point sources using graphics hardware [91]. Typically,
a few hundred point lights are used, which is much more than hardware
typically can handle in a single pass. Therefore, an accumulation buffer
or similar technique needs to be used in order to combine the results from
several rendering passes. Implementation using graphics hardware is inter-
esting in view of the rapidly increasing processing power and accuracy of
commodity graphics accelerators. Interactive rendering rates are possible
for less complex scenes.

7.8 Lightcuts and Multidimensional Lightcuts

Even with all the advances in Monte Carlo sampling, rendering complex
scenes that include a large number of light sources, and effects such as
motion blur, depth of field, and participating media, remains challenging.
Most existing techniques are too slow (and noisy) in the face of such com-
plexity. Lightcuts [213] and multidimensional lightcuts [214] are scalable
rendering algorithms for high complexity scenes.

7.8.1 Lightcuts

Rendering scenes with a large number of complex light sources is a chal-
lenge. Convergence of Monte Carlo sampling for direct illumination, even
with the optimizations from Section 5.4.5, is often too slow for such scenes.
Furthermore, hybrid algorithms like instant radiosity convert indirect illu-
mination into direct illumination from a set of indirect lights. The perfor-
mance of such algorithms depends linearly on the number of lights created;
this linear performance often limits the complexity of scenes and illumina-
tion that these approaches can handle.

Lightcuts [213] introduce a scalable solution for computing illumina-
tion from many point lights. Their rendering cost is sublinear in the
number of point lights, thus enabling rendering from an extremely large
number of light sources. This sublinear performance can be exploited to

�

�

�

�

�

�

�

�

7.8. Lightcuts and Multidimensional Lightcuts 243

Figure 7.14. A simple scene with four point lights and the corresponding light
tree. Leaves are individual lights while upper nodes are progressively larger light
clusters. Each cut is a different partitioning of the lights into clusters. The
cut shown in orange clusters lights three and four. The orange region in the
rendered image (left) shows where the lightcut is a good approximation of the
exact solution. (Image courtesy Bruce Walter.) (See Plate XX.)

render difficult illumination problems simulated as illumination from many
point lights. For example, area lights, sun/sky models, high dynamic range
(HDR) environment maps, and indirect illumination using instant radios-
ity, and of course, point lights, can be unified into one common framework.
Apart from quality, this unification allows performance gains because bright
illumination from one source can mask errors in approximating other illu-
mination.

Lightcuts achieve scalability by constructing a light tree over all light
sources. The light tree clusters lights in a binary tree where the leaves are
individual lights and the interior nodes are light clusters containing the
lights below them in the tree. Each tree node has a representative light
that approximates the contribution of all the lights in the node’s cluster.

Lightcuts achieve sublinear performance by using tree nodes when pos-
sible to approximate the contribution of a group of lights without having
to evaluate each light individually. When rendering the image, for each
eye ray, a cut through the light tree is found. A cut is a set of nodes such
that every path from the root of the tree to a leaf contains exactly one
node from the cut. Only representatives on the cut are evaluated to shade
the eye ray. The cut corresponds to a valid partitioning of the lights into
clusters, such that evaluation of the cut approximates the shading of the
eye ray. A simple example scene with four lights is shown in Figure 7.14.

Using the Cut

Given a set of point light sources, the radiance caused by their illumination
at a surface point is a product of each light’s material, geometry, visibility,
and intensity terms, summed over all the lights:

∑
i MiGiViIi. The cluster,

�

�

�

�

�

�

�

�

244 7. Hybrid Algorithms

with representative j, that corresponds to these lights can be used to ap-
proximate the radiance of the cluster as follows: MjGjVj

∑
i Ii, where the

sum of the light intensities in the cluster is precomputed and stored in the
cluster node, and the material, geometry, and visibility term are evaluated
only for the representative light j.

Finding the Cut

The goal is to compute a cut that approximates the original image well.
Cuts that use nodes higher up in the tree are more efficient because they
use more clustering; however, they could also introduce more error. Light-
cuts use conservative error bounds to determine the error introduced by
approximating a cluster by using its representative. Upper bounds for the
material, geometry, and visibility terms for the entire cluster are analyti-
cally computed and used to bound the approximation error (see [213] for
details). A cluster is selected only when the approximation error intro-
duced by the cluster is provably below a perceptual visibility threshold
(2%) determined by Weber’s Law.

The cut selection algorithm starts at the root for each eye ray; the cut is
progressively refined to meet the error criterion. The algorithm uses both
the cluster’s approximate contribution and error bound to determine when
refinement is necessary. An additional optimization, reconstruction cuts,
exploits spatial coherence in lightcuts to further reduce light evaluations.

Figure 7.15 demonstrates scenes with a large number of point lights
(13,000–600,000) used to simulate area lights, HDR environment maps,
sun/sky model, and indirect illumination. The most complex scene is the
Big Screen scene (Figure 7.15(c)), which includes two textured lights (the
HDR displays on the walls) that are modeled as a point light per pixel of
the displays. Using lightcuts for these scenes, each shaded point on average
only evaluates 150–500 lights, which is further reduced to 10–90 lights for
reconstruction cuts. The figure also shows graphs that demonstrate the
scalability of lightcuts for the Tableau and Kitchen scenes (Figures 7.15(a)
and (b)); performance varies sublinearly with increasing number of lights.

7.8.2 Multidimensional Lightcuts

Monte Carlo rendering is powerful enough to handle a wide range of effects,
including motion blur, depth of field, and participating media. These ef-
fects can all be cast into the rendering equation as integrals over different
domains. For example, motion blur is an integration of radiance over time,
participating media is an integration along the ray in the medium, depth

�

�

�

�

�

�

�

�

7.8. Lightcuts and Multidimensional Lightcuts 245

Figure 7.15. Scenes rendered using lightcuts. Tableau demonstrates glossy sur-
faces and HDR environment maps. The Kitchen scene includes area lights and the
sun/sky model. Scalability graphs on the right show how cut size, and therefore
performance, scales sublinearly with the number of lights. Big Screen includes
two textured lights, the displays, each modeled with a point light source per
pixel of the display. Grand Central Station includes 800 direct lights, sun/sky,
and indirect illumination. (Image courtesy Bruce Walter.) (See Plate XXI.)

�

�

�

�

�

�

�

�

246 7. Hybrid Algorithms

of field is integration over the lens aperture, and spatial anti-aliasing is
integration over the area of a pixel:

Lpixel =
∫

time

∫
ray

∫
pixel area

∫
lens aperture

∫
hemisphere

L(x← ω).

This multidimensional integral can be solved by sampling using standard
Monte Carlo techniques; the pixel integral is converted into a set of points,
and radiance is evaluated at each point and averaged. The problem is
that a large number of points are often required for good approximations,
which quickly becomes very expensive especially when the illumination is
also complex.

Multidimensional lightcuts [214] build on lightcuts to develop a uni-
fied, scalable, point-based rendering algorithm for rapidly and accurately
approximating such multidimensional integrals. The key insight is that
instead of evaluating each point to high accuracy, it is possible to achieve
scalable performance by considering the pixel as a whole.

Multidimensional lightcuts first discretize the illumination sources into
a set of point lights L, using the techniques of lightcuts. Then for each
pixel, they generate a set of gather points G, by tracing rays from the
eye or camera. These gather points are appropriately distributed in time,
volume, aperture, and pixel area. The total pixel value is then:

pixel =
∑

(j,i)∈G×L

Lji (7.6)

=
∑

(j,i)∈G×L

SjMjiGjiVjiIi (7.7)

where the M , G, and I terms are the material, geometry, and intensity
terms as before, Vji is the visibility term that also checks that points i and
j exist at the same time instant, and Sj is the strength of a gather point.
Directly evaluating all pairwise interactions (g, l), where g is a gather point
in G, and l is a light point in L, requires |G||L| computations, which is
prohibitively expensive.

Instead, multidimensional lightcuts use an implicit construction of a
hierarchy over the space of gather-light pairs. Separate hierarchies over
the gather points and the light points are constructed: the gather tree and
light tree, respectively. The Cartesian product graph of the gather tree and
light tree is then an implicit hierarchy on the set of all gather-light pairs, as
illustrated in Figure 7.16. The root node of the product graph corresponds
to the set of all gather-light pairs (pairing of the gather and light tree roots)
while leaf nodes correspond to individual gather-light pairs (pairing of leaf
nodes from the gather and light trees). This implicit construction allows

�

�

�

�

�

�

�

�

7.8. Lightcuts and Multidimensional Lightcuts 247

G0

G1

G2

L0 L3L2L1 L5L4 L6

G2

G1G0

Gather Tree

L6

L4 L5

L1L0 L2 L3

Light Tree

Product Graph

World Space

L0 L1 L2 L3

pixel

eye

G0
G1

Figure 7.16. Product graph. Top left: scene with two gather points and four
light points. Top right: gather and light cluster trees. Bottom: product graph of
gather tree and light tree. Each product graph node corresponds to the pairing
of a gather and light node and represents all pairwise interactions between points
in their respective clusters.

computation using a hierarchy of gather-light pairs without actually having
to explicitly construct the full hierarchy.

A cut partitions the set of gather-light pairs into clusters, and the goal
is to adaptively select a cut that will result in an accurate approximation
of the pixel. In analogy with lightcuts, a cut in the product graph is a set
of nodes such that the set of all paths from the root to a leaf will always
contain exactly one node from the cut. This condition guarantees that the
cut corresponds to a valid partitioning of gather-light pairs.

This algorithm discretizes time into a fixed set of T time instants for any
frame. The strengths S and intensities I of the gather and light points are
then time vectors. A representative (g, l) approximates shading as follows:

LC = MglGglVgl(�SC · �IC), (7.8)

where the material, geometry, and visibility terms are evaluated at the
representative (g, l), g and l are required to exist at the same time instant,
and �SC and �IC are the sum of the strength and intensity vectors for all the
gather and light points in the corresponding gather and light clusters.

The rendering algorithm then starts at the root of both the gather and
light trees and refines the cut based on the error of nodes on the cut. As
in lightcuts, finding the cut in the product graph requires bounding the

�

�

�

�

�

�

�

�

248 7. Hybrid Algorithms

Figure 7.17. Multidimensional lightcuts results. The Roulette Wheel demon-
strates motion blur. The split image shows the static wheel on the left and the
wheel spinning on the right. The scalability graph (right) shows how cut size,
and therefore performance, scales sublinearly with the number of gather points.
Tableau demonstrates depth of field, and the Kitchen demonstrates participating
media. (Image courtesy Bruce Walter.) (See Plate XXII.)

error introduced by the representatives on the cut. However, bounding the
error for materials and geometry is more complicated (see [214] for details).
Again, a perceptual threshold based on Weber’s Law is used to determine
when an approximation on the cut is good enough.

Figure 7.17 demonstrates scenes with various effects, including motion
blur, depth of field, participating media, and spatial anti-aliasing. Using
multidimensional lightcuts for these scenes, each shaded pixel on average
only evaluates 200–950 point-light interactions for these scenes that include
hundreds of gather points and up to 600,000 lights. The figure also shows
a graph that demonstrates the scalability of multidimensional lightcuts
for the Roulette Wheel scene (Figure 7.17(a)) as the gather point cloud
increases in size.

�

�

�

�

�

�

�

�

7.9. Exercises 249

Summary

Rendering complex scenes with the wide range of geometric, material, and
lighting complexity and effects that arise in the real world remains hard.
Scalable rendering algorithms that can handle such complexity are an in-
teresting area of future research.

7.9 Exercises

In the following exercises, some specific scenes are given, with at first sight
not too uncommon geometry or lighting configurations. Suppose we want
to use straightforward Monte Carlo ray tracing (including explicit sampling
of the light sources) to compute the images of these scenes from the given
camera positions.

We know that Monte Carlo path tracing will always produce the correct
image, given enough samples. However, this might result in unacceptably
long rendering times.

For each of the scenes, what problems will occur if we use standard
Monte Carlo path tracing? Can you think of any algorithmic improvements
or other optimization schemes that might solve these problems? Explain
why your proposed improvements will work. Note that there are no “cor-
rect” solutions to these problems. In most cases, several different strategies
might be used.

1. A glass sphere is resting on a diffuse surface (Figure 7.18). The
transparent BRDF of the sphere is almost perfectly specular. A so-
called caustic is formed on the diffuse floor, due to the focusing effect

caustic

diffuse surface

glass sphere

small area light source

Figure 7.18. Glass sphere forming a caustic on a diffuse floor.

�

�

�

�

�

�

�

�

250 7. Hybrid Algorithms

mirror

diffuse surface

small area light source

Figure 7.19. Light reaching the room through a half-open door, and reflected off
a mirror (top view).

of the glass sphere. An example light ray, causing this caustic, is
shown. What problems will occur when rendering the caustic?

A very similar problem occurs when we want to render indoor scenes,
where the only source of illumination is the light from the sun shining
through the glass windows (in case they are correctly modeled as
double-sided glass panes).

2. The only light reaching the room containing the camera is coming
from an adjacent room through a half-open door and is then being
reflected by a flat perfect mirror positioned at one of the walls (Figure
7.19). All the walls are diffuse surfaces. We are not looking directly
at the mirror.

3. We want to render an outdoor scene at night, in which the only source
of illumination is the full moon. The moon occupies a relatively
small solid angle in the sky. However, being astronomy buffs, we
have modeled the moon as a diffuse sphere without any self-emissive
illumination, and the only real light source in our scene is the (non-
visible) sun. In other words, all the light reaching our scene is light
from the sun reflected at the moon. Of course, our basic Monte Carlo
path tracer does not know the concept of full moon.

4. Suppose we want to render a city at night, containing hundreds of
different modeled light sources (street lights, neon signs, lit windows,

�

�

�

�

�

�

�

�

7.9. Exercises 251

Figure 7.20. Light patterns at the bottom of a stream of water.

etc.). Shooting a shadow ray to each of these light sources would
mean a large amount of inefficient work, since clearly not every light
source contributes significantly to the illumination of every visible
surface point. What optimization techniques would you use such
that scenes like this can be rendered in a reasonable amount of time?

A very similar problem can occur if the light source is textured (e.g.,
a stained-glass window), effectively subdividing the light source into
many different smaller light sources, each with uniform color and
intensity.

5. We look at the same city, but from across the river next to the city.
Now we see the entire city scene reflected in the water, including all
different light sources. The water is modeled as a surface with many
different little waves (e.g., using bump mapping) and behaves as a
perfect mirror-like surface with respect to reflection. For any given
ray, the direction in which the ray will be reflected on the water can
therefore not be predicted unless the intersection point and hence the
surface normal is already known.

The shimmering waves one can see at the bottom of a swimming pool
or stream of water (Figure 7.20) pose the same problem.

6. A large area light source is partly hidden behind a number of smaller
objects, which altogether block a fair amount of light coming for the
light source (e.g., a number of slats between two rooms, or Venetian

�

�

�

�

�

�

�

�

252 7. Hybrid Algorithms

Figure 7.21. Venetian blinds casting shadows on a desk-surface.

blinds in a window; see Figure 7.21). Most of the shadow rays will
be blocked by these small intervening objects, but a significant part
of the light source is still visible and contributing to the illumination.
How can we make sure we do not waste any shadow rays?

�

�

�

�

�

�

�

�

8

The Quest for Ultimate Realism
and Speed

In this last chapter, we cover a number of topics that are the subject of
ongoing research. Indeed, the quest for realism and speed has not yet come
to an end.

While deriving the rendering equation in Chapter 2, several restrictions
were imposed on light transport. We assumed that wave effects could be
ignored and that radiance is conserved along its path between mutually
visible surfaces. We also assumed that light scattering happens instanta-
neously; that scattered light has the same wavelength as the incident beam;
and that it scatters from the same location where it hits a surface. This is
not always true. We start this chapter with a discussion of how to deal with
participating media, translucent objects, and phenomena such as polariza-
tion, diffraction, interference, fluorescence, and phosphorescence, which do
not fall within our assumptions. We need to refine our light transport
model in order to obtain high realism when these phenomena come into
play. Fortunately, most of the algorithms previously covered in this book
can be extended rather easily to handle these phenomena, although some
new and specific approaches exist as well.

Radiometry is, however, only part of the story, albeit an important part.
Most often, computer graphics images are consumed by human observers,
looking at a printed picture or a computer screen, or watching a computer
graphics movie in a movie theater. Unfortunately, current display systems
are not nearly capable of reproducing the wide range of light intensities
that occurs in nature and that results from our accurate light transport
simulations. These radiometric values need to be transformed in some way
to display colors. For good realism, this transformation should take into
account the response of the human vision system, which is known to be
sophisticated and highly nonlinear. Human visual perception can also be

253

�

�

�

�

�

�

�

�

254 8. The Quest for Ultimate Realism and Speed

exploited to avoid computing detail that one wouldn’t notice anyway, thus
saving computation time.

The last part of this chapter deals with rendering speed. We cover
how frame-to-frame coherence can be exploited in order to more rapidly
render computer animation movies or walk-throughs of nondiffuse static
environments. Very recently, a number of approaches have appeared that
go even further on this track and achieve interactive global illumination,
without predefined animation script or camera path.

8.1 Beyond the Rendering Equation

8.1.1 Participating Media
We assumed in Chapter 2 that radiance is conserved along its path between
unoccluded surfaces. The underlying idea was that all photons leaving the
first surface needed to land on the second one because nothing could happen
to them along their path of flight. As everyone who has ever been outside
in mist or foggy weather conditions knows, this is not always true. Photons
reflected or emitted by a car in front of us on the road for instance, will often
not reach us. They will rather be absorbed or scattered by billions of tiny
water or fog droplets immersed in the air. At the same time, light coming
from the sky above will be scattered towards us. The net effect is that
distant objects fade away in gray. Even clear air itself causes photons to be
scattered or absorbed. This is evident when looking at a distant mountain
range, and it causes an effect known as aerial perspective. Clouds in the
sky scatter and absorb sunlight strongly, although they don’t have a real
surface boundary separating them from the air around. Surfaces are also
not needed for light emission, as in the example of a candle flame.

Our assumption of radiance conservation between surfaces is only true
in a vacuum. In that case, the relation between emitted radiance and
incident radiance at mutually visible surface points x and y along direction
Θ is given by the simple relation

L(x→ Θ) = L(y ← −Θ). (8.1)

If a vacuum is not filling the space between object surfaces, this will
cause photons to change direction and to transform into other forms of
energy. In the case of the candle flame, other forms of energy are also
transformed into visible light photons. We now discuss how these phe-
nomena can be integrated into our light transport framework. We start
by studying how they affect the relation (Equation 8.1) between emitted
radiance and incident radiance at mutually visible surface points x and y.

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 255

- -

Figure 8.1. A participating medium affects radiance transfer along the line from
x to y through four processes: absorption (top right) and out-scattering (bottom
left) remove radiance; volume emission (top left) and in-scattering (bottom right)
add radiance. These processes are explained in more detail in the following
sections.

We distinguish four processes: volume emission (Section 8.1.2), absorption
(Section 8.1.3), out-scattering (Section 8.1.4), and in-scattering (Section
8.1.5). Figure 8.1 illustrates these processes. This will allow us to gen-
eralize the rendering equation of Chapter 2 (Section 8.1.6). Once a good
basic understanding of the physics of the problem has been gained, it is
quite easy to extend most of the global illumination algorithms previously
described in this book to handle participating media (Section 8.1.7).

8.1.2 Volume Emission

The intensity by which a medium, like fire, glows can be characterized by a
volume emittance function ε(z) (units [W/m3]). A good way to think about
the volume emittance function is as follows: it tells us basically how many
photons per unit of volume and per unit of time are emitted at a point z in
three-dimensional space. Indeed, there is a close relationship between the
number of photons and energy: each photon of a fixed wavelength λ carries

�

�

�

�

�

�

�

�

256 8. The Quest for Ultimate Realism and Speed

an energy quantum equal to 2π�c/λ, where � is a fundamental constant in
physics, known as Planck’s constant, and c is the speed of light. Of course,
the intensity of the glow may vary from point to point in space. Many
interesting graphics effects, not only fire, are possible by modeling volume
light sources.

Usually, volume emission is isotropic, meaning that the number of pho-
tons emitted in any direction around z is equal to ε(z)/4π (units [W/m3sr]).

Now consider a point z = x + s · Θ along a thin pencil connecting
mutually visible surface points x and y (see Figure 8.2). The radiance added
along direction Θ due to volume emission in a pencil slice of infinitesimal
thickness ds at z is

dLe(z → Θ) =
e(z)
4π

ds. (8.2)

8.1.3 Absorption

Photons traveling along our pencil from x to y will collide with the medium,
causing them to be absorbed or change direction (scattering). Absorption
means that their energy is converted into a different kind of energy, for
instance, kinetic energy of the particles in the medium. Transformation
into kinetic energy is observed at a macroscopic level as the medium heating
up by radiation. Strong absorption of microwave radiation by water allows
you to boil water in a microwave oven.

The probability that a photon gets absorbed in a volume, per unit of
distance along its direction of propagation, is called the absorption coeffi-
cient σa(z) (units [1/m]). This means that a photon traveling a distance
∆s in a medium has a chance σa ·∆s of being absorbed. Just like the emis-
sion density, the absorption coefficient can also vary from place to place.
In cigarette smoke, for example, absorption varies because the number of
smoke particles per unit volume varies from place to place. In addition,
absorption is usually isotropic: a photon has the same chance of being
absorbed regardless of its direction of flight. This is rarely true for ab-
sorption by a single particle, but in most media, particles are randomly
oriented so that their average directional absorption (and also scattering)
characteristics are observed.

Absorption causes the radiance along the thin pencil from x to y to
decrease exponentially with distance. Consider a pencil slice of thickness
∆s at z = x+sΘ (see Figure 8.2). The number of photons entering the slice
at z is proportional to the radiance L(z → Θ) along the pencil. Assuming
that the absorption coefficient is equal everywhere in the slice, a fraction
σa(z)∆s of these photons will be absorbed. The radiance coming out on

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 257

L(z → Θ)

s

y

z + ∆s ·Θz

L(z + ∆s ·Θ→ Θ)

x

∆s

Figure 8.2. Pencil slice geometry.

the other side of the slice at z + ∆sΘ will be

L(z + ∆s ·Θ→ Θ) = L(z → Θ)− L(z → Θ)σa(z)∆s,

or equivalently,

L(z + ∆s ·Θ→ Θ)− L(z → Θ)
∆s

= −σa(z)L(z → Θ).

Taking the limit for ∆s→ 0 yields the following differential equation1:

dL(z → Θ)
ds

= −σa(z)L(z → Θ) with z = x+ sΘ.

In a homogeneous nonscattering and nonemissive medium, the reduced
radiance at z along the pencil will be

L(z → Θ) = L(x→ Θ)e−σas.

This exponential decrease of radiance with distance is sometimes called
Beer’s Law. It is a good model for colored glass, for instance, and has been
used for many years in classic ray tracing [170]. If the absorption varies
along the considered photon path, Beer’s Law looks like this:

L(z → Θ) = L(x→ Θ) exp
(
−
∫ s

0

σa(x+ tΘ)dt
)
.

8.1.4 Out-Scattering, Extinction Coefficient, and Albedo
The radiance along the pencil will, in general, not only reduce because of
absorption, but also because photons will be scattered into other directions
by the particles along their path. The effect of out-scattering is almost
identical to that of absorption—one just needs to replace the absorption

1The derivative of a function f(x) is, by definition, the limit of (f(x+∆x)−f(x))/∆x
for ∆x → 0.

�

�

�

�

�

�

�

�

258 8. The Quest for Ultimate Realism and Speed

coefficient by the scattering coefficient σs(z) (units [1/m]), which indicates
the probability of scattering per unit of distance along the photon path.

Rather than using σa(z) and σs(z), it is sometimes more convenient
to describe the processes in a participating medium by means of the total
extinction coefficient σt(z) and the albedo α(z).

The extinction coefficient σt(z) = σa(z) + σs(z) (units [1/m]) gives us
the probability per unit distance along the path of flight that a photon
collides (absorbs or scatters) with the medium. It allows us to write the
reduced radiance at z as

Lr(z → Θ) = L(x→ Θ)τ(x, z) with τ(x, z) = exp
(
−
∫ rxz

0

σt(x+ tΘ)dt
)
.

(8.3)
In a homogeneous medium, the average distance between two subsequent
collisions can be shown to be 1/σt (units [m]). The average distance be-
tween subsequent collisions is called the mean free path.

The albedo α(z) = σs(z)/σt(z) (dimensionless) describes the relative
importance of scattering versus absorption. It gives us the probability that
a photon will be scattered rather than absorbed when colliding with the
medium at z.

The albedo is the volume equivalent of the reflectivity ρ at surfaces.
Note that the extinction coefficient was not needed for describing surface
scattering since all photons hitting a surface are supposed to scatter or to
be absorbed. In the absence of participating media, one could model the
extinction coefficient by means of a Dirac delta function along the photon
path: it is zero everywhere, except at the first surface boundary met, where
scattering or absorption happens for sure.

8.1.5 In-Scattering, Field- and Volume-Radiance,
and the Phase Function

The out-scattered photons change direction and enter different pencils be-
tween surface points. In the same way, photons out-scattered from other
pencils will enter the pencil between the x and y we are considering. This
entry of photons due to scattering is called in-scattering.

Similar to volume emission, the intensity of in-scattering is described by
a volume density Lvi(z → Θ) (units [W/m3sr]). The amount of in-scattered
radiance in a pencil slice of thickness ds will be

dLi(z → Θ) = Lvi(z → Θ)ds.

A first condition for in-scattering at a location z is that there is scat-
tering at z at all, in other words, that σs(z) = α(z)σt(z) �= 0. The amount

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 259

of in-scattered radiance further depends on the field radiance L(z,Ψ) along
other directions Ψ at z, and the phase function p(z,Ψ↔ Θ).

Field radiance is our usual concept of radiance. It describes the amount
of light energy flux in a given direction per unit of solid angle and per unit
area perpendicular to that direction. The product of field radiance with
the extinction coefficient Lv(z,Ψ) = L(z,Ψ)σt(z) describes the number of
photons entering collisions with the medium at z per unit of time. Being a
volume density, it is sometimes called the volume radiance (units [1/m3sr]).

Note that the volume radiance will be zero in empty space. The field
radiance, however, does not need to be zero and fulfills the law of radiance
conservation in empty space.

Note also that for surface scattering, no distinction is needed between
field radiance and surface radiance, since all photons interact at a surface.

Of these photons entering collision with the medium at z, a fraction α(z)
will be scattered. Unlike emission and absorption, scattering is usually not
isotropic. Photons may scatter with higher intensity in certain directions
than in others. The phase function p(z,Ψ↔ Θ) at z (units [1/sr]) describes
the probability of scattering from direction Ψ into Θ. Usually, the phase
function only depends on the angle between the two directions Ψ and Θ.
Some examples of phase functions are given below.

The product α(z)p(z,Ψ ↔ Θ) plays the role of the BSDF for volume
scattering. Just like BSDFs, it is reciprocal, and energy conservation must
be satisfied. It is convenient to normalize the phase function so that its
integral over all possible directions is one:∫

Ω

p(z,Ψ↔ Θ)dωΨ = 1.

Energy conservation is then clearly satisfied, since α(z) < 1.
Putting this together, we arrive at the following volume scattering equa-

tion:

Lvi(z → Θ) =
∫

Ω

α(z)p(z,Ψ↔ Θ) · Lv(z → Ψ)dωΨ

= σs(z)
∫

Ω

p(z,Ψ↔ Θ)L(z → Ψ)dωΨ. (8.4)

The volume scattering equation is the volume equivalent of the surface
scattering equation introduced in Section 2.5.1. It describes how scattered
volume radiance is the integral over all directions of the volume radiance
Lv(z → Ψ), weighted with α(z)p(z,Ψ ↔ Θ). The former is the volume
equivalent of surface radiance, and the latter is the equivalent of the BSDF.

�

�

�

�

�

�

�

�

260 8. The Quest for Ultimate Realism and Speed

- - -

Figure 8.3. Polar plots of the Henyey-Greenstein phase function for anisotropy pa-
rameter value g = 0.0 (isotropic, left), g = −0.2,−0.5,−0.9 (dominant backward
scattering, top row), and g = +0.2, +0.5, +0.9 (dominant forward scattering,
bottom row). These plots show the intensity of scattering as a function of the
angle between forward and scattered direction.

Examples of Phase Functions

The equivalent of diffuse reflection is called isotropic scattering. The phase
function for isotropic scattering is constant and equal to

p(z,Ψ↔ Θ) =
1
4π
. (8.5)

An often used nonisotropic phase function is the following Henyey-
Greenstein phase function, which was introduced to model light scattering
in clouds:

p(z,Ψ↔ Θ) =
1
4π

1− g2

1 + g2 − 2g cos(Ψ,Θ)3/2
. (8.6)

The parameter g allows us to control the anisotropy of the model: it is
the average cosine of the scattering angle. With g > 0, particles are scat-
tered with preference in forward directions. With g < 0, they are scattered
mainly backward. g = 0 models isotropic scattering (see Figure 8.3).

Other common nonisotropic phase functions are due to Lord Rayleigh
and Blasi et al. Rayleigh’s phase function [22, Chapter 1] describes light
scattering at very small particles, such as air molecules. It explains why a
clear sky is blue above and more yellow-reddish towards the horizon.

Blasi et al. have proposed a simple-to-use, intuitive, and efficient-to-
evaluate phase function for use in computer graphics [17].

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 261

8.1.6 The Rendering Equation in the Presence of
Participating Media

We are now ready to describe how the radiance L(x → Θ) gets modified
along its way to y. Equations 8.2 and 8.4 model how volume emission
and in-scattering add radiance along a ray from x to y. Equation 8.3, on
the other hand, describes how radiance is reduced due to absorption and
out-scattering. Not only the surface radiance L(x → Θ) inserted into the
pencil at x is reduced in this way, but also all radiance inserted along the
pencil due to in-scattering and volume emission is reduced. The combined
effect is

L(y ← −Θ) = L(x→ Θ)τ(x, y) +
∫ rxy

0

L+(z → Θ)τ(z, y)dr. (8.7)

For compactness, we let z = x+ rΘ and

L+(z → Θ) = ε(z)/4π + Lvi(z → Θ) (units [W/m3sr]).

The transmittance τ(z, y) indicates how radiance is attenuated between
z and y:

τ(z, y) = exp
(
−
∫ rzy

0

σt(z + sΘ)ds
)
. (8.8)

Equation 8.7 replaces the law of radiance conservation (Equation 8.1) in
the presence of participating media.

Recall that the rendering equation in Chapter 2 was obtained by using
the law of radiance conservation in order to replace the incoming radiance
L(x← Ψ) in

L(x→ Θ) = Le(x→ Θ) +
∫

Ω

fr(x,Θ↔ Ψ)L(x← Ψ) cos(Ψ, Nx)dωΨ

by the outgoing radiance L(y → −Ψ) at the first surface point y seen from
x in the direction Ψ. Doing a similar substitution here, using Equation 8.7
instead, yields the following rendering equation in the presence of partici-
pating media (see Figure 8.4):

L(x→ Θ) = Le(x→ Θ) (8.9)

+
∫

Ω

L(y → −Ψ)τ(x, y)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ

+
∫

Ω

(∫ rxy

0

L+(z → −Ψ)τ(z, y)dr
)
fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ.

The in-scattered radiance Lvi in L+(z → −Ψ)=ε(z)/4π+Lvi(z → −Ψ)
is expressed in terms of field radiance by Equation 8.4. In turn, field

�

�

�

�

�

�

�

�

262 8. The Quest for Ultimate Realism and Speed

L(x→ Θ)

x

y
L(y → −Ψ)

z

Θ

Ψ
L+(z → −Ψ)

Figure 8.4. Symbols used in Equation 8.9.

radiance is expressed in terms of surface radiance and volume emitted and
in-scattered radiance elsewhere in the volume by Equation 8.7.

These expressions look much more frightening than they actually are.
The important thing to remember is that participating media can be han-
dled by extending the rendering equation in two ways:

• Attenuation of radiance received from other surfaces: the factor τ(x, y)
given by Equation 8.8 in the former integral.

• A volume contribution: the latter (double) integral in Equation 8.9.

Spatial Formulation

In order to better understand how to trace photon trajectories in the
presence of participating media, it is instructive to transform the inte-
grals above to a surface and volume integral, respectively. The relation
r2xydωΨ = V(x, y) cos(−Ψ, Ny)dAy between differential solid angle and sur-
face was derived in Section 2.6.2. A similar relationship exists between
drdωΨ and differential volume: r2xzdrdωΨ = V(x, z)dVz. This results in

L(x→ Θ) = Le(x→ Θ)

+
∫

S

fr(x,Θ↔ Ψ)L(y → −Ψ)τ(x, y)V(x, y)
cos(Ψ, Nx) cos(−Ψ, Ny)

r2xy

dAy

+
∫

V

fr(x,Θ↔ Ψ)L+(z → −Ψ)τ(x, y)V(x, z)
cos(Ψ, Nx)

r2xz

dVz. (8.10)

The two integrands are very similar: the volume integral contains
L+(z →−Ψ) [W/m3sr] rather than surface radiance L(y → −Ψ) [W/m2sr],
but also, surface points always come with a cosine factor, while volume
points don’t.

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 263

Volumes Surfaces

Volume emittance ε(z) [W/m3] Surface emittance Be(x) [W/m2]

Scattering albedo α(z) = σs(z)/σt(z) Surface reflectance/transmittance
ρ(x)

Phase function α(z)p(z, Θ↔ Ψ) BSDF fr(x, Θ↔ Ψ) cos(Nx, Θ)

Extinction coefficient σt(z) No equivalent (Dirac δ function)

Volume radiance
Lv(z → Θ) = σt(z)L(z → Θ)

Surface radiance = field radiance
L(x→ Θ)

Attenuation factor 0 ≤ τ(x, z) ≤ 1 τ(x, y) = 1
(no attenuation in vacuum)

Volume integral of L+(z → −Ψ) in
Equation 8.9

Surface integral of L(y → −Ψ)
in Equation 8.9

Figure 8.5. This table summarizes the main correspondences and differences in
volume and surface scattering and emission.

The correspondences and differences between volume and surface scat-
tering quantities and concepts are summarized in Figure 8.5.

8.1.7 Global Illumination Algorithms for Participating Media

Rendering participating media has received quite some attention since the
end of the 1980s. Proposed approaches include deterministic methods and
stochastic methods. Classic and hierarchical radiosity methods have been
extended to handle participating media by discretizing the volume integral
above into volume elements and assuming that the radiance in each volume
element is isotropic [154, 174]. Many other deterministic approaches have
been proposed as well, based on spherical harmonics (PN methods) and
discrete ordinates methods. An overview is given in [143]. Deterministic
approaches are valuable in relatively “easy” settings, for instance, homo-
geneous media with isotropic scattering, or simple geometries.

Various authors, including Rushmeier, Hanrahan, and Pattanaik, have
proposed extensions to path tracing to handle participating media. These
extensions have been used for some time in other fields such as neutron
transport [183, 86]. They are summarized in Section 8.1.8. The extension of
bidirectional path tracing to handle participating media has been proposed
in [104]. As usual, these path-tracing approaches are flexible and accurate,
but they become enormously costly in optically thick media, where photons
suffer many collisions and trajectories are long.

A good compromise between accuracy and speed is offered by volume
photon density estimation methods. In particular, the extension of photon

�

�

�

�

�

�

�

�

264 8. The Quest for Ultimate Realism and Speed

Figure 8.6. Some renderings of participating media. The top images have been
rendered with bidirectional path tracing. (Courtesy of Eric Lafortune, Katholieke
Universiteit Leuven, Belgium.) The bottom image was rendered with volume
photon mapping. Note the volume caustics cast on this inhomogeneous medium
behind the colored spheres. (Courtesy of Frederik Anrys and Karl Vom Berge,
Katholieke Universiteit Leuven, Belgium.) (See Plate XI.)

mapping to participating media [78] is a reliable and affordable method ca-
pable of rendering highly advanced effects such as volume caustics. Volume
photon density estimation is described in more detail in Section 8.1.9.

Monte Carlo and volume photon density estimation are methods of
choice for optically thin media, in which photons undergo only relatively
few collisions. For optically thick media, they become intractable. Highly
scattering optically thick media can be handled with the diffusion approx-
imation, covered concisely in Section 8.1.10.

For the special case of light scattering and attenuation in the Earth’s
atmosphere, an analytical model has been proposed [148]. It plausibly
reproduces the color variations of the sky as a function of sun position and
adds great realism to outdoor scenes without costly simulations.

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 265

Figure 8.6 shows some example renderings of participating media using
techniques covered here.

8.1.8 Tracing Photon Trajectories in Participating Media

Most algorithms discussed so far in this book are based on the simulation
of the trajectory of photons or potons, potential particles originating at the
eye rather than at light sources. We discuss here how to extend photon- or
poton-trajectory tracing to deal with participating media.

Sampling volume emission. Light particles may not only be emitted at
surfaces, but also in midspace. First, a decision needs to be made whether
to sample surface emission or volume emission. This decision can be a
random decision based on the relative amount of self-emitted power by
surfaces and volumes, for instance. If volume emission is to be sampled, a
location somewhere in midspace needs to be selected, based on the volume
emission density ε(z): bright spots in the participating media shall give
birth to more photons than dim regions. Finally, a direction needs to be
sampled at the chosen location. Since volume emission is usually isotropic,
a direction can be sampled with uniform probability across a sphere. Just
like with surface emission sampling, this is a spatial position and a direction
result.

Sampling a next collision location. In the absence of participating media,
a photon emitted from point x into direction Θ always collides on the
first surface seen from x along the direction Θ. With participating media,
however, scattering and absorption may also happen at every location in
the volume along a line to the first surface hit. Note that both surface and
volume collisions may take place, regardless of whether x is a surface or a
volume point. A good way to handle this problem is to sample a distance
along the ray from x into Θ, based on the transmittance factor (Equation
8.8). For instance, one draws a uniformly distributed random number
ζ ∈ [0, 1) (including 0, excluding 1) and finds the distance r corresponding
to

exp
(
−
∫ r

0

σt(x+ sΘ)ds
)

= 1− ζ ⇔
∫ r

0

σt(x+ sΘ)ds = − log(1− ζ).

In a homogeneous medium, r = − log(1 − ζ)/σt. In a heterogeneous
medium, however, sampling such a distance is less trivial. It can be done
exactly if the extinction coefficient is given as a voxel grid, by extending
ray-grid traversal algorithms. For procedurally generated media, one can
step along the ray in small, possibly adaptively chosen, intervals [78]. If
the selected distance becomes greater than or equal to the distance to the

�

�

�

�

�

�

�

�

266 8. The Quest for Ultimate Realism and Speed

exp(−σtr)exp(−σtr)

obstacle obstacle

r = 0 r = 0r = − log(0.8)/σt r = − log(0.2)/σt

Figure 8.7. Sampling a next photon collision location along a ray. First, a distance
r is sampled using the attenuation τ(x, z) as a PDF (τ(x, z) = exp(−σtrxz) in a
homogeneous medium). If this distance is less than the distance to the nearest
surface (left), then volume scattering or absorption is chosen as the next event.
If r is further than the nearest surface (right), surface absorption or scattering is
selected at the nearest surface.

first surface hit point of the ray, surface scattering shall be selected as the
next event. If the sampled distance is nearer, volume scattering is chosen
(see Figure 8.7).

Sampling scattering or absorption. Sampling scattering or absorption in a
volume is pretty much the same as for surfaces. The decision whether to
scatter or absorb will be based on the albedo α(z) for volumes just like the
reflectivity ρ(z) is used for surfaces. Sampling a scattered direction is done
by sampling the phase function p(z,Θ↔ Ψ) for volumes. For surfaces, one
ideally uses fr(z,Θ↔ Ψ) cos(Nx,Ψ)/ρ(z).

Connecting path vertices. Algorithms such as path tracing and bidirec-
tional path tracing require us to connect path vertices, for instance, a sur-
face or volume hit with a light source position for a shadow ray. Without
participating media, the contribution associated with such a connection
between points x and y is

V(x, y)
cos(Nx,Θ) cos(Ny,−Θ)

r2xy

.

In the presence of participating media, the contribution shall be

τ(x, y)
V(x, y)
r2xy

Cx(Θ)Cy(−Θ),

with Cx(Θ) = cos(Nx,Θ) if x is a surface point or 1 if it is a volume point
(similarly for Cy(−Θ)).

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 267

8.1.9 Volume Photon Density Estimation

The photon density estimation algorithms of Section 6.5 computed radiosity
on surfaces by estimating the density of photon hit points on surfaces. In
order to render participating media, it is also necessary to estimate the
volume density of photons colliding with the medium in midspace. Any of
the techniques described in Section 6.5 can be extended for this purpose
in a straightforward manner. A histogram method, for instance, would
discretize the space into volume bins and count photon collisions in each
bin. The ratio of the number of photon hits over the volume of the bin is
an estimate for the volume radiance in the bin. Photon mapping has been
extended with a volume photon map, a third kd-tree for storing photon hit
points, in the same spirit as the caustic and global photon map discussed
in Section 7.6 [78]. The volume photon map contains the photons that
collide with the medium in midspace. Rather than finding the smallest
disc containing a given number N of photon hit points, as was done on
surfaces, one will search for the smallest sphere containing volume photons
around a query location. Again, the ratio of the number of photons and
the volume of the sphere yields an estimate for the volume radiance.

Viewing Precomputed Illumination in Participating Media

Due to the law of conservation of radiance, viewing precomputed illumina-
tion using ray tracing in the absence of participating media takes nothing

Figure 8.8. Using precomputed volume radiance for rendering a view can best
be done with a technique called ray marching. One marches over an eye ray,
with fixed or adaptive step size. At every step, precomputed volume radiance is
queried. Self-emitted and single scattered (“direct”) volume radiance is calcu-
lated on the spot. Finally, the surface radiance at the first hit surface is taken
into account. All gathered radiance is properly attenuated.

�

�

�

�

�

�

�

�

268 8. The Quest for Ultimate Realism and Speed

more than finding what surface point y is visible through each pixel on the
virtual screen and querying the illumination at that point.

In the presence of participating media, conservation of radiance does
not hold, and the radiance coming in at the observer through each pixel
will be an integral over an eye ray, according to Equation 8.7. A good way
to evaluate this integral is by ray marching [78]: by stepping over the ray
in small, potentially adaptively chosen, intervals (see Figure 8.8). At every
visited location along the ray, precomputed volume radiance is queried,
and volume emission and single scattered radiance evaluated. Of course,
the surface radiance at the first hit object should not be overlooked. All
radiance contributions are appropriately attenuated towards the eye.

8.1.10 Light Transport as a Diffusion Process
The rendering equation (Equation 8.9) is not the only way light transport
can be described mathematically. An interesting alternative is to consider
the flow of light energy as a diffusion process [75, Chapter 9]. This point
of view has been shown to result in efficient algorithms for dealing with
highly scattering optically thick participating media, such as clouds [185].
The diffusion approximation is also at the basis of recently proposed models
for subsurface scattering [80]; see Section 8.1.11. We present it briefly here.

The idea is to split field radiance in a participating media into two
contributions, which are computed separately:

L(x→ Θ) = Lr(x→ Θ) + Ld(x→ Θ).

The first part, Lr(x → Θ), called reduced radiance, is the radiance
that reaches point x directly from a light source, or from the boundary
of the participating medium. It is given by Equation 8.7 and needs to be
computed first.

The second part, Ld(x → Θ), is radiance scattered one or more times
in the medium. It is called diffuse radiance. In a highly scattering op-
tically thick medium, the computation of diffuse radiance is hard to do
according to the rendering equation (Equation 8.9). Multiple scattering,
however, tends to smear out the angular dependence of diffuse radiance.
Indeed, each time a photon scatters in the medium, its direction is ran-
domly changed as dictated by the phase function. After many scattering
events, the probability of finding the photon traveling in any direction will
be nearly uniform.

For this reason, one approximates diffuse radiance by the following func-
tion, which varies only a little with direction:

Ld(x→ Θ) = Ud(x) +
3
4π

(
�F d(x) ·Θ

)
.

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 269

Ud(x) represents the average diffuse radiance at x:

Ud(x) =
1
4π

∫
Ω

Ld(x,Θ)dωΘ.

The vector �F d(x), called the diffuse flux vector, models the direction
and magnitude of the multiple-scattered light energy flow through x. It is
defined by taking Θ equal to the unit vector in X, Y, and Z directions in
the following equation:(

�F d(x) ·Θ
)

=
∫

Ω

L(x→ Ψ) cos(Ψ,Θ)dωΨ.

In this approximation, it can be shown that the average diffuse radiance
Ud fulfills a so-called steady-state diffusion equation:

∇2Ud(x)− σ2
trU

d(x) = −Q(x). (8.11)

The driving term Q(x) can be computed from reduced radiance [185, 80,
75, Chapter 9]. The diffusion constant equals σ2

tr = 3σaσ
′
t with σ′t = σ′s+σa

and σ′s = σs(1 − g). g is the average scattering cosine (see Section 8.1.5)
and models the anisotropy of scattering in the medium.

Once the diffusion equation has been solved, the reduced radiance and
the gradient of Ud(x) allow us to compute the flux vector �F d(x) wherever
it is needed. The flux vector, in turn, yields the radiosity flowing through
any given real or imaginary surface boundary.

For simple cases, such as a point source in an infinite homogeneous
medium, the diffusion equation can be solved analytically [80, 75, Chapter
9]. In general, however, solution is only possible via numerical methods.
Stam proposed a multigrid finite difference method and a finite element
method based on blobs [185]. In any case, proper boundary conditions need
to be taken into account, enforcing that the net influx of diffuse radiance
at the boundary is zero (because there is no volume scattering outside the
medium).

A different alternative for the rendering equation, based on principles
of invariance [22], has been described in [145]. It is, however, significantly
more involved.

8.1.11 Subsurface Scattering
In the derivation of the rendering equation (Chapter 2), it was also assumed
that light hitting an object surface is reflected or refracted from the spot
of incidence. This assumption is not always true. Consider, for instance,
the small marble horse sculpture in Figure 8.9. Marble, but also other

�

�

�

�

�

�

�

�

270 8. The Quest for Ultimate Realism and Speed

Figure 8.9. Two renderings of a small marble horse sculpture (5 cm head-to-tail).
Left: using a BRDF model; right: taking into account subsurface scattering.
A BRDF does not capture the distinct, soft appearance of materials such as
marble. The right figure has been computed using the model and the path-tracing
extension proposed in [80]. These images also illustrate that translucency is an
important visual cue for estimating the size of objects. (See Plate XII.)

materials including fruits, leaves, candle wax, milk, human skin, etc., are
translucent materials. Photons hitting such materials will enter the object,
scatter below the surface, and emerge at a different place (see Figure 8.10).
Because of this, such materials have a distinct, soft appearance. Figure 8.9
illustrates that a BRDF, which models only local light reflection, cannot
capture this soft appearance.

In principle, translucency can be handled using any of the previously
discussed algorithms for participating media. Materials such as marble and
milk are, however, highly scattering and optically thick. A photon entering
a marble object for instance, will scatter hundreds of times before being
absorbed or reappearing at the surface. Algorithms based on photon trajec-
tory tracing are very inefficient in this case. The diffusion approximation,
however, can be used.

Translucency can also be treated in a more macroscopic way, by ex-
tending the model for light reflection introduced in Section 2.5.1, so that
light can reflect off a different location than where it entered the material:

L(y → Θ) =
∫

S

∫
Ω+

x

L(x← Ψ)S(x,Ψ↔ y,Θ) cos(Nx,Ψ)dωΨdAx. (8.12)

The function S(x,Ψ↔ y,Θ) is called the bidirectional surface scattering
reflectance distribution function (BSSRDF, units [1/m2sr]). It depends on

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 271

Figure 8.10. Subsurface scattering. Photons entering a translucent material will
undergo a potentially very large number of scattering events before they reappear
at a different location on the surface.

two surface positions rather than one, but other than that it plays exactly
the same role, and has a similar meaning as the BRDF.

Practical models for the BSSRDF have been proposed by Hanrahan et
al. [63] and Jensen et al. [80]. The former model is based on an analytic
solution of the rendering equation (Equation 8.9) in a planar slab of a
homogeneous medium, taking into account only single scattering. The
latter model is based on an approximate analytic solution of the diffusion
equation (Equation 8.11) in an infinitely thick planar slab filled with a
homogeneous medium. It looks like this:

S(x,Θ↔ y,Ψ) =
1
π
Ft(η,Θ)Rd(x, y)Ft(η,Ψ) (8.13)

Rd(x, y) =
α′

4π

[
zr(1 + σtrdr)

e−σtrdr

d3
r

+ zv(1 + σtrdv)
e−σtrdv

d3
v

]
.

Ft(η,Θ) and Ft(η,Ψ) denote the Fresnel transmittance for incident/
outgoing directions Θ at x and ψ at y (see Section 2.8). The parameters η
(relative index of refraction), α′ = σ′s/σ

′
t, and σtr =

√
3σaσ′t are material

properties (σ′s, σ
′
t, and σtr were introduced in Section 8.1.10). zr and zv

are the distance a pair of imaginary point sources are placed above and
below x (see Figure 8.11). dr and dv are the distance between y and these
source points. zr and zv are to be calculated from the material parameters
[80]. Jensen et al. also proposed practical methods for determining the
material constants σa and σ′s, and they give values for several interesting
materials like marble and human skin [80, 76].

Several algorithms have been proposed for rendering images with this
BSSRDF model. In path-tracing and similar algorithms, computing direct

�

�

�

�

�

�

�

�

272 8. The Quest for Ultimate Realism and Speed

x

dv

dr

zr

sr

sv

zv

y

Θ

Ψ

Figure 8.11. Jensen BSSRDF model is based on a dipole source approximation:
A pair of imaginary point sources sr and sv are placed one above and one below
the surface point x. The distance zr and zv at which these sources are placed
with regard to x are calculated from the reduced scattering coefficient σ′

s and
the absorption coefficient σa of the medium inside the object (see [80]). The
BSSRDF model further depends on the distance dr and dv between a surface
point y and these point sources.

The graphs at the bottom show the diffuse reflectance due to subsurface
scattering Rd for a measured sample of marble using parameters from [80]. Rd(r)
indicates the radiosity at a distance r [mm] in a plane, due to unit incident power
at the origin. The graphs illustrate that subsurface scattering is significant up to
a distance of several millimeters in marble. The graphs also explain the strong
color filtering effects observed at larger distances. The right image in Figure 8.9
was computed using this model.

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 273

illumination at a point x on a translucent object takes tracing a shadow
ray at a randomly sampled other location y on the object surface, rather
than at x [80]. The factor Rd(x, y) = Rd(r) in Equation 8.13 at the heart
of Jensen’s model depends only on the distance r between points x and y.
Rd(r) can be used as a PDF for sampling a distance r. The point y is then
chosen on the object surface, at this distance r from x. The right image in
Figure 8.9 was rendered in this way.

The extension to full global illumination with algorithms such as photon
mapping has been proposed in [76]. In [109], a radiosity-like approach can
be found, which allows us to interactively change viewing and lighting
conditions after some preprocessing.

8.1.12 Polarization, Interference, Diffraction, Fluorescence,
Phosphorescence and Nonconstant Media

So far in this chapter, we have discussed how to extend the rendering equa-
tion in order to deal with participating media and nonlocal light reflection.
Here, we cover how some more approximations made in Chapter 2 can be
overcome.

Nonconstant Media: Mirages and Twinkling Stars and Such

The assumption that light travels along straight lines is not always true.
Gradual changes in the index of refraction of the medium cause light rays
to bend. Temperature changes in the earth’s atmosphere, for instance,
affect the index of refraction and cause midair reflections such as mirages.
Another example is the twinkling of stars in a clear, but turbulent, night
sky. Several efficient techniques to trace rays in such nonconstant media
can be found in [184].

Fluorescence and Phosphorescence: Reflection at a
Different Wavelength and a Different Time

We assumed that reflected light has the same wavelength as incident light
and that scattering is instantaneous. This allows us to solve the rendering
equation independently and in parallel for different wavelengths, and at
different time instances.

Some materials, however, absorb electromagnetic radiation to reradiate
it at a different wavelength. For instance, ultraviolet or infrared radiation
can be reradiated as visible light. If reradiation happens (almost) imme-
diately, such materials are called fluorescent materials. Examples of fluo-
rescent objects include fluorescent light bulbs, Post-It notes, and certain
detergents that “wash whiter than white.”

�

�

�

�

�

�

�

�

274 8. The Quest for Ultimate Realism and Speed

Other materials reradiate only at a significantly later time. Such mate-
rials are called phosphorescent materials. Phosphorescent materials some-
times store light energy for hours. Some examples are the dials of certain
wrist watches and small figures, such as decorations for children’s bed-
rooms, that reradiate at night the illumination captured during the day.

Fluorescence and phosphorescence can be dealt with by extending the
BRDF to a matrix, describing cross-over between different wavelengths in
scattering. Delay effects in phosphorescence can be modeled adequately
by extending the notion of self-emitted radiation, keeping track of incident
illumination in the past [53, 226].

Interference: Soap Bubbles and Such

When two waves of the same frequency meet at some place, they will cancel
or amplify each other depending on their phase difference. This effect is
called interference and can be observed, for instance, in water surface waves
in a (not too crowded) swimming pool. Electromagnetic radiation, and
thus light, also has wave properties (see Section 2.1) and may suffer from
interference. Interference of radio waves, for instance, due to two radio
stations broadcasting at the same shortwave frequency, is very well known
to radio amateurs and causes an effect sometimes called the Mexican dog.
Interference of light waves can be observed in reflections at transparent
thin films, and causes a colorful effect called Newton rings. This happens,
for instance, in soap bubbles or gas spills on the road.

Figure 8.12. Interference of light at a transparent thin film coating causes colorful
reflections on these sunglasses. The BRDF model used for rendering this image
has been calculated using a wave-phase–aware ray tracer. (Image courtesy of
Jay Gondek, Gary Meyer, and John Newman, University of Oregon.) (See Plate
XIII.)

�

�

�

�

�

�

�

�

8.1. Beyond the Rendering Equation 275

Interference is explained by addition of wave amplitudes, taking into
account wave phase correctly. The transport theory of electromagnetic
radiation, which leads to the rendering equation, is based on the addition
of power, rather than amplitudes, and ignores phase effects. It is, however,
possible to extend ray tracing to take phase effects into account. Gondek
et al. [55] have used such a ray tracer as a virtual gonio-reflectometer to
calculate BRDFs that are capable of reproducing interference effects (see
Figure 8.12).

Diffraction: Compact Discs and Brushed Metals

Diffraction is the cause of other colorful light-scattering effects, such as at
the surface of a compact disc or brushed metals. Diffraction can be viewed
as interference of coherent secondary spherical waves originating at nearby
locations. It is observed when light is scattered at surface features with size
comparable to the wavelength of light (around 0.5 micrometers). The holes
on a CD-ROM surface, for instance, are of this size. They are also regularly

Figure 8.13. The colorful reflections on this CD-ROM are caused by diffraction.
Like other effects due to the wave nature of light, diffraction is not accounted
for in the transport theory of light. Diffraction in reflections at certain rough
surfaces can, however, be incorporated in a BRDF model. (Image courtesy of
Jos Stam, Alias|Wavefront.) (See Plate XIV.)

�

�

�

�

�

�

�

�

276 8. The Quest for Ultimate Realism and Speed

spaced so that they form a so-called diffraction grating. Since diffraction
is a wave effect as well, it is not accounted for in the transport theory of
light. Diffraction observed in reflections at certain rough surfaces can be
modeled by means of an appropriate BRDF [186]. Figure 8.13 shows an
image rendered with such a diffraction shader.

Polarization

Polarization of light is an effect well known to outdoor photographers, who
use polarization filters to make the sky appear more pure in their pictures.
It can play an important role whenever multiple specular reflections and
refractions occur at smooth surfaces. Examples are optical instruments,
multifaceted crystal objects, and gemstones.

Polarization can be explained by considering electromagnetic radiation
as a superposition of two transverse waves, which oscillate in directions
perpendicular to each other and to the direction of propagation.

Often, there is no correlation between the phases of these waves, so
that average properties are observed. Such light is called unpolarized or
natural light. Most light sources emit natural light. Light usually be-
comes polarized due to scattering. The Fresnel equations (Section 2.8), for
instance, demonstrate how the two components reflect and refract with dif-
ferent intensities at smooth surface boundaries. Rayleigh’s phase function
[22, Chapter 1] models how light scattered at air molecules gets polarized.
Outdoor photographers take advantage of the latter.

In order to describe the polarization state of light completely, four pa-
rameters are needed. Often in optics literature, amplitude and phase corre-
lation functions of the two component waves are used. In transport theory,

Figure 8.14. These images illustrate polarization of light reflected in the glass
block on the left (Fresnel reflection). The same scene is shown, but with a different
filter in front of the virtual camera: a horizontal polarization filter (left), vertical
polarization filter (middle); and a 50% neutral gray (nonpolarizing) filter (right).
(Image courtesy of A. Wilkie, Vienna University of Technology, Austria.) (See
Plate XV.)

�

�

�

�

�

�

�

�

8.2. Image Display and Human Perception 277

it is more convenient to use a different parametrization, due to Stokes (see,
for instance, [75, Chapter 7] and [22, Chapter 1]).

From the point of view of a global illumination practitioner, the main
issue is that polarized light is characterized by four radiance functions,
rather than just one. Surface and volume scattering is described by a 4×4
matrix of BSDF or phase functions that model the cross-over between any
of the four radiance components before and after scattering. Wilkie et
al. [226] have implemented this in a stochastic ray tracer. Some of their
renderings are reproduced in Figure 8.14.

8.2 Image Display and Human Perception

Most of the discussion in this book so far has focused on computing the
correct radiometric values for each pixel in the final image. These values
are measured in radiance, which expresses the amount of energy per surface
area per solid angle that can be measured at a specific point in space and
in a specific direction. However, these physically based radiance values
do not adequately express how brightly the human eye perceives different
illumination levels. The human visual system does not respond linearly to
changing levels of illumination. By knowing how the human visual system
reacts to light incident on the eye’s receptors, aspects such as the display
of images or the computation of the light transport distribution can be
improved.

A global illumination solution for a typical scene might contain many
different levels of illumination. The most typical example is a scene in
which the sun is present. This very bright light source has a radiance level
much higher than any other surface in the scene (except for perhaps other
artificial, unnatural light sources that might be present). For some scenes,
the ratio between the lowest and highest radiance levels could be as high as
105. Figure 8.16 shows a logarithmic plot of the environment map shown
in Figure 8.15, and 5 orders of magnitude are present in this picture. The
same scene rendered by daylight, artificial light, or lit by a night sky might
also yield very different levels of illumination. Typical luminance levels vary
from 10−3 candela per square meter for starlight to 105 candela per square
meter for bright sunlight. It is therefore important to design procedures
that can map these different intensity ranges on the desired output device,
while preserving the perceived realism of the high intensity ratios present
in the radiometrically accurate image.

As we all experience every day, the human eye can quickly adapt to such
varied levels of illumination. For example, we might be in a dark room and

�

�

�

�

�

�

�

�

278 8. The Quest for Ultimate Realism and Speed

see the features of the room, and at the same time see the brightly lit scene
outdoors when looking through the window. Car drivers can adapt quickly
from darkness to sunlight when exiting a tunnel or vice versa. This process
is known as visual adaptation. Different mechanism are responsible for the
visual adaption of the human eye:

• Receptor types. There are two types of receptors in the human retina,
named after their respective shapes: cones and rods. The cone recep-
tors are mostly sensitive to color and bright illumination; the rods are
sensitive to vision in the lower illumination ranges. By having two
types of receptors being sensitive to different illumination conditions,
the human visual system is able to adapt between various levels of
illumination.

• Photopigment bleaching. When a receptor reacts to incident light,
bright light might make the receptor less sensitive. However, this
loss of sensitivity is restored after a short period of time, when the
receptor has adapted to the new illumination level.

• Neural mechanisms. Most visual neurons respond linearly within
only a very narrow band of the entire range of incoming illumination.

Visual adaptation is also highly dependent on the background illumi-
nation intensity. When exposed to a high background illumination, the
photoreceptors become saturated and lose their sensitivity to any further
increments of the intensity. However, after some time, the response gradu-
ally returns to its former levels, and the sensitivity returns to its previous
levels. As such, the level of background illumination, or the adaptation lu-
minance, is an important factor in defining the state of the visual adaption.

All these factors have been acquired by experimental data. There is a
large amount of psychophysical data available, quantifying the performance
of the human visual system under different conditions.

8.2.1 Tone Mapping

Tone-mapping operators solve the problem of how to display a high dy-
namic range picture on a display device that has a much lower range of
available displayable intensities. For example, a typical monitor can dis-
play only luminance values from 0.1 up to 200 cd/m2. Depending on the
type of monitor, the dynamic range (the ratio between the highest and low-
est possible emitted intensities) can be 1 : 1000 to 1 : 2000; although with
the introduction of new high-dynamic range display technology, this ratio

�

�

�

�

�

�

�

�

8.2. Image Display and Human Perception 279

is steadily growing. Mapping the vast range of luminance values that can
be present in high dynamic range images to this very limited display range
therefore has to be carried out accurately in order to maintain the percep-
tual characteristics of the image, such that a human observer receives the
same visual stimuli when looking at the original image or at the displayed
image.

A very simple solution for displaying the different illumination ranges
in the image is by linearly scaling the intensity range of the image into
the intensity range of the display device. This is equivalent to setting
the exposure of a camera by adjusting the aperture or shutter speed, and
results in the image being shown as if it would have been photographed
with these particular settings. This, however, is not a viable solution, since
either bright areas will be visible and dark areas will be underexposed, or
dark areas will be visible and the bright areas will be overexposed. Even if
the dynamic range of the image falls within the limits of the display, two
images that only differ in their illumination levels by a single scale factor
will still map to the same display image due to the simple linear scaling.
It is therefore possible that a virtual scene illuminated by bright sunlight
will produce the same image on the display compared to the same scene
illuminated by moonlight or starlight. Rather, effects such as differences
in color perception and visual acuity, which change with various levels of
illumination, should be maintained.

A tone-mapping operator has to work in a more optimal way than just
a linear scaling, by exploiting the limitations of the human visual system
in order to display a high dynamic range image. Generally, tone-mapping
operators create a scale factor for each pixel in the image. This scale factor
is based on the local adaptation luminance of the pixel, together with the
high dynamic range value of the pixel. The result is typically an RGB value
that can be displayed on the output device. Different tone-reproduction
operators differ in how they compute this local adaptation luminance for
each pixel. Usually, an average value is computed in a window around each
pixel, but some algorithms translate these computations to the vertices
present in the scene.

Different operators can be classified in various categories [74]:

• Tone-mapping operators can be global or local. A global operator
uses the same mapping function for all pixels in an image, as opposed
to a local operator, where the mapping function can be different for
each pixel or group of pixels in the image. Global operators are usu-
ally inexpensive to compute but do not always handle large dynamic
range ratios very well. Local operators allow for better contrast re-
duction and therefore a better compression of the dynamic range,

�

�

�

�

�

�

�

�

280 8. The Quest for Ultimate Realism and Speed

but they can introduce artifacts in the final image such as contrast
reversal, resulting in halos near high contrast edges.

• A second distinction can be made between empirical and perceptually
based operators. Empirical operators try to strive for effects such
as detail preservation, avoidance of artifacts, or compression of the
dynamic range. Perceptually based operators try to generate images
that look perceptually the same as the real scene when observed by
the human visual system. These operators take into account effects
such as the loss of visual acuity or color sensitivity under different
illumination levels.

• A last distinction can be made between static or dynamic operators,
depending on whether one wants to map still images only or a video
sequence of moving images. Time-coherency obviously is an impor-
tant part of a dynamic operator. Effects such as sudden changes from
dim to bright environments (the classic example being a car driver
entering or leaving a tunnel) can be modeled with these dynamic
operators.

Commonly used tone-mapping operators include the following:

• The Tumblin-Rushmeier tone-mapping operator [199] was the first to
be used in computer graphics. This operator preserves the perceived
brightness in the scene by trying to match the perceived brightness
of a certain area in the image to the brightness of the same area on
the output display. It behaves well when brightness changes are large
and well above the threshold at which differences in brightness can
be perceived.

• The tone-mapping operator developed by Ward [222] preserves thresh-
old visibility and contrast, rather than brightness, as is the case in the
Tumblin-Rushmeier operator. This technique preserves the visibility
at the threshold of perception (see also the TVI function below). A
similar operator was developed by Ferwerda et al. [47] that also pre-
serves contrast and threshold visibility but at the same time tries to
reproduce the perceived changes in colors and visual acuity under
different illumination conditions.

• Ward [51] also has developed a histogram-based technique that works
by redistributing local adaptation values such that a monotonic map-
ping utilizing the whole range of display luminance is achieved. This
technique is somewhat different from previous approaches, in that the
adaptation luminance is not directly used to compute a scale factor.

�

�

�

�

�

�

�

�

8.2. Image Display and Human Perception 281

Rather, all adaptation and luminance values are used to construct a
mapping function from scene luminance to display luminance values.

• Several time-dependent tone operators [141] that take into account
the time-dependency of the visual adaptation have also been devel-
oped, such that effects such as experiencing a bright flash when walk-
ing from a dark room into the bright sunlight can be simulated. These
operators explicitly model the process of bleaching, which is mainly
responsible for these changing effects due to the time-dependency of
the visual adaptation level.

Figure 8.15 shows the result of applying some tone-mapping operators
on a high dynamic range picture of an environment reflected in a sphere, of
which the actual luminance values are plotted in Figure 8.16. Figure 8.15(a)
shows the resulting image when the original high dynamic range picture is
scaled linearly to fit into the luminance range of the display device. Fig-

(a) (b)

(c) (d)

Figure 8.15. Various tone-mapping operators. (a) Linear scaling; (b) gamma
scaling; (c) simple model of lightness sensitivity; (d) complex model for the human
visual system. (See Plate XVI.)

�

�

�

�

�

�

�

�

282 8. The Quest for Ultimate Realism and Speed

Figure 8.16. Luminance values for the high dynamic range photograph of an
environment reflected in a scene shown in Figure 8.15.

ure 8.15(b) applies a simple gamma scaling, in which the displayed intensity
is proportional to Luminance1/γ . Figure 8.15(c) uses a simple approxima-
tion of the sensitivity to lightness of the human eye, by making the dis-
played values proportional to 3

√
Lum/Lumref , with Lumref proportional

to the average luminance in the scene, such that the average luminance
would be displayed at half the intensity of the display. This model pre-
serves saturation at the expense of image contrast. Figure 8.15(d) uses a
more complicated model of the human visual system (Ward’s histogram
method), incorporating some of the factors described above.

Research into tone-mapping operators is still continuing, making use of
new understanding of how the human visual system perceives images, and
driven by the availability of new display technology. A good overview of
various operators can be found in [37]. In [108], an evaluation of various
tone-mapping operators using a high dynamic range display is presented,
using user studies to determine what operators operate best under different
conditions.

8.2.2 Perception-Based Acceleration Techniques

Knowledge of the human visual system cannot only be used to design tone-
mapping operators but can also help to accelerate the global illumination

�

�

�

�

�

�

�

�

8.2. Image Display and Human Perception 283

computations themselves. As an example, consider that the ability to de-
tect changes in illumination drops with increasing spatial frequency and
speed of movement. Thus, if these factors are known, it is possible to
compute a margin within which errors in the computed illumination values
can be tolerated without producing a noticeable effect in the final images.
From a physical point of view, these are errors tolerated in the radiometric
values, but from a perception point of view, the human visual system will
not be able to detect them. Thus, the improvements in speed originate in
calculating only what the human visual system will be able to see.

Several acceleration algorithms have been proposed in literature, each
trying to take advantage of a specific aspect, or combination of aspects, of
the human visual system. The main limitations of human vision can be
characterized by several functions, which are described below.

• Threshold versus intensity function (TVI). The threshold versus inten-
sity function describes the sensitivity of the human visual system with
regard to changes in illumination. Given a certain level of background
illumination, the TVI value describes the smallest change in illumi-
nation that can still be detected by the human eye. The brighter
the background illumination, the less sensitive the eye becomes to
intensity differences.

• Contrast sensitivity function (CSF). The TVI function is a good predic-
tor for the sensitivity of uniform illumination fields. However, in most
situations, the luminance distribution is not uniform but is changing
spatially within the visual field of view. The contrast sensitivity
function describes the sensitivity of the human eye versus the spatial
frequency of the illumination. The contrast sensitivity is highest for
values around 5 cycles per degree within the visual field of view and
decreases when the spatial frequency increases or decreases.

• Other mechanisms. There are other mechanisms that describe the
workings of the human visual system, such as contrast masking,
spatio-temporal contrast sensitivity, chromatic contrast sensitivity,
visual acuity, etc. For a more complete overview, we refer to the
appropriate literature. [47] provides a good understanding of these
various mechanisms.

Visual Difference Predictor

In order to design perceptually based acceleration techniques, it is neces-
sary to be able to compare two images and predict how differently a human

�

�

�

�

�

�

�

�

284 8. The Quest for Ultimate Realism and Speed

observer will experience them. The best-known visual difference predictor
is the one proposed by Daly [35]. Given the two images that have to be
compared, various computations are carried out that result in a measure
of how differently the images will be perceived. These computations take
into account the TVI sensitivity, the CSF, and various masking and psy-
chometric functions. The result is an image map that predicts local visible
differences between the two images.

Maximum Likelihood Difference Scaling

A different methodology of comparing images is based on perceptual tests
by observers to obtain a quality scale for a number of stimuli. The maxi-
mum likelihood difference scaling method (MLDS) presented in [117] can
be used for such measurements.

When one wants to rank images on a quality scale (e.g., these could
be images with various levels of accuracy for computed illumination effects
such as shadows), each observer will be presented with all possible combina-
tions of 2 pairs of images. The observer then has to indicate which pair has
the largest perceived difference according to the criterion requested. This
method has several advantages over previous approaches, which required
the observer to sort or make pairwise comparisons between the stimuli
themselves [135]. This class of methods, introduced by [114], relies on the
fact that observers behave stochastically in their choices between stimuli;
thus it follows that the stimuli may only differ by a few just noticeable
differences. By using the perceived distance between two images itself as
stimulus, this restriction is overcome, and a larger perceptual range can be
studied.

Typically, two pairs of images are presented simultaneously on a monitor
in a slightly darkened environment. The observers might be unaware of the
goal of the tests, and all should receive the same instructions. From the
resulting measurements, it is possible to compute a ranking and hence a
quality scale of images. Each image will be ranked, and a quality increase
or decrease can be computed. Such rankings can then be used to design
rendering algorithms.

Perceptually Based Global Illumination Algorithms

Various approaches for translating the limitations of the human visual sys-
tem into workable global illumination algorithms have been described in
literature. Most of the work has been focused on two different goals:

• Stopping criteria. Most global illumination algorithms compute the
radiance visible through a pixel by sampling the area of the pixel
using a proper filter. Each sample typically spawns a random walk

�

�

�

�

�

�

�

�

8.2. Image Display and Human Perception 285

in the scene. Monte Carlo integration tells us that the higher the
number of samples, the lower the variance, and hence less stochastic
noise will be visible in the image. In practice, the number of samples
is usually set “high enough” to avoid any noise, but it would be
better to have the algorithm decide how much samples are enough.
Perceptual metric offer criteria to decide, depending on the context
of the pixel, when one can stop drawing additional samples without
noticeably affecting the final image.

• Allocating resources. A second use of perceptual metrics in render-
ing algorithms can be introduced at a different level. A full global
illumination algorithm usually employs different, often independent,
strategies for computing various components of the light transport,
e.g., the number of shadow rays used when computing direct illumi-
nation; or the number of indirect illumination rays are often chosen
independently from each other. One can expect that in an optimal
global illumination algorithm, the allocation of number of samples
for each rendering component can be chosen dependent on the per-
ceptual importance this specific lighting component has in the final
image.

The first global illumination algorithms that were using perceptual er-
ror metrics were proposed by Myszkowski [122] and Bolin and Meyer [115].
These algorithms make use of TVI sensitivity, contrast sensitivity, and
contrast masking. Myszkowksi employs the Daly visual difference predic-
tor to accelerate two different algorithms: a stochastic ray tracer and a
hierarchical radiosity algorithm. Both types of algorithms compute differ-
ent iterations of the light transport in the scene in order to produce the
final image. After each iteration, the computed image so far is compared
with the image of a previous iteration. If the visual difference predictor
indicates no visual differences, those areas of the image are considered to
have converged, and no further work is necessary.

The approach followed by Bolin and Meyer also accelerated a stochastic
ray tracer. Again, after each iteration (in which a number of samples are
distributed over the pixels), a visual difference predictor produces a map
that indicates at which location of the image more radiance samples are
needed in order to reduce the visual difference as much as possible during
the next iteration. Thus, the algorithm steers the sampling function in the
image plane. The disadvantage of both these algorithms is that they require
very frequent evaluations of their respective visual difference predictors and
thus are very expensive, almost up to the point that the achieved perceptual
acceleration was lost.

�

�

�

�

�

�

�

�

286 8. The Quest for Ultimate Realism and Speed

A very promising approach has been proposed by Ramasubramanian
et al. [116] to solve this problem of having to carry out very expensive
visual difference predictor evaluations during the global illumination com-
putations. Instead of evaluating a visual difference predictor after various
iterations during the algorithm and comparing images so far, a physically
based radiometric error metric is constructed. This error metric is used
only during the radiometric light transport simulation. There is no longer
a conversion necessary to the perceptual domain by means of a visual dif-
ference predictor. The algorithm computes for a given intermediate image
during the light transport simulation a threshold map, which indicates for
each pixel what difference in radiance values will not be detectable by a
human viewer. This error metric is based on the TVI function, the contrast
sensitivity, and spatial masking. After each iteration, only the components
that are cheap to evaluate are recomputed, in order to achieve a new thresh-
old map. The expensive spatial-frequency effects are only computed at the
start of the algorithm, by using sensible guesses of the overall ambient light-
ing, and by using information of the texture maps present in the scene. If
the radiometric differences between the last two iterations fall within the
limits of the current threshold map, the iterative light transport algorithm
is stopped.

Some work has also been done in the context of moving images. An
Animation Quality Metric is developed by Myszkowski in [84], in which
it is assumed that the eye follows all moving objects in the scene, and
thus the moving scene can be reduced to a static scene. Yee et al. [227]
explicitly use temporal information. Spatiotemporal contrast sensitivity
and approximations of movements and visual attention result in a saliency
map. This map is computed only once and is used as an oracle to guide the
image computations for each frame, avoiding the use of a very expensive
visual difference predictor several times during each frame of the animation.

A perceptually driven decision theory for interactive realistic rendering
is described by Dumont et al. [40]. Different rendering operations are or-
dered according to their perceptual importance, thereby producing images
of high quality within the system constraints. The system uses map-based
methods in graphics hardware to simulate global illumination effects and
is capable of producing interactive walk-throughs of scenes with complex
geometry, lighting, and material properties.

A new approach to high-quality global illumination rendering using per-
ceptual metrics was introduced by Stokes et al. [187]. The global illumina-
tion for a scene is split into direct and indirect components, also based on
the type of surface interaction (diffuse or glossy). For each of these compo-
nents, a perceptual importance is determined, such that computation time
can be allocated optimally for the different illumination components. The

�

�

�

�

�

�

�

�

8.3. Fast Global Illumination 287

goal is to achieve interactive rendering and produce an image of maximum
quality within a given time frame. In order to determine the perceptual
importance of each illumination component, tests similar to the maximum
likelihood difference scaling are carried out. A hypothetical perceptual
component renderer is also presented, in which the user can allocate the
resources according to the application and desired quality of the image.

In the future, we can expect to see more clever uses of perceptual criteria
in rendering algorithms, not only to compute images of high quality faster,
but also to render images that might not necessarily contain all possible il-
lumination effects. For example, very soft shadows are not always necessary
to correctly perceive the realism of a scene, yet they might require large
computational efforts to be computed correctly. In such cases, a render-
ing algorithm could insert a rough approximation for this shadow, without
a human observer noticing that something “is missing.” Such rendering
algorithms, which take a step in the direction of rendering only those fea-
tures of what-the-brain-can-see, instead of rendering what-the-eye-can-see,
will definitely be investigated more rigourously in the future. The works
of Sattler et al. [156] for shadow generation, Ferwerda et al. [48] for shape
perception, or Rademacher et al. [150] for the influence of scene complexity
on perceived realism have taken initial steps in this direction.

8.3 Fast Global Illumination

Ray tracing is a flexible, powerful paradigm to produce high-quality im-
ages. However, in the past, its performance has typically been too slow for
interactive applications as compared to hardware rendering. With recent
growth in processor speeds and advances in programmable graphics proces-
sors, there has been increasing interest in using ray tracing for interactive
applications.

There are two types of recent approaches to accelerating ray tracing:
sparse sampling and reconstruction, and fast ray-tracing systems. The first
approach bridges the performance gap between processors and rendering
speed by sparsely sampling shading values and reusing these shading values
to reconstruct images at interactive rates when possible. These systems
exploit spatial coherence (in an image) and temporal coherence (from frame
to frame) to reduce the number of rays that must be traced to produce an
image. The fast ray-tracing systems use highly optimized ray tracers to
decrease the cost of tracing any given ray. These systems are often termed
brute-force, because their focus is on tracing all rays that are needed as fast
as possible. We describe recent research in both these approaches below.
(See Figure 8.17 for results.)

�

�

�

�

�

�

�

�

288 8. The Quest for Ultimate Realism and Speed

Figure 8.17. Images from interactive rendering systems. On the left are systems
that use sparse sampling and interpolation: (a) render cache, (b) edges and
points, and (c) 4D radiance interpolants. On the right are very fast ray tracers:
(d) Utah’s interactive ray tracing, (e) Utah’s visualization of the visible female
dataset, and (f) coherent ray tracing. (See Plate XVIII.)

�

�

�

�

�

�

�

�

8.3. Fast Global Illumination 289

8.3.1 Sparse Sampling: Exploiting Coherence

Sparse sampling approaches try to decrease the huge gap in processor per-
formance and rendering speeds by exploiting spatial and temporal coher-
ence. These techniques sparsely sample shading values and cache these
values. Images are then generated at interactive rates by interpolating
these cached values when possible. Because they sparsely sample shading,
and sometimes even visibility, they can substantially decrease the number
of rays that must be traced per frame.

We briefly review several of these approaches. One major feature that
differentiates between these approaches is how they cache and reuse sam-
ples. We categorize these algorithms as being image space, world space, or
line space approaches based on how sampling and reconstruction is done.

Image Space

The render cache [211, 212] is an image-space algorithm that bridges the
performance gap between processor performance and rendering speed by
decoupling the display of images from the computation of shading. The
display process runs synchronously and receives shading updates from a
shading process that runs asynchronously. A fixed-size cache, the render
cache, of shading samples (represented as three-dimensional points with
color and position) is updated with the values returned by the shading
process. As the user walks through a scene, the samples in the render
cache are reprojected from frame to frame to the new viewpoint (similar to
image-based reprojection techniques [16]). The algorithm uses heuristics
to deal with disocclusions and other artifacts that arise from reprojection.
The image at the new viewpoint is then reconstructed by interpolating
samples in a 3×3 neighborhood of pixels. This interpolation filter smooths
out artifacts and eliminates holes that might arise due to the inadequate
availability of samples. A priority map is also computed at each frame to
determine where new samples are needed. Aging samples are replaced by
new samples.

The render cache produces images at interactive rates while sampling
only a fraction of the pixels each frame. By decoupling the shader from
the display process, the performance of the render cache depends on re-
projection and interpolation and is essentially independent of the speed
of the shader. This means the render cache can be used for interactive
rendering with a slow (high-quality) renderer such as a path tracer. One
disadvantage of the render cache is that the images could have visually
objectionable artifacts because interpolation could blur sharp features in
the image or reprojection could compute incorrect view-dependent effects.

�

�

�

�

�

�

�

�

290 8. The Quest for Ultimate Realism and Speed

The edge-and-point rendering system [9] addresses the problem of poor
image quality in a sparse sampling and reconstruction algorithm by combin-
ing analytically computed discontinuities and sparse samples to reconstruct
high-quality images at interactive rates. This approach introduces an effi-
cient representation, called the edge and point image, to combine percep-
tually important discontinuities (edges), such as silhouettes and shadows,
with sparse shading samples (points). The invariant maintained is that
shading samples are never interpolated if they are separated by an edge. A
render-cache–based approach is used to cache, reproject, and interpolate
shading values while satisfying this edge-respecting invariant. The avail-
ability of discontinuity information further permits fast antialiasing. The
edge-and-point renderer is able to produce high-quality, antialiased images
at interactive rates using very low sampling densities at each frame. The
edge-and-point image and the image filtering operations are well-matched
for GPU acceleration [205], thus achieving greater performance.

World Space

The following techniques cache shading samples in object or world space
and use the ubiquitous rasterization hardware to interpolate shading values
to compute images in real time.

Tapestry [176] computes a three-dimensional world-space mesh of sam-
ples, where the samples are computed using a slow, high-quality renderer
[107]. A Delaunay condition is maintained on the projection of the mesh
relative to a viewpoint for robustness and image quality. A priority image
is used to determine where more sampling is required. As the viewpoint
changes, the mesh is updated with new samples while maintaining the De-
launay condition.

Tole et al. [198] introduce the shading cache, an object-space hierar-
chical subdivision mesh where shading at vertices is also computed lazily.
The mesh is progressively refined with shading values that, like the render
cache and Tapestry, can be computed by a slow, high-quality, asynchronous
shading process. The mesh is refined either to improve image quality or
to handle dynamic objects. A priority image with flood filling is used to
ensure that patches that require refining are given higher priority to be
updated. A perceptual metric is used to age samples to account for view-
dependent changes. This approach renders images in real time even with
extremely slow asynchronous shaders (path tracers) and dynamic scenes.

Both these approaches use the graphics hardware to rasterize their
meshes and interpolate the mesh samples to compute new images. In both
techniques, visual artifacts arise while samples are accumulated and added
to the meshes. However, these artifacts typically disappear as the meshes
get progressively refined.

�

�

�

�

�

�

�

�

8.3. Fast Global Illumination 291

Line Space

Radiance is a function over the space of rays; this space is a five-dimensional
space. However, in the absence of participating media and occluding ob-
jects, radiance does not vary along a ray. Thus, in free space, each radiance
sample can be represented using four parameters; this space is called line
space [57, 110]. We now discuss algorithms that cache samples in four-
dimensional line space.

The radiance interpolants system [10, 8, 196] computes radiance sam-
ples lazily and caches these samples in four-dimensional line trees. Each
leaf of the tree stores a radiance interpolant, a set of 16 radiance sam-
ples that can be interpolated to reconstruct radiance for any ray that lies
in that leaf of the tree. One important contribution of this approach is
the use of sophisticated interval-based techniques to bound the error that
could arise by using interpolation to approximate shading. As the user
walks around the scene, for each pixel in an image, the system uses a valid
interpolant (if available) from the visible object’s line tree to approximate
the pixel’s radiance. If no interpolant is available, the pixel is rendered
using the ray tracer. This system achieves an order of magnitude speed-up
in walk-throughs and successfully interpolates radiance for most pixels in
each frame. The use of ray segment trees [7] (described below) further
extends the radiance interpolant system to support dynamic scenes. While
the error guarantees ensure that pixels are never incorrectly interpolated,
since pixels are ray traced when a valid interpolant is not available, this
system could be noninteractive for complex scenes.

The Holodeck [218] also caches samples in four-dimensional line space.
These beams are stored on disk and recovered as needed to reconstruct
images. Different reconstruction techniques are used based on Voronoi
diagrams and Tapestry-like Delaunay triangulation of the samples.

8.3.2 Dynamic Scenes
One major challenge with caching shading values is dealing with dynamic
scenes. When objects or lights move in a scene, the cached shading values
could become invalid and must be updated accordingly. There are two rea-
sons this update should be done incrementally. First, all these algorithms,
to varying extents, assume the cached values accumulate over time. Re-
computing all cached values from scratch would be too slow for interactive
use. The second reason is that in typical interactive applications, the effect
of an update (for example, an object being moved) can be quite localized.2

In such cases, updating all cached points unnecessarily is inefficient.
2There are cases when this localized effect is not true, for example, when a light is

moved.

�

�

�

�

�

�

�

�

292 8. The Quest for Ultimate Realism and Speed

Some of the interactive rendering techniques, for example, the render
cache and shading cache, age samples and eliminate outdated samples to
ensure that all samples are recomputed from time to time. This ensures
that images will eventually be correct once the moved objects are station-
ary for some number of frames. However, since these approaches do not
explicitly find the effect of a scene change (for example, a moving shadow)
and invalidate samples, they do not directly handle fully dynamic scenes.

Many techniques have been proposed to address this problem of invali-
dating samples in dynamic scenes. We briefly describe a few of them.

Drettakis and Sillion [39] introduce a four-dimensional line space hier-
archy in the context of hierarchical radiosity to support dynamic scenes.
When an object moves, this hierarchy of four-dimensional shafts is tra-
versed at interactive rates to find the radiosity links that are affected by
the object move.

Bala et al. [7] introduce a five-dimensional ray space hierarchy for up-
dating radiance interpolants [8] in a ray-tracing context. A five-dimensional
tree, called the ray segment tree, is used to rapidly find and invalidate all
bundles of rays that are affected by an object movement. Their system
starts to address updates in ray-traced applications but does not deal with
full global illumination solutions. Selective photon tracing [38] uses the
periodicity properties of quasi–Monte Carlo sampling sequences to rapidly
identify and update the photons that are affected by changes in a scene.
They progressively refine the global illumination solution to compute im-
ages in dynamic scenes.

All these techniques try to address the important problem of efficiently
updating cached shading values in dynamic scenes. These approaches must
satisfy two conflicting goals: correctness and efficiency. On the one hand,
they must find all shading values that are affected by a change in the scene.
On the other hand, they should avoid unnecessarily invalidating samples
that remain accurate in spite of the change to the scene. While these
approaches are promising, this is still an open area of research.

8.3.3 Fast Ray Tracing

The availability of increasingly fast processors and programmable GPUs
is fueling research in systems for interactive ray tracing. These systems
explore ray tracing as an alternative to hardware rendering because of ray
tracing’s asymptotically superior performance in rendering complex scenes.
When a ray tracer is supported by an acceleration structure (for example,
octrees, kd-trees, or hierarchical bounding volumes), the cost of determin-
ing visibility for a single ray is typically logarithmic in scene complexity.
In contrast, hardware, z-buffer algorithms render the entire scene each

�

�

�

�

�

�

�

�

8.3. Fast Global Illumination 293

frame, achieving linear performance.3 Furthermore, ray tracers are ex-
tremely flexible and can support with full generality high-quality rendering
effects. Thus, ray tracers are being considered as plausible alternatives for
rendering complex scenes.

Parker et al. [137] implemented a highly optimized, parallel ray tracer
to demonstrate the efficacy of ray tracing in interactive applications for
complex scenes. They carefully tuned a shared-memory ray tracer on a
64-processor SGI Origin 2000 and exploited the fast synchronization ca-
pabilities and interconnect of the SGI Origin to achieve interactive perfor-
mance. Load balancing was used to achieve linear speed-ups on the Origin.
Their ray tracer was demonstrated rendering large scenes and visualizing
extremely large data sets for scientific visualization, such as the visible
female data set and crack propagation data sets.

Wald et al. [207, 208] have implemented interactive ray tracing in a
cluster of PCs while paying careful attention to the performance of memory
caches. Ray tracers, which traditionally do a depth-first traversal of rays,
have poor memory access patterns. Their ray tracer exploits coherence by
restructuring the order in which rays are traced to be a partial breadth-
first evaluation.4 They avoid data replication over multiple processors by
caching scene geometry on processors when needed. These performance
optimizations give an order of magnitude speed-up and permit them to ray
trace extremely large scenes at interactive rates. Subsequently, Reshetov
et al. [152] introduce optimizations such as hierarchical beam tracing, to
accelerate ray tracing performance in their multi level ray tracer.

8.3.4 Graphics Hardware and Precomputed Radiance Transfer
Modern graphics processing units (GPUs) are programmable parallel pro-
cessors that provide flexibility by supporting vertex and pixel programma-
bility. Apart from exploiting parallelism, GPUs also derive their power
from their support for texturing, which requires very high memory band-
width. In fact, the power and flexibility of GPUs has resulted in inter-
est in GPUs as general computing systems. A branch of research called
GPGPUs, for general purpose GPUs, treats GPUs as general stream pro-
cessors and develops techniques to map general-purpose algorithms, for
example, for sorting and linear algebra, on the GPU. On the graphics side,
there has been increased interest in using the graphics hardware to integrate
richer shading models and global illumination effects in rendered images.

3If hardware rendering is supported by sophisticated hierarchical data structures, its
performance is logarithmic. However, these data structures require significant support
from the application.

4In a noninteractive setting, Pharr et al. [146] also use restructuring of ray traversals
to optimize memory access.

�

�

�

�

�

�

�

�

294 8. The Quest for Ultimate Realism and Speed

A description of these approaches is beyond the scope of this book, and the
interested reader is referred to the books Real-Time Rendering [120] and
Real-Time Shading [134] and the GPU Gems books [46, 144].

One deterrent to the practical application of global illumination in inter-
active applications is the significant time required to compute a full global
illumination solution. While the advent of GPUs has decreased the cost of
local pixel shading, the cost of determining visibility between two arbitrary
points remains expensive. This is because this computation requires nonlo-
cal access of data that is not cheap in the GPU model. Here, we discuss a
few approaches that precompute visibility to achieve interactive rendering
of high-quality illumination.

8.3.5 Ambient Occlusion

Ambient occlusion is a popular technique to “simulate” global effects in
interactive applications. This approach precomputes and approximates the
visibility between a point and the incoming hemisphere so that shading can
be computed on the fly using this precomputed visibility term. While this
technique is not accurate, it is fast and adds realism at a relatively low
price. Ambient occlusion assumes rigid geometry and diffuse materials,
though recent work attempts to relax the assumption of rigid geometry [20].

Ambient occlusion precomputes the visibility of the hemisphere at each
point of the scene. This precomputation can be per-vertex or per-pixel,
where the per-pixel information is encoded as textures. At each point (ver-
tex or pixel), the algorithm samples the hemisphere to approximate visi-
bility. This is where the assumption of view-independent diffuse materials
comes into play. Using either uniform sampling or cosine-weighted sam-
pling, the following integral is estimated as the ambient occlusion
factor:

AO =
1
π

∫
Ω

V (ω)(N · ω)dω. (8.14)

This precomputation is quite expensive. In the early days of the tech-
nique, several hardware-based approaches were developed to decrease the
cost of this hemisphere sampling. However, with the availability of pow-
erful ray tracers, ray tracing using Monte Carlo sampling is now the most
popular and robust approach to compute the ambient occlusion.

Once the ambient occlusion values are computed, they are then used
to render each point as follows. The simplest use is to modulate ambient
lighting, just as its name suggests. In this case the precomputed ambient
occlusion term is multiplied with a constant ambient term to achieve greater
realism in the ambient shading term.

�

�

�

�

�

�

�

�

8.3. Fast Global Illumination 295

Ambient occlusion is also used, less accurately, to modulate more com-
plex lighting environments, such as prefiltered environment maps. This is
done by computing an additional value in the precomputation, the bent
normal. The bent normal is the average unoccluded normal; i.e., it is the
average normal of all unoccluded samples over the hemisphere. This bent
normal approximates the main direction of illumination and is used when
rendering the point instead of the surface normal. There are clear cases
where the bent normal is inaccurate, but this approximation produces rea-
sonable values for applications, such as movies and games, where accuracy
is of less importance.

A generalization of ambient occlusion that is principled and accurate is
discussed next: precomputed radiance transfer.

8.3.6 Precomputed Radiance Transfer

Precomputed radiance transfer (PRT) is a family of techniques that sup-
ports complex illumination effects by precomputing light transport and
computing shading on the fly using the precomputed transport. This abil-
ity to support interactive performance with expensive shading has had a
big impact on both research and practical applications such as games. We
briefly introduce PRT concepts in this section and refer the reader to the
original papers for details.

PRT uses precomputation to support expensive illumination effects such
as interreflections, caustics, and subsurface scattering. However, to achieve
interactive performance, some restrictions are imposed. PRT algorithms
typically assume that the scene is static, and that lighting of the scene
is from light sources that are infinitely far away, i.e., environment maps.
In this section, we describe the basic PRT framework for diffuse materials
lit by environment maps. We then describe the generalization of PRT
concepts to support non-diffuse materials.

Diffuse PRT

The original PRT paper [177] illuminates diffuse and glossy objects lit
by infinitely far away environment maps. For simplicity, let us first only
consider direct illumination. The direct illumination at a point x, denoted
as L0, is

L0(x→ Θ) =
∫

Ωx

Lenv(x← Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ.

Since lighting is from a distant environment map, Lenv does not depend
on position and only depends on direction. We further restrict ourselves to

�

�

�

�

�

�

�

�

296 8. The Quest for Ultimate Realism and Speed

diffuse surfaces for now; thus, the BRDF is a constant and can be moved
out of the integral:

L0(x) =
ρ

π

∫
Ωx

Lenv(Ψ)V (x,Ψ) cos(Ψ, Nx)dωΨ.

The visibility V and cosine term are often combined together into a cosine-
weighted visibility term.

The main insight of PRT is that this integral can be split into a pre-
computed transfer function that includes the effects of self-shadowing and
interreflections, and a runtime computation that efficiently combines the
transfer function with the dynamically changing environment map.

To achieve this goal, PRT projects the lighting onto a set of basis func-
tions over the sphere. The original formulation used spherical harmonics
(SH). Thus, Lenv(Ψ) =

∑
i liyi(Ψ), where the yi are the spherical har-

monic basis functions and li are the lighting coefficients. Each li term is
computed by projecting the environment map on the basis functions as
follows: li =

∫
Lenv(Ψ)yi(Ψ)dωΨ. Ramamoorthi [151] demonstrated that

nine basis functions suffice to represent the appearance of diffuse surfaces lit
by typical environment maps. For high-frequency shadowing, a potentially
large set of basis functions are required. Since PRT aims at supporting
shadows from relatively large area lights, the original PRT system used 25
basis functions.

Substituting the SH lighting coefficients, we get:

L0(x) =
ρ

π

∫
Ωx

∑
i

liyi(Ψ)V (x,Ψ) cos(Ψ, Nx)dωΨ

=
ρ

π

∑
i

li

∫
Ωx

yi(Ψ)V (x,Ψ) cos(Ψ, Nx)dωΨ

=
∑

i

lit
0
x,i,

t0x,i =
ρ

π

∫
Ωx

yi(Ψ)V (x,Ψ) cos(Ψ, Nx)dωΨ,

where the transfer function, represented as vector t, captures how an object
casts shadows on itself (self-shadowing). The t0x,i are evaluated using Monte
Carlo sampling.

The same derivation can be generalized to handle multiple reflections.
We derive the generalization for the first bounce of illumination; the other
bounces can straighforwardly be derived in a similar manner. We first
simplify some of the notation: we denote the diffuse reflectivity at point x
as ρx and point y as ρy, and the point y = r(x,Ψ) is the surface visible

�

�

�

�

�

�

�

�

8.3. Fast Global Illumination 297

from x in direction Ψ. The first-bounce radiance L1 arriving at x through
y is given as

L1(x) =
∫

Ωx

ρx

π
cos(Ψ, Nx)L0(y → −Ψ)dωΨ

L0(y → −Ψ) =
∫

Ωy

ρy

π
cos(Ψ′, Ny)Lenv(Ψ′)dωΨ′

=
∑

i

lit
0
y,i

L1(x) =
∫

Ωx

ρx

π
cos(Ψ, Nx)

∑
i

lit
0
y,idωΨ

t1x,i =
ρx

π

∫
Ωx

t0y,i cos(Ψ, Nx)dωΨ.

This approach can be generalized to more bounces. The corresponding
terms for all bounces are added together to compute the total transfer
function for each spherical harmonic basis function for the point x: tx,i =∑

b t
b
x,i. In these equations, the reflectivity has been folded into the transfer

function for all bounces, direct and indirect. However, in fact, the reflec-
tivity is often separated out for the direct bounce to permit denser BRDF
sampling for directly visible surfaces.

A frame is rendered as follows. The environment map is projected into
the spherical harmonic basis functions taking into account the object’s
rotation with respect to the environment map. Rendering a vertex or

No shadows With PRT

Figure 8.18. The Buddha model rendered with diffuse PRT using an environment
map. Left: without shadows; right: with PRT. (Image courtesy Peter-Pike Sloan
and John Snyder.) (See Plate XXIV.)

�

�

�

�

�

�

�

�

298 8. The Quest for Ultimate Realism and Speed

pixel x then involves computing the dot product of the two vectors: the
environment map coefficient vector l and the transfer function vector t for
the point x. This dot product is easily supported on the GPU achieving
interactive performance. Figure 8.18 shows results using diffuse PRT.

The original PRT paper [177] introduced a powerful new technique for
using precomputation to achieve interactive display of global illumination.
Applications such as games for which interactive performance is crucial
have adopted this basic approach. Some fairly major assumptions are made
in the original formulation: static scenes, low-frequency environment maps,
and diffuse and Phong-like materials. Subsequent research has tried to
address these limitations. Kautz et al. [87] extends the SH transfer function
vectors to handle arbitrary BRDFs; PCA clustering [178] further enables
real-time performance.

All-Frequency PRT

High-frequency illumination effects, such as sharp shadows, cannot be rep-
resented with great fidelity using a small number of coefficients in the spher-
ical harmonics basis functions. The next major set of innovations in PRT
aim at supporting both all-frequency illumination effects and generalized
BRDFs.

Ng et al. [129] introduce the use of wavelets for high-frequency illumi-
nation. Wavelet coefficients are selected on-the-fly to achieve a nonlinear
approximation of high quality. This system demonstrates interactive per-
formance for fixed viewing of nondiffuse scenes and arbitrary viewing of
diffuse scenes. Figure 8.19 compares spherical harmonics with wavelets.

Liu et al. [113] and Wang et al. [215] approximate arbitrary, nondif-
fuse BRDFs by factoring them into components that are dependent on the
viewing direction only and lighting direction only, respectively. Essentially,
the 4D BRDF is split into two 2D functions that are separately approxi-
mated. Each separable function is represented using Haar wavelets, which
are further clustered using PCA [113]. In this approach, the BRDF (and
the cosine factor) are factored as: fr(x,Θ ↔ Ψ) cos(Ψ, Nx) = G(Θ)F (Ψ),
where G and F are vector functions that depend entirely on the view di-
rection Θ and the light direction Ψ, respectively. The final shading result
is then GTMxL, where Mx is the linear transfer matrix at x, and L is the
vector of lighting coefficients. It should be noted that BRDF separability
is an approximation to the original BRDF, and it might not be valid and
accurate for all BRDFs. Figure 8.20 shows results using this approach.

The triple product integral [130] takes a general approach to all-frequency
lighting for direct illumination with nondiffuse materials. Radiance at x,
where the BRDF term includes the cosine term and any rotation of the

�

�

�

�

�

�

�

�

8.3. Fast Global Illumination 299

Figure 8.19. All-frequency effects. On the left, comparison of spherical harmonics
(SH) and wavelets using nonlinear approximation (W) for the St. Peter’s Basilica
environment map. On right, the triple product integral solution for a scene.
(Image courtesy Ren Ng and Ravi Ramamoorthi.) (See Plate XXIII.)

BRDF to align with the global coordinate frame, is:

L(x→ Θ) =
∫

Ωx

L(x← Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ

=
∫

Ωx

L(Ψ)f(Θ↔ Ψ)V (x,Ψ)dωΨ.

Diffuse Buddha Specular Buddha

Figure 8.20. Diffuse and glossy Buddha rendered using PRT with separable
BRDFs for high-frequency illumination. (Image courtesy Peter-Pike Sloan and
John Snyder.) (See Plate XXV.)

�

�

�

�

�

�

�

�

300 8. The Quest for Ultimate Realism and Speed

The triple product integral approach uses this formulation of radi-
ance as the product of three functions: lighting, material, and visibility.
Each of these functions is projected into an orthonormal basis of func-
tions: Lenv(Ψ) =

∑
i liyi, f(Ψ) =

∑
j fjyj , and V (Ψ) =

∑
k vkyk. Ng et

al. [130] developed efficient algorithms to use Haar wavelet basis functions
for high-frequency effects.

The integral is then expressed using tripling coefficients, Cijk, as follows:

Cijk =
∫
yi(ω)yj(ω)yk(ω)dω.

The radiance at vertex or pixel x using the tripling coefficients is com-
puted as

L =
∑

i

∑
j

∑
k

Cijklifjvk.

Figure 8.19 shows a scene rendered using triple product integrals encoded
in Haar wavelets. The scene includes high-frequency shadows, glossy ma-
terials, and dynamic lighting from environment maps.

Summary of PRT

PRT remains an active area of research with several approaches that seek
to generalize its applicability to support dynamics and a wide range of
materials and illumination. Most PRT techniques assume the geometry
is static: zonal harmonics are used to support deformable geometry in
[180]; Kautz et al. [88] use hemispherical rasterization to recompute visi-
bility for self-shadowing of dynamic objects; and Zhou et al. [229] precom-
pute shadow fields for dynamic shadows from low-frequency illuminants.
Support for subsurface scattering [178, 216] and bi-scale rendering [179]
expands the range of materials and effects supported. Illumination from
environment maps does not capture local lighting effects: Hasan et al. [66]
extend fixed-viewpoint PRT for cinematic relighting, which requires sup-
port for arbitrary direct lighting, including high-frequency lighting shaders,
with indirect illumination; Annen et al. [3] introduce spherical harmonic
gradients to capture midrange illumination.

�

�

�

�

�

�

�

�

9

Conclusion

9.1 Achievements of Photorealistic Rendering

Photorealistic rendering and global illumination algorithms have come a
long way since the publication of the first recursive ray-tracing algorithm
in 1979. There has been a gradual evolution from simple algorithms, some
of them deemed to be hacks by today’s standards, to very advanced, fully
physically based rendering algorithms.

It is now possible, within a reasonable amount of time, to generate an
image that is indistinguishable from a photograph of a real scene. This
has been achieved by carefully researching the physical processes that
form the basis of photorealistic rendering: light-material interaction, light
transport, and the psychophysical aspects of the human visual system.
In each of these domains, extensive research literature is available. In
this book, we have tried to give an overview of some of these aspects,
mostly focusing on the light transport mechanism. As in most modern
algorithms, we strongly believe that a good understanding of all funda-
mental issues is the key to well-designed global illumination light transport
algorithms.

Global illumination has not yet found its way to many mainstream
applications, but some use has already been made in feature-animation
films and to a limited extent in some computer games. High-quality ren-
dering of architectural designs has become more common (although still
unusual), and car manufacturers have become more aware of the possibili-
ties of rendering cars in real virtual environments for glossy advertisements.
Moreover, recent advances have indicated that full interactive ray tracing
is already a possibility for specialist applications and machinery.

As such, photorealistic rendering has certainly propelled forward the
development of high-quality visualization techniques.

301

�

�

�

�

�

�

�

�

302 9. Conclusion

9.2 Unresolved Issues in Photorealistic Rendering

Research in photorealistic rendering is still alive and well, with a large
number of publications devoted to the topic every year. There are still
a number of unresolved issues, which will undoubtedly form the topic of
future research. We have tried to compile a few topics we think will become
heavily researched in the near future:
Acquisition and modeling of BRDFs. There has been quite some effort to
measure the BRDF of real materials and to design usable models for use in
computer graphics, but this whole field still needs a lot of research to pro-
vide us with reliable, accurate, and cheap ways to evaluate BRDF models.
Measuring devices such as gonio-reflectometers should be made adaptive,
such that they can measure more samples in those areas of the BRDF where
more accuracy is needed. Image-based acquisition techniques will be used
much more often, driven by cheaper digital cameras.
Acquisition of geometry and surface appearance. Computer vision has de-
veloped several techniques for acquiring the geometry of real objects from
camera images, but it is still a major problem when the surface of the
object is nondiffuse or when the nature of the illumination on the object
is unknown. Surface appearance, such as textures and local BRDFs, has
recently been captured based on photographs as well. Combining these
two fields in order to build an integrated scanner seems a very promis-
ing research area. Also, emphasis should be placed on in-hand scanning,
where the user manipulates an object in front of a camera and all relevant
characteristics are captured.
Self-adaptive light transport. The light transport simulation algorithms out-
lined in this book come in many different flavors and varieties. Some algo-
rithms perform better in specific situations than others (e.g., radiosity-like
algorithms behave better in pure diffuse environments, ray tracing works
well in highly specular scenes, etc.) Little effort has been made so far to
try to make an overall global illumination algorithm that behaves in an
adaptive way in these various situations. Such an algorithm would pick
the right mode of simulating the light transport, depending on the nature
of the surfaces, the frequency of the geometry, the influence on the final
image, etc. Also, partially computed illumination results should always be
stored and available for future use by different light transport modes.
Scalable and robust rendering. Scenes that include very high complexity
in illumination, materials, and geometry remain challenging. Better and
cheaper acquisition technology is driving the demand for rendering such
complex scenes in the future. Currently, a user has to manually pick ap-
proximations, rendering algorithms, and levels of detail to achieve reason-

�

�

�

�

�

�

�

�

9.2. Unresolved Issues in Photorealistic Rendering 303

able quality and performance for such scenes. But this manual approach is
clearly not desirable, particularly when we get to the realm of applications
such as games where players interact with dynamically varying scenes while
generating content on the fly. Robust algorithms that can scale to com-
plex scenes and can automatically handle scene complexity without user
intervention will be critical in the future.

Geometry-independent rendering. Current light transport algorithms as-
sume that the geometry of the scene is known and explicitly compute a
huge number of ray-object intersections in order to know where light gets
reflected off surfaces. In the future, it is likely that primitives, whose ge-
ometry is not explicitly known, will be used in scenes to be rendered. Such
primitives might be described by a light field, or another implicit descrip-
tion of how light interacts with the object (e.g., a series of photographs).
Incorporating such objects in a global illumination algorithm will pose new
problems and challenges. Also, storing partial illumination solutions in-
dependent of the underlying geometry (e.g., photon mapping) should be
researched further.

Psychoperceptual rendering. Radiometric accuracy has been the main driv-
ing force for global illumination algorithms, but since most images are to
be viewed by human observers, it is usually not necessary to compute up to
this level of accuracy. New rendering paradigms should be focused around
rendering perceptually correct images. A perceptually correct image does
not necessarily have all the radiometric details, but a viewer might still
judge the image to be realistic. It might be possible not to render certain
shadows, or to drop certain highlights, or even simplify geometry, if this
would not harm the human observer judging the image as being realistic.
Radiometric accuracy is best judged by comparing a rendered image with
a reference photograph and measuring the amount of error. Psychoper-
ceptual accuracy is probably best judged by having a human look at the
rendered picture and asking whether the picture looks “realistic.” However,
at this point, very little research is available about how this could be done.

Integration with real elements. It is likely that more integration between
real and virtual environments will become an integral part of many appli-
cations. This does not only entail putting real objects in virtual scenes,
but also putting virtual elements in real scenes, e.g., by using projectors or
holography. A perfect blend between the real and virtual elements becomes
a major concern. This blend includes geometric alignment of real and vir-
tual elements, but also consistent illumination. For example, a virtual
element could throw shadows on real objects and vice versa. Developing
a good framework for achieving such an integrated rendering system will
probably evolve into a major research field during subsequent years.

�

�

�

�

�

�

�

�

304 9. Conclusion

As a major theme covering all these issues, one can think, or dream,
about what the ultimate photorealistic rendering would look like in the fu-
ture. It is very hard to make any predictions about any specific algorithmic
techniques, but it is nevertheless possible to list a few of the requirements
or features such a rendering tool should possess:
Interactivity. Any rendering algorithm of the future should be able to render
scenes at interactive speeds, irrespective of scene or illumination complex-
ity.
Any material, any geometry. All possible materials, from pure diffuse to
pure specular, should be handled efficiently and accurately. Moreover, any
type of geometry should be handled as well, whether it is a low-complexity
polygon model or a scanned model containing millions of sample points.
Many different input models. It should be possible to take any form of input,
whether it is a virtual model or a model based on acquisition from the real
world. This probably means leaving the classic polygon model and texture
maps for describing geometry and surface appearance and adapting other
forms of geometry representation.
Realism slider. Depending on the application, one might settle for different
styles of realism: for example, realistic lighting as one would experience in
real life; studio-realism with lots of artificial lighting designed to eliminate
unwanted shadows; lighting designed for optimally presenting products and
prototypes, etc. This should be possible without necessarily altering the
scene input or configuration of the light sources.

9.3 Concluding Remarks

Computer graphics is a very exciting field in which to work and is probably
one of the most challenging research areas in computer science because it
has links with many other disciplines, many of them outside the traditional
computer science community. It is exactly this mix with disciplines such
as art, psychology, filmmaking, biology, etc. that makes computer graphics
very attractive to many students and enthusiasts.

The authors have an accumulated experience of more than 40 years in
this field, but we still have the ability to be amazed and surprised by many
of the new exciting ideas that are being developed each year. By writing
this book, we hope to have made a small contribution in keeping people
motivated and enthusiastic about computer graphics, and we can only hope
that someday in the future, an exciting new computer graphics technique
will develop from some of the ideas presented here.

�

�

�

�

�

�

�

�

A

A Class Library for
Global Illumination

Global illumination is all about generating paths connecting a virtual cam-
era with a light source. In this appendix, we propose a library of software
classes that will facilitate generating such paths in a computer program, by
hiding the details of geometry and materials representation and ray casting
from a higher-level algorithm implementation.

The library offers the following building blocks:

• Classes for representing path nodes, such as a point on a light
source, a surface scattering point, the viewing position, etc. (Sec-
tion A.1).

• Classes for light source sampling. These classes generate path
nodes that serve as the head of light paths (Section A.2).

• Support classes, representing a virtual screen buffer, classes for
doing tone mapping, etc. (Section A.3).

The relationship between the classes is depicted in Figure A.1. Some
example code fragments, illustrating the use of these classes, are presented
in Section A.4.

The interface we describe here does not include a representation of ge-
ometry or materials itself. Such a representation is, of course, required
in an actual implementation. Our implementation, on top of a VRML-
based scene graph management library, is available from this book’s website
(http://www.advancedglobalillumination.com). In our experience, it is easy
to port the class library to other global illumination platforms. Algorithms
implemented on top of this interface may be portable to other global illumi-
nation systems supporting this interface almost without modifications. Our

305

�

�

�

�

�

�

�

�

306 A. A Class Library for Global Illumination

Figure A.1. Graphical overview of the classes contained in the library described
here.

experiments have indicated that the additional computation cost caused by
the interface is relatively small: on the order of 10% to 20% of the render-
ing time at most, even if the underlying scene graph management, shader
implementation, and ray-tracing kernel are highly optimized. The pro-
gramming language we used in our implementation is C++. The same
interface can obviously also be realized using a different object-oriented
programming language.

A.1 Path Node Classes

A.1.1 Overview

All the algorithms described in this book require that light paths or eye
paths are generated stochastically. These paths have an associated value
and a probability density (PDF). In order to form an image, average ratios
are computed of path values over their PDFs.

�

�

�

�

�

�

�

�

A.1. Path Node Classes 307

The value associated with a path is always the product of values asso-
ciated with the nodes in the path and transition factors such as vis(x, y)
cos θy/r

2
xy between subsequent nodes x and y. The value associated with

a path node depends on the type of node. For instance, for a surface scat-
tering event, it is the BSDF times the outgoing cosine; for a light source
node, it is the self-emitted radiance, etc.

The PDF indicates the chance that a particular path is being generated.
It is also the product of PDFs associated with each node in the path and
transition factors. The PDF associated with a surface scattering node, for
instance, is the probability by which a scattered light direction is sampled;
for a light source node, it is the probability of sampling a light emission
direction on a light source.

We call every event at which a path is generated, or its trajectory
changed, a path node. The library contains a representation for a variety
of path nodes corresponding to:

• Emission of an eye ray through a virtual screen pixel, that is, emission
of potential: see EyeNode class (Section A.1.3).

• Emission of light, at a surface or from the background (for instance,
a model for sky illumination or a high dynamic range environment
map): see EmissionNode class (Section A.1.4).

• Scattering of light or potential at a surface, or light/potential disap-
pearing into the background: see ScatteringNode class (Section A.1.5).

A full path corresponds to a list of such path nodes.

A.1.2 Common Interface: The PathNode Base Class
All path node classes inherit from a single PathNode base class. The
PathNode class encapsulates the common properties of all path nodes and
provides a uniform interface, so that complete algorithms can be imple-
mented without having to know what types of path nodes may be gener-
ated. The main members of the PathNode class are:

• The cumulative probability density by which a path up to a given
node has been generated.

• The cumulative value associated with the path up to a given node.

• An eval() member function for querying the value (BSDF, EDF,
etc.), path survival PDF, the PDF of sampling a given outgoing di-
rection, and the outgoing cosine factor (if applicable) associated with
the path node.

�

�

�

�

�

�

�

�

308 A. A Class Library for Global Illumination

• A sample() function that calculates from two random numbers whether
or not a path at a node shall be expanded and, if so, in what direction.

• A trace() function that returns a new path node resulting from
tracing a ray into a given direction. The resulting node is always a
scattering node (see Section A.1.5). Its precise type depends on the
event that occurs next: If the ray hits a surface, a SurfaceNode is
returned. If the ray disappears to the background, a BackgroundNode
is returned. The trace() function also computes geometric factors
associated with the transition to the new path node and properly
initializes the cumulative PDF and value of the resulting path node.

eval(), sample(), and trace() are virtual member functions, imple-
mented in children classes of PathNode. We choose to provide a single
eval() function, for evaluating everything related to a path node, in order
to minimize the number of virtual function calls and in order to make it
easier to share the calculation of certain partial results between the value
and the PDF. The latter can result in significant time savings. For instance,
PDFs are quite often very similar to values. Results are filled in objects
pointed to by pointers passed as parameters to the eval() function. If null
pointers are passed, corresponding quantities (value, survival or direction
sampling PDF, outgoing cosine) are not computed if not needed for other
results. In the same spirit, the sample() and trace() functions can also
return values and PDFs that are computed on the fly if nonnull pointer
arguments are passed for filling in such side results. The trace() function
optionally accepts a set of pointers to path node objects of each type that
can be returned, in order to avoid dynamic storage allocation and to allow
easy type checking afterwards. This will be illustrated in Section A.4.

Besides the above members, the PathNode base class also maintains and
offers:

• The depth of the path node in its path: 0 for the head of a path,
depth of the parent node plus 1 for nonhead path nodes.

• The light emission and scattering modes to take into account for eval-
uation and sampling (diffuse/glossy/specular emission/reflection/
refraction);

• A pointer to the parent node in the path.

• Various flags: whether the path node belongs to a light path or eye
path (required for making certain corrections due to nonsymmetric
light scattering [203]), whether the path node is at the end of a sub-
path, whether it has a finite position in space, or whether it is located
“at infinity” (for instance: background emission nodes).

�

�

�

�

�

�

�

�

A.1. Path Node Classes 309

• Member functions for accessing the position of a path node in space,
or the geometry at that location, or for obtaining the head of the path,
or direction and distance (taken to be 1 for background nodes) to
another path node, or for computing visibility with regard to another
node.

• Static member variables indicating the minimum and maximum path
depth for generating paths. These values affect survival probabilities
computed in the sample() and eval() functions.

• Some more member functions for convenience: scatter() computes
the radiance or potential accumulated along a path and scattered
into a given direction. The expand() member function combines
sample() and trace() in a single function.

A.1.3 Pixel Filtering and Sampling: The EyeNode Class

The EyeNode class represents the head of eye paths. The position of an
EyeNode object is the position of the pinhole camera used to view a scene.
EyeNode objects are associated with a virtual screen pixel. They encapsu-
late pixel filtering and sampling. The value returned by EyeNode::eval()
is the pixel measurement function of a given direction (see Section 5.7.1).
EyeNode::sample() will select a direction through the associated virtual
screen pixel for shooting an eye ray. Currently, a simple box pixel filter is
implemented.

A.1.4 Light Emission: The EmissionNode Classes

An EmissionNode object represents the head of a light path. It cor-
responds with a point on a surface light source (SurfaceEmissionNode
sub-class) or a direction towards the background for background illumina-
tion such as sky illumination or a high dynamic range environment map
(BackgroundEmissionNode subclass). The value associated with an emis-
sion node is the self-emitted radiance into a given direction. The sample()
member function will sample a direction according to the directional emis-
sion distribution at a surface emission location. For background emission
nodes, where the emission direction is encoded in the node, sample() will
select a point on the projection of the scene bounding box perpendicular
to the emission direction. In both cases, sample() results in a point and
a direction, enough for constructing a ray to shoot self-emitted radiance
along.

Emission nodes can be generated by means of the EmissionSampler
classes described in Section A.2.

�

�

�

�

�

�

�

�

310 A. A Class Library for Global Illumination

A.1.5 Light and Potential Scattering: The ScatteringNode Classes

The trace() function of any path node usually results in a new
ScatteringNode object representing surface scattering (SurfaceNode) or
light or potential that disappears into the background (BackgroundNode).

Surface Scattering: SurfaceNode Class

The position of a SurfaceNode object is the position on the surface of
an object in the scene at which a light path or eye path can be reflected,
refracted, or absorbed. The value associated with such a node is the BSDF
for a given direction. By default, the survival probability is computed based
on the fraction of incident illumination or potential that will be scattered
rather than absorbed. It depends on the direction of incidence and is, of
course, affected by the currently required minimum and maximum path
length. The “outgoing cosine” computed by SurfaceNode::eval() is the
absolute value of the cosine between a given outgoing direction and the
shading normal at the scattering location. The sample() member function
samples an outgoing direction ideally according to the BSDF times the
outgoing cosine. SurfaceNode objects know whether they belong to a
light path or eye path, and appropriate correction factors for nonsymmetric
scattering due to bump mapping or normal interpolation are applied on the
BSDF [203]. There is also a version of SurfaceNode::eval() that allows
us to specify incident directions other than the one for which the path node
was constructed.

Occasionally, a path will hit a surface light source. In order to evaluate
self-emitted radiance at a scattering location, and to compute the probabil-
ity of obtaining the surface location by means of surface emission sampling
(with a SurfaceEmissionSampler object, see Section A.2), appropriate
source radiance() and source pdf() member functions are provided.
Some algorithms, like bidirectional path tracing, require more complex op-
erations if a path hits a light source. A conversion from the SurfaceNode
class to the SurfaceEmissionNode class is provided in order to meet such
requirements. An on light source() member function returns whether
or not a SurfaceNode lays on a light source.

Paths Disappearing into the Background: BackgroundNode Class

If a path doesn’t hit a surface, it’s said to disappear into the background. A
special BackgroundNode marks the end of such paths. The BackgroundNode
class inherits from the ScatteringNode base class, but of course, no scat-
tering happens: A path that disappears into the background is always
terminated. The value and PDFs returned by BackgroundNode::eval()

�

�

�

�

�

�

�

�

A.2. Light Source Sampling Classes 311

are always zero, and the BackgroundNode::sample() member function will
always result in an error. The trace() function returns a null result.

If background illumination has been modeled in a scene to be rendered,
however, the BackgroundNode::source radiance() and BackgroundNode
::source pdf() member functions will compute the self-emitted radiance
received from the background along the path direction, as well as the
probability of sampling that direction using a BackgroundEmissionSampler
object. Also for background “scattering,” a conversion from the class
BackgroundNode to the class BackgroundEmissionNode is provided so all
queries for self-emitted illumination can be performed at a background
“scattering” node.

A.2 Light Source Sampling Classes

A scene can contain both a number of surfaces that emit light sponta-
neously, as well as a model for background illumination such as sky light
or a high dynamic range environment map. A second set of classes pro-
vided by the library will select either a position on a light source sur-
face (SurfaceEmissionSampler class) or a direction for background illu-
mination (BackgroundEmissionSampler class). Unlike path node objects,
which are very frequently created and destroyed during the global illumina-
tion computations, there is normally only a single surface and background
emission sampler active while rendering a frame.

A.2.1 Surface Emission Sampling: The SurfaceEmissionSampler
and WeightedSurfaceEmissionSampler Classes

A SurfaceEmissionSampler class object maintains a list (or better, an
array) of light source surfaces in the scene. Our current implementation
assumes scenes modeled out of triangles, so our SurfaceEmissionSamplers
will contain a list of pointers to light-emitting triangles. It is straightfor-
ward to extend the interface to handle curved light sources, too. Besides
member functions for building up such a list, the main member functions
are:

• A sample() function that will select a triangle from the list and
return a point on the selected triangle as a SurfaceEmissionNode.
Triangles are selected with a probability proportional to their self-
emitted power. Points are selected uniformly on a triangle.

• A pdf() member function returns the probability density of sampling
a given point on a given triangle using sample().

�

�

�

�

�

�

�

�

312 A. A Class Library for Global Illumination

The pdf() member function assumes an index mechanism for
quickly locating a given triangle in the list of light source triangles. Our
SurfaceEmissionNodes and SurfaceNodes contain a pointer to the surface
triangle on which they are located. This allows us to find out easily whether
a SurfaceNode is located on a light source, or to calculate all relevant light
source quantities.

Weighted Surface Emission Sampling

Sometimes, surface emission sampling according to emitted power is not
optimal, and other probabilities for selecting light source triangles are re-
quired. One example of such a case is view-importance–driven light source
sampling (Section 5.4.5), when a light source needs to be selected ac-
cording to its estimated impact on a particular view. A powerful, but
distant or occluded light source for instance, receives a lower probabil-
ity of being selected than a less powerful, but nearby, light source. The
WeightedSurfaceEmissionSampler subclass of SurfaceEmissionSampler
allows us to enable/disable light source triangles from a list and to attach
weights to light source triangles in a very general way. For convenience,
a member function is provided that will assign weights according to light
source distance and orientation with regard to a specified point and nor-
mal. Our implementation also contains an adapted version of a light-path
tracer that estimates the light flux each light source contributes to the cur-
rent view and that assigns light source weights proportional to these fluxes
eventually.

A.2.2 Background Emission Sampling:
The BackgroundEmissionSampler Class

The BackgroundEmissionSampler class works in a very similar way to
the SurfaceEmissionSampler class, except that usually, the number of
background light sources is small, and it returns a sampled direction to
the background in the form of a BackgroundEmissionNode. Background
directions are selected with a probability that reflects the intensity of self-
emitted radiance received from the direction. It is much harder to take into
account surface orientation here so there is no class for weighted background
emission sampling.

A.2.3 The EmissionSampler Wrapper Class

The library provides an EmissionSampler wrapper class that con-
tains a pointer to a WeightedSurfaceEmissionSampler and to a
BackgroundEmissionSampler for the scene. By default, surface emission

�

�

�

�

�

�

�

�

A.3. Support Classes 313

sampling and background emission sampling receive a weight proportional
to the total emitted power from surfaces and the background, respectively.
In order to calculate these weights, it is necessary to know in what length
units a scene has been modeled. The default weights can, of course, be
modified in a program. Our adapted light tracer, described above, does so
after measuring the light flux contributed to the current view by surfaces
and background.

The public implementation provides only triangle light sources and
background emission. Other light sources, such as spherical or disc light
sources, can easily be added in the form of additional emission sampler
classes. The EmissionSampler wrapper class shall contain a reference to
all light source samplers, with proper weights, so that it can hide the variety
of light sources in a scene from the implementation of global illumination
algorithms by providing a single sample() function for any kind of light
emission.

A.3 Support Classes

The path node and sampler class interfaces are pretty much self-contained,
but they need to be embedded in a suitable working environment, of course.
For convenience, the library also contains a number of additional classes
providing such an environment. Unlike the path node class interface, it is
likely that some tuning will be needed in order to integrate these support
classes into your global illumination application.

A.3.1 A Pinhole Camera Virtual Screen Abstraction:
The ScreenBuffer Class

EyeNode class objects correspond to pixels on a virtual screen. Their im-
plementation requires an abstraction of a virtual screen buffer. The library
provides a ScreenBuffer class for this purpose. The ScreenBuffer class
represents the virtual screen of a pinhole camera. It offers member functions
getDirection() and getPixelCoord() for mapping pixel coordinates to
the corresponding primary ray direction and vice versa. A member function
setView() initializes the current view point, focus point, direction point
upwards, and field of view angle in the same way as the gluLookAt() func-
tion in OpenGL. The getPixelCoord() function returns whether or not a
primary ray direction points towards the screen. It is used in light tracing
and bidirectional path tracing in order to splat path contributions to the
screen, as shown in the examples (Section A.4.1).

The ScreenBuffer class also maintains two arrays of pixel color val-
ues: one usual set of low dynamic range RGB triplets plus transparency

�

�

�

�

�

�

�

�

314 A. A Class Library for Global Illumination

that can be displayed efficiently using, for instance, the glDrawPixels()
OpenGL function; and one set that contains high dynamic range color
values in 32-bit packed RGBE format [220]. The ScreenBuffer class of-
fers member functions clear(), clearRGBA(), clearHDR(), setPixel(),
getRGBAPixel(), getHDRPixel(), addPixel(), etc., for clearing, query-
ing, and modifying low and high dynamic range pixel color values.

A.3.2 Converting High to Low Dynamic Range Color Values:
The ToneMapper Classes

A global illumination algorithm computes and stores high dynamic range
pixel color values in the ScreenBuffer. A ToneMapper object will map
the high dynamic range pixels to RGB color triplets for display as ex-
plained in Section 8.2. Different tone mapping algorithms are implemented
in subclasses of a base ToneMapper class. Such classes maintain their own
set of required parameters, such as the world adaptation luminance in
the current view. The ScreenBuffer class provides a member function
adaptation luminance() for computing the world adaptation luminance
as the exponentiated mean logarithmic luminance of the virtual screen high
dynamic range pixel color values. The main member function provided by
the ToneMapper classes is a map() function that does everything to convert
the high dynamic range color values in a given ScreenBuffer object into
low dynamic range color values for display.

A.3.3 Integration into an Application: The Browser and Tracer
Classes

The library described here comes with an application in which several global
illumination algorithms have been implemented. We describe here two
additional classes that integrate the path node and sampler classes into
this application.

The Browser Classes

We implemented a Browser base class to group and maintain the whole
software environment in which the PathNode and EmissionSampler classes
operate:

• The scene graph. In our implementation, the scene graph is a
VRML97 scene graph with numerous extension nodes for represent-
ing physically based appearance and high dynamic range backgrounds
as well as color calibration parameters of the computer monitor on
which a model has been designed.

�

�

�

�

�

�

�

�

A.3. Support Classes 315

• The interface to a ray-tracing engine needed for finding ray-object
intersections and for performing visibility queries.

• One instance of an EmissionSampler, containing a WeightedSurface-
EmissionSampler and a BackgroundEmissionSampler, as well as a
reference unweighted SurfaceEmissionSampler.

• A ScreenBuffer and a ToneMapper object.

The Browser base class does not support a graphical user interface,
and neither does it perform any global illumination computations itself.
It needs to be augmented with such capabilities by means of inheritance.
The Browser base class provides a virtual trace() member function, which
needs to be implemented in a child class in order to:

• Initialize the ScreenBuffer for the current view.

• Perform the real global illumination computations for the view.

• Call the ToneMapper in order to map computed high dynamic range
pixel colors into low dynamic range RGB color triplets for display.

• Display the results on a computer screen, or save them into a file.

The Tracer Classes

Rather than implementing each global illumination algorithm as a sep-
arate Browser subclass, we introduced yet another class, called Tracer,
providing a common software interface for global illumination algorithms.
Algorithms such as path tracing and light tracing (Chapter 5), bidirec-
tional path tracing (Section 7.3), a ray-traced version of the instant radios-
ity algorithm (Section 7.7), and photon mapping (Sectoin 7.6) are imple-
mented in PathTracer, LightTracer, BiDirTracer, InstantRadiosity,
and PhotonMapper child classes of the Tracer base class. The main func-
tions implemented by these classes are:

• An init() function performs initializations such as storage allocation
of large arrays for each frame to be rendered.

• A trace() function computes an image for the current view.

• A tonemap() function properly rescales ScreenBuffer high dynamic
range pixels and uses the current Browser’s ToneMapper object in
order to convert to displayable RGB color triplets.

�

�

�

�

�

�

�

�

316 A. A Class Library for Global Illumination

Our Browser subclass object creates an appropriate Tracer object ac-
cording to the desires of a user and calls the above listed Tracer functions
in its Browser::trace() handler.

In addition to the above functions, our Tracer classes also provide
member function for distributed computations, for instance, indicating how
to separate an image into several subimages to be computed on different
network clients, and how to merge the resulting pixel values computed by
each client afterwards.

A.4 Example Code Fragments

In this section, we provide some example code fragments, illustrating how
global illumination algorithms can be implemented on top of the path node
and sampler classes described previously.

A.4.1 A Light Tracer
We first present the core part of our LightTracer class, implementing light
particle tracing (see Section 5.7):

// scrn is pointer to the current ScreenBuffer object

// class Vec3 and class Spectrum represent 3D vectors and spectra

// lightsampler is pointer to current EmissionSampler object

int nrparticles; // nr of particles to trace

// splats particle on the screen

inline void LightTracer::splat(class PathNode *n)

{

float dist; // distance between eye and n

const Vec3 eyedir = scrn->eye.dirto(n->pos(), &dist); // direction

if (n->at_infinity()) dist = 1.; // don’t divide by square distance

float i, j; // compute pixel coordinates (i,j)

if (scrn->getPixelCoord(eyedir, &i, &j)) {

class EyeNode e(i, j); // eye node corresponding to pixel

if (visible(&e, n)) { // n is not occluded from the eye

float ncos, ecos; // cosine factors at the eye

// and at n

scrn->addPixel(i, j, e.scatter(eyedir, &ecos)

* n->scatter(-eyedir, &ncos)

* (ncos * ecos / (dist*dist * (float)nrparticles)));

}

}

}

inline void LightTracer::traceparticle(class PathNode *l)

{

�

�

�

�

�

�

�

�

A.4. Example Code Fragments 317

splat(l); // splat particle on screen

class PathNode *n = l->expand(); // expand path

if (n) traceparticle(n); // recurse

delete n;

}

void LightTracer::trace(void)

{

for (int i=0; i<nrparticles; i++) {

class EmissionNode *l = lightsampler->sample(); // sample lights

if (l) traceparticle(l); // trace light path

delete l;

}

}

In order to implement photon mapping, the splat() function shall be
modified in order to store SurfaceNode hit points n->pos(), incident di-
rection n->indir, and flux n->value/n->pdf in a photon map data struc-
ture. A ready-to-use implementation of a photon map data structure can
be found in Jensen’s book [83].

A.4.2 A Path Tracer

The implementation of a path tracer below is only slightly more compli-
cated, in order to avoid dynamic storage allocation and to obtain easy
checking of path node types returned by the PathNode::expand() and
EmissionSampler::sample() functions.

// Again, scrn and lightsampler are the current ScreenBuffer

// and EmissionSampler.

// Array of SurfaceNodes in order to avoid the need for

// dynamic storage allocation in PathNode::expand().

// Storage is allocated in setup(), and freed in cleanup().

class SurfaceNode* PathTracer::sbuf =0;

// nr of light samples (shadow rays) at each path surface hit

int PathTracer::nrlightsamples = 1;

// Compute score associated with path landing on a light source.

inline const Spectrum PathTracer::source(class ScatteringNode* s)

{

class Spectrum score(0.);

if (s->depth() <= 1 || nrlightsamples == 0) {

// Source contribution computed exclusively by means of

// scattering.

score = s->source_radiance() * s->value / s->pdf;

} else {

// Source contribution computed exclusively by means of

// light source sampling.

�

�

�

�

�

�

�

�

318 A. A Class Library for Global Illumination

}

return score;

}

// Light source sampling for computing direct illumination at

// the SurfaceNode s.

inline const Spectrum PathTracer::tracelight(class SurfaceNode* s)

{

// Avoid dynamic storage allocation

static class SurfaceEmissionNode sl;

static class BackgroundEmissionNode bl;

class EmissionNode *l = lightsampler->sample(&sl, &bl);

if (l) {

// cosine/distance at the light and at the surface

float lcos, scos, dist;

// dir/dist surface to light

const Vec3 dir = s->dirto(l, &dist);

// compute cosine at the light

l->eval(-dir, 0, 0, 0, &lcos);

// surface behind light or occluded

if (lcos <= 0 || !visible(s, l))

return Spectrum(0.);

else

return s->scatter(dir, &scos) * l->scatter(-dir)

* (scos * lcos / (dist * dist));

}

return Spectrum(0.);

}

// Light source sampling at surface scattering node s.

inline const Spectrum PathTracer::tracelights(class SurfaceNode* s)

{

class Spectrum score(0.);

if (nrlightsamples > 0) {

for (int i=0; i<nrlightsamples; i++) { // shoot shadow rays

score += tracelight(s);

}

score /= (float)nrlightsamples;

}

return score;

}

// Traces a path through the pixel represented by the EyeNode e

inline const Spectrum PathTracer::tracepixel(class EyeNode* e)

{

static class BackgroundNode b; // avoid dynamic storage allocation

class SurfaceNode *s = sbuf;

// sample + shoot eye ray

class ScatteringNode *n = e->expand(s, &b);

class Spectrum score(0.);

while (n) {

score += source(n); // self-emitted illumination

�

�

�

�

�

�

�

�

A.4. Example Code Fragments 319

if (n == s) // direct illumination: only surface nodes

score += tracelights(s);

n = n->expand(++s, &b); // indirect illumination: expand path

}

return score;

}

void PathTracer::setup(void)

{

sbuf = new SurfaceNode [PathNode::max_eye_path_depth];

}

void PathTracer::cleanup(void)

{

delete [] sbuf;

}

// computes image for current view

void PathTracer::trace(void)

{

setup();

for (int j=0; j<scrn->height; j++) {

for (int i=0; i<scrn->width; i++) {

class EyeNode e(i, j);

scrn->addPixel(i, j, tracepixel(&e));

}

}

cleanup();

}

A.4.3 Multiple Importance Light Source Sampling

When light reflection at a surface hit by a path is highly specular, it is usu-
ally much better to compute direct illumination by means of a scattered
ray rather than by light source sampling. We show here the modifications
to the path tracer implementation above, in order to calculate direct illu-
mination at path nodes by means of multiple importance sampling [201].
These modifications illustrate the use of the PathNode::eval() functions
in cases where the higher-level PathNode::scatter() functions fall short.
Some example results are shown in Figure A.2 on page 332.

// flag indicating whether or not to use bidirectional weighting

// for source contributions.

bool PathTracer::bidir_weighting = true;

// Compute score associated with path landing on a light source.

inline const Spectrum PathTracer::source(class ScatteringNode* s)

{

�

�

�

�

�

�

�

�

320 A. A Class Library for Global Illumination

class Spectrum score(0.);

if (s->depth() <= 1 || nrlightsamples == 0) {

// Source contributions computed exclusively by means of

// scattering.

score = s->source_radiance() * s->value / s->pdf;

} else if (bidir_weighting) {

// Source contributions computed by means of both scattering

// and light source sampling.

// Attenuate source radiance taking into account the probability

// that s would have been obtained by light source sampling

// rather than scattering.

float w_scattering = s->pdf / s->parent()->pdf;

float w_lsampling = s->source_pdf() * (float)nrlightsamples;

float w = w_scattering / (w_scattering + w_lsampling);

score = s->source_radiance() * s->value * (w / s->pdf);

} else {

// Source contributions computed exclusively by means of

// light source sampling.

}

return score;

}

// Light source sampling for computing direct illumination at

// the SurfaceNode s.

inline const Spectrum PathTracer::tracelight(class SurfaceNode* s)

{

// Avoid dynamic storage allocation

static class SurfaceEmissionNode sl;

static class BackgroundEmissionNode bl;

class EmissionNode *l = lightsampler->sample(&sl, &bl);

if (l) {

// cosine/distance at the light and at the surface

float lcos, scos, dist;

const Vec3 dir = s->dirto(l, &dist);

// compute cosine at the light

l->eval(-dir, 0, 0, 0, &lcos);

// surface behind light or occluded

if (lcos <= 0 || !visible(s, l))

return Spectrum(0.);

if (!bidir_weighting) {

// source() doesn’t pick up source radiance at hit surfaces

return s->scatter(dir, &scos) * l->scatter(-dir)

* (scos * lcos / (dist * dist));

}

else {

// Attenuate direct illumination taking into account the

// probability that the light source could have been hit

// by a scattered ray.

float survpdf, scatpdf; // survival and scattering pdf

class Spectrum fr, Le; // BRDF at s and EDF at l

�

�

�

�

�

�

�

�

A.4. Example Code Fragments 321

s->eval(dir, &fr, &survpdf, &scatpdf, &scos);

l->eval(-dir, &Le, 0, 0, 0);

float g = lcos / (dist*dist); // transition factor

float w_scattering = survpdf * scatpdf * g; // scatt. weight

float w_lsampling = l->pdf * (float)nrlightsamples;

float w = w_lsampling / (w_lsampling + w_scattering);

float G = scos * g;

return (s->value * fr * Le) * (G * w / (s->pdf * l->pdf));

}

}

return Spectrum(0.);

}

// The tracelights(), tracepixel() and trace() functions

// are the same as in the previous section.

A.4.4 A Bidirectional Path Tracer

Here is our code for a bidirectional path tracer:

// The purpose of the following arrays is to prevent dynamic

// storage allocation in PathNode::expand() and to allow

// efficient PathNode child class checking by comparing pointers.

class EyeNode eyenode; // head of eye path

class SurfaceEmissionNode senode; // surface emisison node

class BackgroundEmissionNode benode;// background emission node

// head of light path: pointer to senode or benode:

class EmissionNode *lightnode;

// surface scattering nodes

class SurfaceNode *eyesurfnodes, *lightsurfnodes;

class BackgroundNode eyebkgnode, lightbkgnode; // background nodes

// pointers surface or background scattering nodes:

class ScatteringNode **eyescatnodes, **lightscatnodes;

int eyepathlen, lightpathlen; // eye/light path length

class PathNode **eyepath, **lightpath; // pointers to path nodes

float *erdpdf, *lrdpdf; // reverse dir. selection probabilities

float *erspdf, *lrspdf; // survival prob. in reverse path direction

float *erhpdf, *lrhpdf; // hit densities in reverse path direction

float nrparticles; // nr of light particles traced

// for avoiding dynamic storage allocation when converting

// scattering nodes to emission nodes.

class BackgroundEmissionNode eeb;

class SurfaceEmissionNode ees;

// minimum and maximum light/eye/combined path length

static int min_light_path_length=2,

max_light_path_length=7,

min_eye_path_length=2,

�

�

�

�

�

�

�

�

322 A. A Class Library for Global Illumination

max_eye_path_length=7,

max_combined_path_length=7;

// trace an eye path by expanding the eye node e.

// . a pointer to the eye node goes into eyepath[0]

// . the surface scattering nodes come into eyesurfnodes[1] etc... and

// a pointer to them in eyepath[1] and eyescatnode[1], etc...

// . the final background node goes into eyebkgnode and a pointer to

// it in eyepath[.] and eyescatnode[.] as well.

// Returns length of the eye path (nr of segments = nr of nodes - 1)

int BiDirTracer::trace_eye_path(class EyeNode* e)

{

eyepath[0] = e; // store pointer to head of path

int i=1;

class ScatteringNode *n = e->expand(&eyesurfnodes[i], &eyebkgnode);

while (n) {

eyescatnodes[i] = n; // store ScatteringNode pointer

eyepath[i] = n; // store PathNode pointer

i++; // expand the path

n = n->expand(&eyesurfnodes[i], &eyebkgnode);

}

return i-1; // path length (nr of segments)

}

// Same as trace_eye_path, but for light path starting at the

// emission node l. Results go into lightpath[.], lightscatnodes[.],

// lightsurfnodes[.], and lightbkgnode.

// Returns length of light path.

int BiDirTracer::trace_light_path(class EmissionNode* l)

{

lightpath[0] = l;

int i=1;

class ScatteringNode *n = l->expand(&lightsurfnodes[i], &lightbkgnode);

while (n) {

lightscatnodes[i] = n;

lightpath[i] = n;

i++;

n = n->expand(&lightsurfnodes[i], &lightbkgnode);

}

return i-1;

}

// Computes the probabilities of sampling the eye path in reverse direction,

// that is: with incident and outgoing direction at the nodes exchanged.

// Result goes into:

// . erdpdf[i]: _D_irection sampling pdf for reverse directions at node i

// . erspdf[i]: unconstrained _S_urvival probability at node i (that is:

// not taking into account minimum and maximum required path length)

�

�

�

�

�

�

�

�

A.4. Example Code Fragments 323

// . erhpdf[i]: cos / distance squared from node i to node i-1 (_H_it pdf)

// The leading ’e’ in the names of the arrays stands for _E_ye path. The

// ’r’ for _R_everse.

void BiDirTracer::compute_reverse_eyepath_probs(void)

{

erdpdf[0] = erspdf[0] = erhpdf[0] = 0.; // no reverse tracing at the eye

if (eyepathlen == 0)

return;

class ScatteringNode* next = eyescatnodes[1];

erhpdf[1] = 0.; // chance of hitting eye point is 0 for pinhole camera

for (int i=1; i<eyepathlen; i++) {

class ScatteringNode* cur = next;

next = eyescatnodes[i+1];

class Vec3 toprevdir(cur->indir);

class Vec3 tonextdir(-next->indir);

erspdf[i] = cur->unconstrained_survival_probability(tonextdir);

cur->eval(tonextdir, toprevdir, 0, 0, &erdpdf[i], 0);

cur->eval(tonextdir, 0, 0, 0, &erhpdf[i+1]);

if (!next->at_infinity())

erhpdf[i+1] /= cur->position.sqdistance(next->position);

}

erspdf[eyepathlen] = erdpdf[eyepathlen] = 1.; // not needed

}

// Same for the light path.

void BiDirTracer::compute_reverse_lightpath_probs(void)

{

// no reverse tracing at the light source

lrdpdf[0] = lrspdf[0] = lrhpdf[0] = 0.;

if (lightpathlen == 0)

return;

class ScatteringNode* next = lightscatnodes[1];

lightnode->eval(-next->indir, 0, 0, 0, &lrhpdf[1]);

if (!lightnode->at_infinity() && !next->at_infinity())

lrhpdf[1] /= lightnode->pos().sqdistance(next->position);

for (int i=1; i<lightpathlen; i++) {

class ScatteringNode* cur = next;

next = lightscatnodes[i+1];

class Vec3 toprevdir(cur->indir);

class Vec3 tonextdir(-next->indir);

lrspdf[i] = cur->unconstrained_survival_probability(tonextdir);

cur->eval(tonextdir, toprevdir, 0, 0, &lrdpdf[i], 0);

cur->eval(tonextdir, 0, 0, 0, &lrhpdf[i+1]);

if (!next->at_infinity())

lrhpdf[i+1] /= cur->position.sqdistance(next->position);

}

lrspdf[lightpathlen] = lrdpdf[lightpathlen] = 1.; // not needed

}

// #define WEIGHT(w) (w) // balance heuristic

#define WEIGHT(w) (w*w) // power 2 heuristic

�

�

�

�

�

�

�

�

324 A. A Class Library for Global Illumination

// Computes weight associated with the combined eye sub path up to

// eyepath[e] and light sub path up to lightpath[l].

// Requires that e>=0 and l>=0. Weighting for e==-1 or l==-1

// (empty sub-path) is special because there is no connecting path

// segment (nor visibility test), see eyepath_on_light() and

// lightpath_on_camera().

float BiDirTracer::weight(int e, int l,

const Vec3& ltoedir, float ltoepdf, float etolpdf)

{

class PathNode* en = eyepath[e];

class PathNode* ln = lightpath[l];

// weight of "this" strategy is proportional to product of

// the pdfs of sampling the connected eye and light sub paths.

// If e<=0, we are dealing with pure light path tracing (see

// join_lightpath_with_eye() and an additional multiplication by

// the total nr of light paths being traced is needed (= nr of pixels

// since we trace one light path per pixel).

double lpdf = ln->pdf * (e<=0 ? nrparticles : 1.);

double epdf = en->pdf;

double thisw = WEIGHT(lpdf * epdf);

// compute sum of weights associated with all possible combinations

// of shorter/longer eye/light sub-paths leading to the same path between

// lightpath[0] and eyepath[0].

double sumw = thisw; // sum of weights

int i, j;

// shorter eye sub-paths / longer light sub-paths

i = e; j = l;

lpdf = ln->pdf; // prolonged light sub-path pdf

while (i>=0 && j<PathNode::max_light_path_depth) {

double lxpdf = 0.; // light path transition pdf

if (j == l) {

// transition probability for light path at lightpath[l]

// going towards eyepath[e]. Probability is given as an

// argument to this function.

// i == e

lxpdf = ltoepdf;

} else if (j == l+1) {

// evaluate transition probability for light path arriving at

// eyepath[e] from lightpath[l] and going towards eyepath[e-1].

// i == e-1

class ScatteringNode* escat = eyescatnodes[e];

float spdf = j < PathNode::min_light_path_depth // survival pdf

? 1.

: escat->unconstrained_survival_probability(-ltoedir);

float dpdf; // direction selection pdf

escat->eval(-ltoedir, escat->indir, 0, 0, &dpdf, 0);

lxpdf = spdf * dpdf * erhpdf[e]; // third factor is cosine/dist^2

} else {

// transition probability for light path at eyepath[i+1]

�

�

�

�

�

�

�

�

A.4. Example Code Fragments 325

// from eyepath[i+2] and going towards eyepath[i]. Use

// precomputed probabilities for reverse eye path).

// i<e-1

float spdf = j < PathNode::min_light_path_depth

? 1.

: erspdf[i+1];

lxpdf = spdf * erdpdf[i+1] * erhpdf[i+1];

}

lpdf *= lxpdf;

// The light sub-path now ends at eyepath[i]. Consider connection

// with eye sub-path ending at eyepath[i-1].

i--; j++;

double w = (i>=0) ? eyepath[i]->pdf * lpdf : lpdf;

if (i<=0) w *= nrparticles; // pure light path tracing case

sumw += WEIGHT(w);

}

// shorter light sub-paths / longer eye sub-paths

i = e; j = l;

epdf = en->pdf; // prolonged eye sub-path pdf

while (j>=0 && i<PathNode::max_eye_path_depth) {

double expdf = 0.; // eye path transition pdf

if (i == e) {

// transition probability for eye path at eyepath[e]

// going towards lightpath[l]

// j == l

expdf = etolpdf;

} else if (i == e+1) {

// evaluate transition probability for eye path arriving at

// lightpath[l] from eyepath[e] and going towards lightpath[l-1]

// j == l-1

class ScatteringNode* lscat = lightscatnodes[l];

float spdf = i < PathNode::min_eye_path_depth

? 1.

: lscat->unconstrained_survival_probability(ltoedir);

float dpdf;

lscat->eval(ltoedir, lscat->indir, 0, 0, &dpdf, 0);

expdf = spdf * dpdf * lrhpdf[l];

} else {

// transition probability for eye path at lightpath[j+1]

// from lightpath[j+2] and going towards lightpath[j]. Use

// precomputed probabilities for reverse light path.

// j < l-1

float spdf = i < PathNode::min_eye_path_depth

? 1.

: lrspdf[j+1];

expdf = spdf * lrdpdf[j+1] * lrhpdf[j+1];

}

epdf *= expdf;

// The eye sub-path now ends at lightpath[j]. Consider connection

// with light sub-path ending at lightpath[j-1].

j--; i++;

�

�

�

�

�

�

�

�

326 A. A Class Library for Global Illumination

double w = (j>=0) ? lightpath[j]->pdf * epdf : epdf;

sumw += WEIGHT(w);

}

return thisw / sumw;

}

// e==0 and l==0: join eye node with light source node

// (adds self-emitted radiance from a light source node to the

// image). This is handled by eyepath_on_light() for eye nodes

// of depth 1.

const Spectrum BiDirTracer::join_light_eye(void)

{

return Spectrum(0.);

}

const EmissionNode* BiDirTracer::convert_to_lightnode(int e)

{

if (eyescatnodes[e] == &eyebkgnode) {

// scattering node is background node

// convert to background emission node

eeb = BackgroundEmissionNode(eyebkgnode);

return &eeb;

} else {

// scattering node is surface node

// convert to surface emission node

ees = SurfaceEmissionNode(eyesurfnodes[e]);

return &ees;

}

}

// e>0 && l==-1: eye path arriving on a light source (that is:

// we check for every surface hit, whether it is a light source

// or not and take its self-emitted radiance into the incident

// direction into account if it is a light source.)

const Spectrum BiDirTracer::eyepath_on_light(const int e)

{

class ScatteringNode* es = eyescatnodes[e];

if (!es->on_light_source()) {

return Spectrum(0.);

}

if (e==1) {

// this is the complementary strategy of join_light_eye(), but

// join_light_eye() does nothing, so this strategy gets full weight.

return es->source_radiance() * es->value / es->pdf;

}

// Convert the scattering node into a corresponding emission node

const EmissionNode* ee = convert_to_lightnode(e);

class Spectrum Le; // self-emitted radiance

�

�

�

�

�

�

�

�

A.4. Example Code Fragments 327

float spdf, dpdf; // light path survival and direction s. pdf

ee->eval(es->indir, &Le, &spdf, &dpdf, 0);

// Compute weight of this strategy

double thisw = WEIGHT(es->pdf); // pdf of the eye path

// Compute sum of weights of all equivalent strategies. This is

// different from the other cases, because there is no connecting

// path segment here (for the same reason, there’s no

// additional visibility test for this strategy.)

double sumw = thisw;

int i=e, j=0;

double lpdf = ee->pdf; // pdf of the same position using emission sampling

while (i>=0 && j<PathNode::max_light_path_depth) {

double lxpdf = 0.;

if (j==0) {

lxpdf = spdf * dpdf * erhpdf[e];

} else {

double spdf = j<PathNode::min_light_path_depth

? 1.

: erspdf[i];

lxpdf = spdf * erdpdf[i] * erhpdf[i];

}

i--; j++;

double w = (i>=0) ? eyepath[i]->pdf * lpdf : lpdf;

if (i<=0) w *= nrparticles;

sumw += WEIGHT(w);

lpdf *= lxpdf;

}

return Le * es->value * (thisw / (es->pdf * sumw));

}

// e>0, l==0: join eye path vertex e>0 with light source node

// = standard path tracing

const Spectrum BiDirTracer::join_eyepath_with_light(const int e)

{

if (eyescatnodes[e] == &eyebkgnode ||

!visible(eyescatnodes[e], lightnode))

return Spectrum(0.);

class SurfaceNode *en = &eyesurfnodes[e];

class EmissionNode *ln = lightnode;

float ecos, lcos, espdf, lspdf, edpdf, ldpdf, dist;

class Spectrum efr, Le;

const Vec3 ltoedir = ln->dirto(en, &dist);

en->eval(-ltoedir, &efr, &espdf, &edpdf, &ecos);

ln->eval(ltoedir, &Le, &lspdf, &ldpdf, &lcos);

double invdist2 = 1. / (dist * dist);

float etolpdf = espdf * edpdf * lcos * invdist2;

float ltoepdf = lspdf * ldpdf * ecos * invdist2;

double G = ecos * lcos * invdist2;

�

�

�

�

�

�

�

�

328 A. A Class Library for Global Illumination

float w = weight(e, 0, ltoedir, ltoepdf, etolpdf);

return en->value * efr * Le * (G / (en->pdf * ln->pdf) * w);

}

// e==-1, l>0: corresponds with a light path node arriving on the

// surface of the camera. Since we are using a pinhole camera,

// this can not happen.

const Spectrum BiDirTracer::lightpath_on_camera(const int l)

{

return Spectrum(0.);

}

// e==0, l>0: Join light path vertex with eye node

// = standard light particle tracing

// Score contributes to different pixel than the one through

// which the eye path was traced. Therefore we add the score

// directly to the screen buffer and we return a null spectrum here.

const Spectrum BiDirTracer::join_lightpath_with_eye(const int l)

{

if (lightscatnodes[l] == &lightbkgnode)

return Spectrum(0.);

// find pixel through which the light path node is visible.

class SurfaceNode* ln = &lightsurfnodes[l];

double dist;

class Vec3 ltoedir = ln->position.dirto(scrn->eye, &dist);

float i, j;

if (!scrn->getPixelCoord(-ltoedir, &i, &j) ||

!visible(&eyenode, ln))

return Spectrum(0.);

class EyeNode e(i, j); // EyeNode for pixel

class Spectrum We; // pixel measurement value

float espdf, edpdf, ecos, lcos; // path survival/dir.sel. pdf and cos.

e.eval(-ltoedir, &We, &espdf, &edpdf, &ecos);

class Spectrum score = ln->scatter(ltoedir, &lcos);

float invdist2 = 1./(dist*dist); // inverse square distance

score *= We * (ecos * lcos * invdist2);

float etolpdf = espdf * edpdf * lcos * invdist2;

float ltoepdf = 0.; // no chance of hitting eye point (pinhole cam)

float w = weight(0, l, ltoedir, ltoepdf, etolpdf);

scrn->addPixel(i, j, score * (w / nrparticles));

return Spectrum(0.);

}

// e>0, l>0: join eye and light sub-path at intermediate nodes

const Spectrum BiDirTracer::join_intermediate(const int e, const int l)

{

if (eyescatnodes[e] == &eyebkgnode ||

lightscatnodes[l] == &lightbkgnode ||

�

�

�

�

�

�

�

�

A.4. Example Code Fragments 329

!visible(eyescatnodes[e], lightscatnodes[l]))

return Spectrum(0.);

class SurfaceNode *en = &eyesurfnodes[e]; // eye sub-path end

class SurfaceNode *ln = &lightsurfnodes[l]; // light sub-path end

double dist; // dist. and dir. between en/ln

class Vec3 ltoedir = (en->position - ln->position).normalized(&dist);

float ecos, lcos, espdf, lspdf, edpdf, ldpdf;// cos., surv,pdf, dir.sel.pdf

class Spectrum efr, lfr; // BSDF at eye/light node

en->eval(en->indir, -ltoedir, &efr, &espdf, &edpdf, &ecos);

ln->eval(ln->indir, ltoedir, &lfr, &lspdf, &ldpdf, &lcos);

float invdist2 = 1. / (dist * dist); // inverse square distance

float G = ecos * lcos * invdist2; // geometric factor

float etolpdf = espdf * edpdf * lcos * invdist2; // transition pdf en->ln

float ltoepdf = lspdf * ldpdf * ecos * invdist2; // transition pdf ln->en

float w = weight(e, l, ltoedir, ltoepdf, etolpdf);

return en->value * efr * lfr * ln->value * (G / (en->pdf * ln->pdf) * w);

}

// joins the eye sub-path vertex of depth e with light sub-path

// vertex of depth l. e or l equal to -1 means empty sub-path.

const Spectrum BiDirTracer::joinat(const int e, const int l)

{

class Spectrum score(0.);

if (e==0 && l==0)

score = join_light_eye();

else if (e<=0 && l<=0) // eye point on light or light node on camera

score = Spectrum(0.); // or both sub-paths empty: can’t happen

else if (e==-1)

score = lightpath_on_camera(l);

else if (l==-1)

score = eyepath_on_light(e);

else if (e==0)

score = join_lightpath_with_eye(l);

else if (l==0)

score = join_eyepath_with_light(e);

else

score = join_intermediate(e, l);

return score;

}

const Spectrum BiDirTracer::join(void)

{

// pre-calculate probabilities of sampling the eye and light path

// in reverse direction.

compute_reverse_eyepath_probs();

compute_reverse_lightpath_probs();

class Spectrum score(0.);

// t is total combined path length: length of the eye sub-path +

�

�

�

�

�

�

�

�

330 A. A Class Library for Global Illumination

// length of the light sub-path + 1 for the connecting segment.

// A length of ’-1’ indicates an empty path (no nodes)

for (int t=1; t<=eyepathlen+lightpathlen+1

&& t<=max_combined_path_length; t++) {

for (int e=-1; e<=eyepathlen; e++) { // e is eye sub-path length

int l=t-e-1; // l is light sub-path length

if (l>=-1 && l<=lightpathlen)

score += joinat(e, l);

}

}

return score;

}

const Spectrum BiDirTracer::tracepixel(const int i, const int j)

{

// trace eye path

eyenode = EyeNode(i,j);

eyepathlen = trace_eye_path(&eyenode);

// sample light sources and trace light path

lightnode = 0;

while (!lightnode) lightnode = lightsampler->sample(&senode, &benode);

lightpathlen = trace_light_path(lightnode);

// join eye and light paths

return join();

}

// pre-calculates constants and allocates memory for arrays needed

// for rendering a frame.

void BiDirTracer::setup(int orgi, int orgj, int di, int dj)

{

PathNode::min_light_path_depth = min_light_path_length;

PathNode::max_light_path_depth = max_light_path_length;

PathNode::min_eye_path_depth = min_eye_path_length;

PathNode::max_eye_path_depth = max_eye_path_length;

eyesurfnodes = new class SurfaceNode [PathNode::max_eye_path_depth+1];

lightsurfnodes = new class SurfaceNode [PathNode::max_light_path_depth+1];

eyescatnodes = new class ScatteringNode* [PathNode::max_eye_path_depth+1];

lightscatnodes = new class ScatteringNode* [PathNode::max_light_path_depth+1];

lightpath = new class PathNode* [PathNode::max_light_path_depth+1];

eyepath = new class PathNode* [PathNode::max_eye_path_depth+1];

erdpdf = new float [PathNode::max_eye_path_depth+1];

lrdpdf = new float [PathNode::max_light_path_depth+1];

erspdf = new float [PathNode::max_eye_path_depth+1];

lrspdf = new float [PathNode::max_light_path_depth+1];

erhpdf = new float [PathNode::max_eye_path_depth+1];

lrhpdf = new float [PathNode::max_light_path_depth+1];

int npixx = scrn->width;

�

�

�

�

�

�

�

�

A.4. Example Code Fragments 331

int npixy = scrn->height;

nrparticles = npixx * npixy;

}

// undoes the effects of setup().

void BiDirTracer::cleanup(void)

{

delete [] eyesurfnodes;

delete [] lightsurfnodes;

delete [] eyescatnodes;

delete [] lightscatnodes;

delete [] lightpath;

delete [] eyepath;

delete [] erdpdf;

delete [] lrdpdf;

delete [] erspdf;

delete [] lrspdf;

delete [] erhpdf;

delete [] lrhpdf;

}

void BiDirTracer::trace(void)

{

setup();

for (int j=0; j<scrn->height; j++) {

for (int i=0; i<scrn->width; i++) {

scrn->addPixel(i, j, tracepixel(i, j));

}

}

cleanup();

}

�

�

�

�

�

�

�

�

332 A. A Class Library for Global Illumination

Figure A.2. Multiple importance light source sampling results obtained with the
implementation shown in this section: The spheres on top are diffuse. They
become more and more mirror-like towards the bottom. The left column of
pictures was generated using BSDF sampling only. BSDF sampling works well
for specular-like surfaces. The middle column shows results obtained with light
sampling only. Light sampling is at its best for diffuse surfaces. The right col-
umn shows that combining BSDF sampling and light sampling using multiple
importance sampling [201] yields better results overall. (See Plate XVII.)

�

�

�

�

�

�

�

�

B

Hemispherical Coordinates

B.1 Hemispherical Coordinates

In photorealistic rendering, one often wants to work with functions defined
over a hemisphere (one-half of a sphere), centered around a surface point.
A hemisphere consists of all the directions in which one can look when
standing at the surface point: one can look from the horizon all the way up
to the zenith and all around. A hemisphere is therefore a two-dimensional
space, in which each point on the hemisphere defines a direction. Spherical
coordinates are a useful way of parameterizing the hemisphere.

In the spherical coordinate system, each direction is characterized by
two angles (Figure B.1). The first angle, ϕ, represents the azimuth and
is measured with regard to an arbitrary axis located in the tangent plane
at x; the second angle, θ, gives the elevation, measured from the normal
vector Nx at surface point x. Writing directions using capital Greek letters,
we can express direction Θ as the pair (ϕ, θ).

Figure B.1. Hemispherical coordinates.

333

�

�

�

�

�

�

�

�

334 B. Hemispherical Coordinates

The values for the angles ϕ and θ belong to the intervals

ϕ ∈ [0, 2π],
θ ∈ [0, π/2].

So far, we have defined directions (or points) on the hemisphere. If
we want to specify every three-dimensional point in space (not only points
on the hemisphere), a distance r along the direction Θ is added. Any
three-dimensional point is then defined by three coordinates (ϕ, θ, r). The
transformation between Cartesian coordinates and spherical coordinates
(place x at the origin, Nx is parallel to the Z-axis, and at the X-axis the
angle ϕ = 0) is straightforward using some elementary trigonometry:

x = r cosϕ sin θ,
y = r sinϕ sin θ,
z = r cos θ,

or also

r =
√
x2 + y2 + z2,

tanϕ = y/x,

tan θ =

√
x2 + y2

z
.

In most rendering algorithms, usually only hemispherical coordinates
without the distance parameter r are used. This is because we are inter-
ested in integrating functions that are defined over directions incident at a
given surface point rather than in expressing functions in three-dimensional
space in full spherical coordinates.

B.2 Solid Angle

In order to integrate functions over the hemisphere, a measure on the hemi-
sphere is needed. That measure is the solid angle.

A finite solid angle Ω subtended by an area on the hemisphere is de-
fined as the total area divided by the squared radius of the hemisphere
(Figure B.2):

Ω =
A

r2
.

�

�

�

�

�

�

�

�

B.2. Solid Angle 335

Figure B.2. Solid angle.

If the radius r = 1, the solid angle is simply the area on the hemisphere.
Since the area of the hemisphere equals 2πr2, the solid angle covered by the
entire hemisphere equals 2π; the solid angle covered by a complete sphere
equals 4π. Solid angles are dimensionless but are expressed in steradians
(sr). Note that the solid angle is not dependent on the shape of surface A,
but is only dependent on the total area.

To compute the solid angle subtended by an arbitrary surface or object
in space, we first project the surface or object on the hemisphere and
compute the solid angle of the projection (Figure B.3). Note that two
objects different in shape can still subtend the same solid angle.

Figure B.3. Solid angle subtended by an arbitrary object.

�

�

�

�

�

�

�

�

336 B. Hemispherical Coordinates

Figure B.4. Solid angle for small surfaces.

For small surfaces, the following approximation can be used to compute
the solid angle subtended by a surface or object (Figure B.4):

Ω =
A cosα
d2

.

A cosα is an approximation for the projected surface area.

B.3 Integrating over the Hemisphere

Just as we can define differential surface areas or differential volumes to
integrate functions in Cartesian XY or XY Z space, we can define differ-
ential solid angles to integrate functions in hemispherical space. Compared
to Cartesian spaces, there is a difference: the “area” on the hemisphere
“swept” out by a differential dΘ is larger near the horizon than near the
pole. The differential solid angle takes this into account by using a sin(θ)
factor (this factor can easily be deduced from the Jacobian when applying
a coordinate transform from Cartesian to hemispherical coordinates).

A differential solid angle, centered around direction Θ, is then written as

dωΘ = sin θdθdϕ.

Integrating a function f(Θ) = f(ϕ, θ) over the hemisphere is then ex-
pressed as ∫

Ω

f(Θ)dωΘ =
∫ 2π

0

∫ π/2

0

f(ϕ, θ) sin θdθdϕ.

�

�

�

�

�

�

�

�

B.4. Hemisphere-Area Transformation 337

Example 1 (Computing the area of the hemisphere.) Computing the area of
the hemisphere can be achieved by simply integrating the differential solid
angle over the entire integration domain:∫

Ω

dωΘ =
∫ 2π

0

dϕ

∫ π/2

0

sin θdθ

=
∫ 2π

0

dϕ[− cos θ]π/2
0

=
∫ 2π

0

1 · dϕ

= 2π.

Example 2 (Integrating a cosine lobe.) Integrating a cosine lobe over the
hemisphere is useful when working with certain BRDF models that use
cosine lobes as their fundamental building blocks (e.g., the Phong or Lafor-
tune models). A cosine lobe, centered around Nx, to the power N , can be
integrated in a straightforward manner:∫

Ω

cosN (Θ, Nx)dωΘ =
∫ 2π

0

dϕ

∫ π/2

0

cosN θ sin θdθ

=
∫ 2π

0

dϕ[−cosN+1 θ

N + 1
]π/2
0

=
∫ 2π

0

1
N + 1

· dϕ

=
2π

N + 1
.

B.4 Hemisphere-Area Transformation

In rendering algorithms, it is sometimes more convenient to express an
integral over the hemisphere as an integral over visible surfaces seen from
x. For example, if we want to compute all incident light at a point due to
a distant light source, we can integrate over all directions within the solid
angle subtended by the light source, or we can integrate over the actual
area of the light source. To transform a hemispherical integral into an area
integral, the relationship between a differential surface and a differential
solid angle must be used:

dωΘ =
cos θydAy

r2xy

.

�

�

�

�

�

�

�

�

338 B. Hemispherical Coordinates

dAyNy

rxy

Figure B.5. Area to solid angle conversion.

The differential solid angle dωΘ around direction Θ is transformed to
a differential surface dAy at surface point y (Figure B.5). Therefore, any
integral over the hemisphere can also be written as an integral over each
visible differential surface dAy in each direction Θ:∫

Ω

f(Θ)dωΘ =
∫

A

f(y)
cos θy

r2xy

dAy.

�

�

�

�

�

�

�

�

C

Theoretical Analysis of
Stochastic Relaxation Radiosity

In this appendix, we show how the variance of the incremental shooting
iterative algorithm of Section 6.3 can be analyzed, and demonstrate how a
number of practical results can be derived from it. The analysis of the other
algorithms is very similar and is a recommended exercise for the interested
reader.

We start with the derivation of the variance of the incremental shooting
iterative algorithm. The first thing to point out is that the resulting radiosi-
ties are obtained as the sum of increments computed in several iteration
steps. We first derive the variance of a single iteration and next show how
the variance on the converged results is composed from the single-iteration
variances.

Variance of a single incremental shooting iteration. The variance of a single
incremental shooting iteration can be derived by straightforward applica-
tion of the definition of Monte Carlo summation variance:

S =
n∑

i=1

ai sum to be computed (n terms),

S ≈ ais

pis

single-sample estimate,

V [Ŝ] =
n∑

i=1

a2
i

pi
− S2 single-sample variance.

For N samples, the variance is V [Ŝ]/N .
The sum to be estimated here is given in Equation 6.11. The probabil-

ities p for picking terms from the sum are in Equation 6.12. The resulting
single-sample variance of the kth incremental shooting iteration is

V [∆̂P
(k+1)

i] = ρi∆P
(k)
T ∆P (k+1)

i −
(
∆P (k+1)

i

)2

. (C.1)

339

�

�

�

�

�

�

�

�

340 C. Theoretical Analysis of Stochastic Relaxation Radiosity

The latter term is usually negligible compared to the former (∆P (k+1)
i �

∆P (k)
T).

Variance of a sequence of incremental shooting iterations until convergence.
The solution Pi is eventually obtained as a sum of increments ∆P (k)

i com-
puted in each iteration step. The single-sample variance on each increment
∆P (k)

i is given above in Equation C.1. Assuming that subsequent itera-
tions are independent (which is to good approximation true in practice),
and that Nk independent samples are used in the kth iteration, the variance
on the result of K iterations will be

V [P̂i] =
K∑

k=1

1
Nk

V [∆P̂ (k)
i].

Optimal allocation of N =
∑K

k=1Nk samples over the individual iter-
ations is obtained if 1/Nk is inversely proportional to V [∆P̂ (k)

i] (Section
3.6.5). For all patches i, V [∆P̂ (k)

i] (Equation C.1) is approximately pro-
portional to P (k−1)

T , suggesting that we choose the number of samples in
the kth iteration proportional to the total unshot power ∆P (k−1)

T to be
propagated in that iteration:

Nk ≈ N
∆P (k−1)

T

PT
.

When Nk drops below a small threshold, convergence has been reached.
Combining all above results, it can be shown that the variance on the
radiosity Bi after convergence is to good approximation given by

V [B̂i] ≈
PT

N

ρi(Bi −Be
i)

Ai
. (C.2)

Time complexity. We now turn to the question of how the number of sam-
ples N needs to be varied as a function of the number of patches n in order
to compute all radiosities Bi to prescribed accuracy ε with 99.7% confi-
dence. According to the central limit theorem (Section 3.4.4), the number
of samples N shall be chosen so that

3

√
V [B̂i]
N

≤ ε

for all i. Filling in Equation C.2 then yields

N ≥ 9PT

ε2
·max

i

ρi(Bi −Be
i)

Ai
. (C.3)

�

�

�

�

�

�

�

�

341

This formula allows us to examine how the number of rays to be shot
must be increased as a scene to be rendered is “made larger.” There are,
however, many possible scenarios of how a scene can be “made larger.” For
instance, new objects can be added, or one can switch to a finer tessellation
of the surfaces in the scene without adding new objects. If all patches in
a scene are split in two, the required number of rays in order to obtain a
given accuracy will need to be doubled, as dividing the patches (asymptot-
ically) has no effect on reflectivities and radiosities. The cost of shooting
a ray is often assumed to be logarithmic in the number of polygons. Al-
though the truth is much more complicated, it is often stated that Monte
Carlo radiosity algorithms have log-linear complexity. In any case, their
complexity is much lower than quadratic. This result is not only valid for
incremental stochastic shooting of power but also for other Monte Carlo
radiosity algorithms based on shooting [169, 162, 15].

A heuristic for choosing the number of samples N. We have demonstrated
that the number of samples in each incremental shooting iteration shall
be chosen proportional to the amount of power to be distributed in that
iteration. In other words, each ray to be shot shall propagate the same
“quantum” of light energy. We have not yet answered the question of how
large the quanta should be, however, or equivalently, how many rays N
to choose for a complete sequence of incremental shooting iterations to
convergence. That’s the point of this paragraph.

Equation C.3 allows us to derive the answer. Suppose one wants to
choose N so that with 99.7% confidence, the error ε on any patch i will be
less than the average radiosity Bav = PT/AT in the scene. The total power
PT in Equation C.3 can then be replaced by AT ε. Typically, Be

i = 0 for
most patches in the scene. Approximating Bi−Be

i by the average radiosity,
and thus by ε, then yields

N ≈ 9 ·max
i

ρiAT

Ai
. (C.4)

In practice, it makes a lot of sense to skip, for instance, the 10% of
patches in a scene with the largest ratio ρi/Ai. Note that a rough heuristic
for N suffices: a higher accuracy can always be obtained by averaging the
result of several independent runs of the algorithm.

�

�

�

�

�

�

�

�

Bibliography

[1] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie, and Hen-
rik Wann Jensen. “Structured Importance Sampling of Environment
Maps.” ACM Transactions on Graphics 22:3 (2003), 605–612.

[2] L. Alonso, F. Cuny, S. Petit Jean, J.-C. Paul, S. Lazard, and E. Wies.
“The Virtual Mesh: A Geometric Abstraction for Efficiently Comput-
ing Radiosity.” ACM Transactions on Graphics 3:20 (2001), 169–201.

[3] Thomas Annen, Jan Kautz, Frdo Durand, and Hans-Peter Seidel.
“Spherical Harmonic Gradients for Mid-Range Illumination.” In
Rendering Techniques 2004 Eurographics Symposium on Rendering,
pp. 331–336, 2004.

[4] A. Appel. “Some Techniques for Shading Machine Renderings of
Solids.” In AFIPS 1968 Spring Joint Computer Conference, 32, 32,
1968.

[5] J. Arvo. “Backward Ray Tracing.” In SIGGRAPH 1986 Developments
in Ray Tracing course notes, 1986.

[6] J. Arvo. “Stratified Sampling of Spherical Triangles.” In Computer
Graphics Proceedings, Annual Conference Series, 1995 (ACM SIG-
GRAPH ’95 Proceedings), pp. 437–438, 1995.

[7] Kavita Bala, Julie Dorsey, and Seth Teller. “Interactive Ray-Traced
Scene Editing Using Ray Segment Trees.” In Tenth Eurographics
Workshop on Rendering, pp. 39–52, 1999.

[8] Kavita Bala, Julie Dorsey, and Seth Teller. “Radiance Interpolants
for Accelerated Bounded-Error Ray Tracing.” ACM Transactions on
Graphics 18:3 (1999), 213–256.

343

�

�

�

�

�

�

�

�

344 Bibliography

[9] Kavita Bala, Bruce Walter, and Donald P. Greenberg. “Combin-
ing Edges and Points for High-Quality Interactive Rendering.” ACM
Transactions on Graphics 23:3 (SIGGRAPH 2003), 631–640.

[10] Kavita Bala. “Radiance Interpolants for Interactive Scene Editing and
Ray Tracing.” Ph.D. thesis, Massachusetts Institute of Technology,
1999.

[11] Ph. Bekaert and H.-P. Seidel. “A Theoretical Comparison of Monte
Carlo Radiosity Algorithms.” In Proc. 6th Fall Workshop on Vi-
sion, Modeling and Visualisation 2001 (VMV01), Stuttgart, Germany,
pp. 257–264, 2001.

[12] Ph. Bekaert, L. Neumann, A. Neumann, M. Sbert, and Y. D. Willems.
“Hierarchical Monte Carlo Radiosity.” In Proceedings of the 9th. Eu-
rographics Workshop on Rendering, Vienna, Austria, 1998.

[13] Ph. Bekaert, M. Sbert, and Y. Willems. “The Computation of Higher-
Order Radiosity Approximations with a Stochastic Jacobi Iterative
Method.” In 16th Spring Conference on Computer Graphics, Come-
nius University, Bratislava, Slovakia, 2000. 212–221.

[14] Ph. Bekaert, M. Sbert, and Y. Willems. “Weighted Importance Sam-
pling Techniques for Monte Carlo Radiosity.” In Rendering Techniques
’2000 (Proceedings of the 11th Eurographics Workshop on Rendering,
Brno, Czech Rep.), p. 35–46. Springer Computer Science, 2000.

[15] Ph. Bekaert. “Hierarchical and Stochastic Algorithms for Radiosity.”
Ph.D. thesis, K. U. Leuven, Department of Computer Science, 1999.

[16] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen J. Scher Za-
gier. “Frameless Rendering: Double Buffering Considered Harmful.”
Computer Graphics 28: Annual Conference Series (1994), 175–176.

[17] Ph. Blasi, B. Le Saëc, and C. Schlick. “A Rendering Algorithm for
Discrete Volume Density Objects.” Computer Graphics Forum 12:3
(1993), 201–210.

[18] K. Bouatouch, S. N. Pattanaik, and E. Zeghers. “Computation of
Higher Order Illumination with a Non-Deterministic Approach.” Com-
puter Graphics Forum 15:3 (1996), 327–338.

[19] P. Bratley, B. L. Fox, and H. Niederreiter. “Implementation and Tests
of Low-Discrepancy Sequences.” ACM Transactions on Modelling and
Computer Simulation 2:3 (1992), 195–213.

�

�

�

�

�

�

�

�

Bibliography 345

[20] M. Bunnell. “Dynamic Ambient Occlusion and Indirect Lighting.” In
GPU Gems 2: Programming Techniques for High-Performance Graph-
ics and General-Purpose Computation, edited by M. Pharr, pp. 223–
233. Reading, MA: Addison-Wesley, 2005.

[21] David Burke, Abhijeet Ghosh, and Wolfgang Heidrich. “Bidirectional
Importance Sampling for Direct Illumination.” In Rendering Tech-
niques 2005: 16th Eurographics Workshop on Rendering, pp. 147–156,
2005.

[22] S. Chandrasekhar. Radiative Transfer. Oxford: Oxford University
Press, 1950.

[23] S. Chattopadhyay and A. Fujimoto. “Bi-directional Ray Tracing.”
In Computer Graphics 1987 (Proceedings of CG International 1987),
edited by Tosiyasu Kunii, pp. 335–43. Tokyo: Springer-Verlag, 1987.

[24] S. E. Chen, H. E. Rushmeier, G. Miller, and D. Turner. “A Progressive
Multi-Pass Method for Global Illumination.” In Computer Graphics
(SIGGRAPH ’91 Proceedings), pp. 165–174, 1991.

[25] P. H. Christensen, D. H. Salesin, and T. D. DeRose. “A Continuous
Adjoint Formulation for Radiance Transport.” In Fourth Eurographics
Workshop on Rendering, pp. 95–104, 1993.

[26] P. H. Christensen, E. J. Stollnitz, and D. H. Salesin. “Global Illumina-
tion of Glossy Environments Using Wavelets and Importance.” ACM
Transactions on Graphics 15:1 (1996), 37–71.

[27] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-Möller, and Hen-
rik Wann Jensen. “Wavelet Importance Sampling: Efficiently Evaluat-
ing Products of Complex Functions.” ACM Transactions on Graphics
24:3 (2005), 1166–1175.

[28] M. F. Cohen and D. P. Greenberg. “The Hemi-Cube: A Radiosity So-
lution for Complex Environments.” Computer Graphics (SIGGRAPH
’85 Proceedings) 19:3 (1985), 31–40.

[29] M. F. Cohen and J. R. Wallace. Radiosity and Realistic Image Syn-
thesis. Boston, MA: Academic Press Professional, 1993.

[30] M. F. Cohen, D. P. Greenberg, D. S. Immel, and P. J. Brock. “An
Efficient Radiosity Approach for Realistic Image Synthesis.” IEEE
Computer Graphics and Applications 6:3 (1986), 26–35.

�

�

�

�

�

�

�

�

346 Bibliography

[31] M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg. “A Pro-
gressive Refinement Approach to Fast Radiosity Image Generation.”
In Computer Graphics (SIGGRAPH ’88 Proceedings), pp. 75–84, 1988.

[32] S. Collins. “Adaptive Splatting for Specular to Diffuse Light Trans-
port.” In Fifth Eurographics Workshop on Rendering, pp. 119–135,
1994.

[33] R. Cook and K. Torrance. “A Reflectance Model for Computer Graph-
ics.” ACM Transactions on Graphics 1:1 (1982), 7–24.

[34] R. L. Cook, T. Porter, and L. Carpenter. “Distributed Ray Tracing.”
Computer Graphics 18:3 (1984), 137–145.

[35] S. Daly. “Engineering Observations from Spatio-Velocity and Spa-
tiotemporal Visual Models.” IST/SPIE Conference on Human Vision
and Electronic Imaging III, SPIE 3299 (1998), 180–191.

[36] L. M. Delves and J. L. Mohamed. Computational Methods for Integral
Equations. Cambridge, UK: Cambridge University Press, 1985.

[37] K. Devlin, A. Chalmers, A. Wilkie, and W. Purgathofer. “Tone Repro-
duction and Physically Based Spectral Rendering.” In Eurographics
2002: State of the Art Reports, pp. 101–123. Aire-la-Ville, Switzerland:
Eurographics Association, 2002.

[38] Kirill Dmitriev, Stefan Brabec, Karol Myszkowski, and Hans-Peter
Seidel. “Interactive Global Illumination using Selective Photon Trac-
ing.” In Thirteenth Eurographics Workshop on Rendering, 2002.

[39] George Drettakis and Francois X. Sillion. “Interactive Update of
Global Illumination Using a Line-Space Hierarchy.” In Computer
Graphics (SIGGRAPH 1997 Proceedings), pp. 57–64, 1997.

[40] Reynald Dumont, Fabio Pellacini, and James A. Ferwerda.
“Perceptually-Driven Decision Theory for Interactive Realistic Ren-
dering.” ACM Transactions on Graphics 22:2 (2003), 152–181.

[41] Ph. Dutré and Y. D. Willems. “Importance-Driven Monte Carlo Light
Tracing.” In Fifth Eurographics Workshop on Rendering, pp. 185–194.
Darmstadt, Germany, 1994.

[42] Ph. Dutré and Y. D. Willems. “Potential-Driven Monte Carlo Particle
Tracing for Diffuse Environments with Adaptive Probability Density
Functions.” In Eurographics Rendering Workshop 1995, 1995.

�

�

�

�

�

�

�

�

Bibliography 347

[43] S. M. Ermakow. Die Monte-Carlo-Methode und verwandte Fragen.
Berlin: V.E.B. Deutscher Verlag der Wissenschaften, 1975.

[44] M. Feda. “A Monte Carlo Approach for Galerkin Radiosity.” The
Visual Computer 12:8 (1996), 390–405.

[45] S. Fernandez, K. Bala, and D. Greenberg. “Local Illumination Envi-
ronments for Direct Lighting Acceleration.” Eurographics Workshop
on Rendering 2002, pp. 7–14, 2002.

[46] Randima Fernando. GPU Gems: Programming Techniques, Tips, and
Tricks for Real-Time Graphics. Reading, MA: Addison-Wesley Pro-
fessional, 2004.

[47] J. Ferwerda, S. Pattanaik, P. Shirley, and D. Greenberg. “A model of
Visual Adaptation for Realistic Image Synthesis.” In SIGGRAPH 96
Conference Proceedings, pp. 249–258, 1996.

[48] James A. Ferwerda, Stephen H. Westin, Randall C. Smith, and
Richard Pawlicki. “Effects of Rendering on Shape Perception in Au-
tomobile Design.” In APGV 2004, pp. 107–114, 2004.

[49] R. P. Feynman. QED. Princeton: Princeton University Press, 1988.

[50] G. E. Forsythe and R. A. Leibler. “Matrix Inversion by a Monte Carlo
Method.” Math. Tabl. Aids. Comput. 4 (1950), 127 – 129.

[51] C. Piatko G. Ward, H. Rushmeier. “A Visibility Matching Tone Re-
production Operator for High Dynamic Range Scenes.” IEEE Trans-
actions on Visualization and Computer Graphics 3:4 (1997), 291–306.

[52] A. S. Glassner, editor. An Introduction to Ray Tracing. London:
Academic Press, 1989.

[53] A. S. Glassner. “A Model for Fluorescence and Phosphorescence.” In
Proceedings of the Fifth Eurographics Workshop on Rendering, pp. 57–
68, 1994.

[54] A. S. Glassner. Principles of Digital Image Synthesis. San Francisco,
CA: Morgan Kaufmann Publishers, Inc., 1995.

[55] J. S. Gondek, G. W. Meyer, and J. G. Newman. “Wavelength De-
pendent Reflectance Functions.” In Proceedings of SIGGRAPH’94,
pp. 213–220, 1994.

�

�

�

�

�

�

�

�

348 Bibliography

[56] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. “Mod-
eling the Interaction of Light Between Diffuse Surfaces.” In SIG-
GRAPH ’84 Conference Proceedings, pp. 213–222, 1984.

[57] Steven Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael Co-
hen. “The Lumigraph.” In Computer Graphics (SIGGRAPH 1996
Proceedings), pp. 43–54, 1996.

[58] H. Gouraud. “Continuous Shading of Curved Surfaces.” IEEE Trans-
actions on Computers 20:6 (1971), 623–629.

[59] D. Greenberg, K. Torrance, P. Shirley, J. Arvo, J. Ferwerda, S. Pat-
tanaik, E. Lafortune, B. Walter, S. Foo, and B. Trumbore. “A Frame-
work for Realistic Image Synthesis.” In Proceedings of ACM SIG-
GRAPH, pp. 44–53, 1997.

[60] E. A. Haines and D. P. Greenberg. “The Light Buffer: a Shadow
Testing Accelerator.” IEEE Computer Graphics & Applications 6:9
(1986), 6–16.

[61] J. H. Halton. “A Restrospective and Prospective Survey of the Monte
Carlo Method.” SIAM Review 12:1 (1970), 1 – 63.

[62] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods.
London: Methuen/Chapman and Hall, 1964.

[63] P. Hanrahan and W. Krueger. “Reflection from Layered Surfaces Due
to Subsurface Scattering.” In Proceedings of SIGGRAPH 93, pp. 165–
174, 1993.

[64] P. Hanrahan, D. Salzman, and L. Aupperle. “A Rapid Hierarchical
Radiosity Algorithm.” In Computer Graphics (SIGGRAPH ’91 Pro-
ceedings), pp. 197–206, 1991.

[65] D. Hart, Ph. Dutré, and D. P. Greenberg. “Direct Illumination With
Lazy Visibility Evaluation.” In Proceedings of SIGGRAPH 99, Com-
puter Graphics Proceedings, Annual Conference Series, pp. 147–154,
1999.

[66] Milos Hasan, Fabio Pellacini, and Kavita Bala. “Direct-to-Indirect
Transfer for Cinematic Relighting.” To appear in SIGGRAPH: ACM
Trans. Graph., 2006.

[67] X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg. “A
Comprehensive Physical Model for Light Reflection.” In Computer
Graphics (SIGGRAPH 1991 Proceedings), pp. 175–86, 1991.

�

�

�

�

�

�

�

�

Bibliography 349

[68] E. Hecht and A. Zajac. Optics. Reading, MA: Addison-Wesley Pub-
lishing Company, 1979.

[69] P. S. Heckbert and J. Winget. “Finite Element Methods for Global
Illumination.” Technical Report UCB/CSD 91/643, Computer Science
Division (EECS), University of California, Berkeley, California, USA,
1991.

[70] P. S. Heckbert. “Adaptive Radiosity Textures for Bidirectional Ray
Tracing.” Computer Graphics (SIGGRAPH ’90 Proceedings) 24:4
(1990), 145–154.

[71] P. S. Heckbert. “Discontinuity Meshing for Radiosity.” Third Euro-
graphics Workshop on Rendering, pp. 203–226.

[72] Wolfgang Heidrich and Hans-Peter Seidel. “Realistic, Hardware-
Accelerated Shading and Lighting.” In Proceedings of SIGGRAPH 99,
Computer Graphics Proceedings, Annual Conference Series, pp. 171–
178, 1999.

[73] D. Hockney. Secret Knowledge. London: Thames and Hudson, 2001.

[74] Piti Irawan, James A. Ferwerda, and Stephen R. Marschner. “Percep-
tually Based Tone Mapping of High Dynamic Range Image Streams.”
In 16th Eurographics Workshop on Rendering, pp. 231–242, 2005.

[75] A. Ishimaru. Wave Propagation and Scattering in Random Media, Vol-
ume 1: Single Scattering and Transport Theory. New York: Academic
Press, 1978.

[76] H. W. Jensen and J. Buhler. “A Rapid Hierarchical Rendering Tech-
nique for Translucent Materials.” ACM Transactions on Graphics 21:3
(2002), 576–581.

[77] H. W. Jensen and N. J. Christensen. “Photon Maps in Bidirectional
Monte Carlo Ray Tracing of Complex Objects.” Computers & Graph-
ics 19:2 (1995), 215–224.

[78] H. W. Jensen and P. H. Christensen. “Efficient Simulation of Light
Transport in Scenes with Participating Media using Photon Maps.”
In Proceedings of SIGGRAPH’98, pp. 311–320, 1998.

[79] H. W. Jensen, J. Arvo, M. Fajardo, P. Hanrahan, D. Mitchell,
M. Pharr, and P. Shirley. “State of the Art in Monte Carlo Ray
Tracing for Realistic Image Synthesis.” In SIGGRAPH 2001 Course
Notes (Course 29), 2001.

�

�

�

�

�

�

�

�

350 Bibliography

[80] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan. “A Prac-
tical Model for Subsurface Light Transport.” In Proceedings of ACM
SIGGRAPH 2001, Computer Graphics Proceedings, Annual Confer-
ence Series, pp. 511–518, 2001.

[81] H. W. Jensen. “Global Illumination using Photon Maps.” In Euro-
graphics Rendering Workshop 1996, pp. 21–30. Eurographics, 1996.

[82] H. W. Jensen. “Rendering Caustics on Non-Lambertian Surfaces.” In
Proceedings of Graphics Interface 1992, pp. 116–121. Canadian Infor-
mation Processing Society, 1996.

[83] H. W. Jensen. Realistic Image Synthesis Using Photon Mapping.
Wellesley, MA: A K Peters, 2001.

[84] T. Tawara K. Myszkowski, P. Rokita. “Preceptually-Informed Accel-
rated Rendering of High Quality Walkthrough Sequences.” Proceedings
of the 10th Eurographics Workshop on Rendering, pp. 5–18.

[85] J. T. Kajiya. “The Rendering Equation.” Computer Graphics (SIG-
GRAPH ’86 Proceedings) 20:4 (1986), 143–150.

[86] M. H. Kalos and P. Whitlock. The Monte Carlo method. Volume 1:
Basics. J. Wiley and Sons, 1986.

[87] Jan Kautz, Peter-Pike Sloan, and John Snyder. “Fast, Arbitrary
BRDF Shading for Low-Frequency Lighting using Spherical Harmon-
ics.” In Eurographgics Rendering Workshop ’02, pp. 291–296, 2002.

[88] Jan Kautz, J. Lehtinen, and T. Aila. “Hemispherical Rasterization for
Self-Shadowing of Dynamic Objects.” In Eurographics Symposium on
Rendering, pp. 179–184, 2004.

[89] A. Keller. “The Fast Calculation of Form Factors Using Low Discrep-
ancy Sequences.” In Proceedings of the Spring Conference on Com-
puter Graphics (SCCG ’96), pp. 195–204, 1996.

[90] A. Keller. “Quasi-Monte Carlo Radiosity.” In Eurographics Rendering
Workshop 1996, pp. 101–110, 1996.

[91] A. Keller. “Instant Radiosity.” In SIGGRAPH 97 Conference Pro-
ceedings, pp. 49–56, 1997.

[92] A. Keller. “Quasi-Monte Carlo methods for photorealistic image syn-
thesis.” Ph.D. thesis, Universität Kaiserslautern, Germany, 1997.

�

�

�

�

�

�

�

�

Bibliography 351

[93] A. J. F. Kok and F. W. Jansen. “Sampling Pattern Coherence for
Sampling Area Light Sources.” In Third Eurographics Workshop on
Rendering, p. 283, 1992.

[94] A. J. F. Kok. “Ray Tracing and Radiosity Algorithms for Photoreal-
istic Images Synthesis.” Ph.D. thesis, Technische Universiteit Delft,
The Netherlands, 1994.

[95] C. Kolb, D. Mitchell, and P. Hanrahan. “A Realistic Camera Model
for Computer Graphics.” In Computer Graphics Proceedings, Annual
Conference Series, 1995 (SIGGRAPH 1995), pp. 317–324, 1995.

[96] T. Kollig and A. Keller. “Efficient Multidimensional Sampling.” Com-
puter Graphics Forum 21:3 (2002), 557–564.

[97] Thomas Kollig and Alexander Keller. “Efficient Illumination by High
Dynamic Range Images.” In Eurographics Symposium on Rendering:
14th Eurographics Workshop on Rendering, pp. 45–51, 2003.

[98] R. Kress. Linear Integral Equations. New York: Springer Verlag, 1989.

[99] Frank Suykens-De Laet. “On Robust Monte Carlo Algorithms for
Multi-Pass Global Illumination.” Ph.D. thesis, Dept. of Computer
Science, Katholieke Universiteit Leuven, 2002.

[100] E. P. Lafortune and Y. D. Willems. “Bi-Directional Path Tracing.”
In Proceedings of Third International Conference on Computational
Graphics and Visualization Techniques (Compugraphics ’93), pp. 145–
153, 1993.

[101] E. P. Lafortune and Y. D. Willems. “The Ambient Term as a Vari-
ance Reducing Technique for Monte Carlo Ray Tracing.” In Fifth Eu-
rographics Workshop on Rendering, pp. 163–171. New York: Springer
Verlag, 1994.

[102] E. P. Lafortune and Y. D. Willems. “A Theoretical Framework for
Physically Based Rendering.” Computer Graphics Forum 13:2 (1994),
97–107.

[103] E. P. Lafortune and Y. D. Willems. “A 5D Tree to Reduce the Vari-
ance of Monte Carlo Ray Tracing.” In Rendering Techniques ’95 (Pro-
ceedings of the Eurographics Workshop on Rendering, Dublin, Ireland,
pp. 11–20, 1995.

[104] E. P. Lafortune and Y. D. Willems. “Rendering Participating Media
with Bidirectional Path Tracing.” In Eurographics Rendering Work-
shop 1996, pp. 91–100, 1996.

�

�

�

�

�

�

�

�

352 Bibliography

[105] E. P. Lafortune, Sing-Choong Foo, K. Torrance, and D. Greenberg.
“Non-Linear Approximation of Reflectance Functions.” In Computer
Graphics (SIGGRAPH ’97 Proceedings), Annual Conference Series,
pp. 117–126, 1997.

[106] E. Languenou, K. Bouatouch, and P. Tellier. “An Adaptive Dis-
cretization Method for Radiosity.” Computer Graphics Forum 11:3
(1992), C205–C216.

[107] Greg Ward Larson and Rob Shakespeare. Rendering with Radiance:
The Art and Science of Lighting Visualization. San Fransisco, CA:
Morgan Kaufmann Books, 1998.

[108] Patrick Ledda, Alan Chalmers, Tom Troscianko, and Helge Seetzen.
“Evaluation of Tone Mapping Operators using a High Dynamic Range
Display.” ACM Transactions on Graphics 24:3 (2005), 640–648.

[109] H. P. A. Lensch, M. Goesele, Ph. Bekaert, J. Kautz, M. A. Magnor,
J. Lang, and Hans-Peter Seidel. “Interactive Rendering of Translucent
Objects.” In Proceedings of Pacific Graphics, pp. 214–224, 2002.

[110] Mark Levoy and Pat Hanrahan. “Light Field Rendering.” In Com-
puter Graphics (SIGGRAPH 1996 Proceedings), pp. 31–42, 1996.

[111] D. Lischinski, F. Tampieri, and D. P. Greenberg. “Discontinuity
Meshing for Accurate Radiosity.” IEEE Computer Graphics and Ap-
plications 12:6 (1992), 25–39.

[112] D. Lischinski, B. Smits, and D. P. Greenberg. “Bounds and Error
Estimates for Radiosity.” In Proceedings of SIGGRAPH ’94, pp. 67–
74, 1994.

[113] Xinguo Liu, Peter-Pike Sloan, Heung-Yeung Shum, and John Snyder.
“All-Frequency Precomputed Radiance Transfer for Glossy Objects.”
In Rendering Techniques 2004 Eurographics Symposium on Rendering,
2004.

[114] Thurstone L.L. “The Method of Paired Comparisons for Social Val-
ues.” Journal of Abnormal and Social Psychology :21 (1927), 384–400.

[115] G. Meyer M. Bolin. “A Perceptually Based Adaptive Sampling Al-
gorithm.” SIGGRAPH 98 Conference Proceedings, pp. 299–310.

[116] D. Greenberg M. Ramasubramanian, S. Pattanaik. “A Perceptually
Based Physical Error Metric for Realistic Image Synthesis.” SIG-
GRAPH 99 Conference Proceedings, pp. 73–82.

�

�

�

�

�

�

�

�

Bibliography 353

[117] Yang J.N. Maloney L.T. “Maximum Likelihood Difference Scaling.”
Journal of Vision 3:8 (2003), 573–585.

[118] Vincent Masselus. “A Practical Framework for Fixed Viewpoint
Image-based Relighting.” Ph.D. thesis, Dept. of Computer Science,
Katholieke Universiteit Leuven, 2004.

[119] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, H. Teller, and
E. Teller. “Equations of State Calculations by Fast Computing Ma-
chines.” Journal of Chemical Physics 21:6 (1953), 1087–1092.

[120] Tomas Möller and Eric Haines. Real-Time Rendering. Natcik, MA:
A K Peters, 1999.

[121] K. Myszkowski. “Lighting Reconstruction Using Fast and Adaptive
Density Estimation Techniques.” In Eurographics Rendering Work-
shop 1997, pp. 251–262, 1997.

[122] K. Myszkowski. “The Visible Differences Predictor: Applications to
Global Illumination Problems.” Proceedings of the Ninth Eurographics
Workshop on Rendering, pp. 223–236.

[123] L. Neumann, M. Feda, M. Kopp, and W. Purgathofer. “A New
Stochastic Radiosity Method for Highly Complex Scenes.” In Fifth
Eurographics Workshop on Rendering, pp. 195–206. Darmstadt, Ger-
many, 1994.

[124] L. Neumann, W. Purgathofer, R. Tobler, A. Neumann, P. Elias,
M. Feda, and X. Pueyo. “The Stochastic Ray Method for Radiosity.”
In Rendering Techniques ’95 (Proceedings of the Sixth Eurographics
Workshop on Rendering), 1995.

[125] L. Neumann, R. F. Tobler, and P. Elias. “The Constant Radiosity
Step.” In Rendering Techniques ’95 (Proceedings of the Sixth Euro-
graphics Workshop on Rendering), pp. 336–344, 1995.

[126] A. Neumann, L. Neumann, Ph. Bekaert, Y. D. Willems, and W. Pur-
gathofer. “Importance-Driven Stochastic Ray Radiosity.” In Euro-
graphics Rendering Workshop 1996, pp. 111–122, 1996.

[127] L. Neumann, A. Neumann, and Ph. Bekaert. “Radiosity with Well
Distributed Ray Sets.” Computer Graphics Forum 16:3.

[128] L. Neumann. “Monte Carlo Radiosity.” Computing 55:1 (1995), 23–
42.

�

�

�

�

�

�

�

�

354 Bibliography

[129] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. “All-Frequency
Shadows using Non-Linear Wavelet Lighting Approximation.” ACM
Transactions on Graphics 22:3 (2003), 376–381.

[130] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. “Triple Product
Wavelet Integrals for All-Frequency Relighting.” ACM Transactions
on Graphics 23:3 (2004), 477–487.

[131] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and
T. Limperis. “Geometric Considerations and Nomenclature for Re-
flectance.” In Monograph 161. National Bureau of Standards (US),
1977.

[132] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods, CBMS-NSF regional conference series in Appl. Math., 63.
Philadelphia: SIAM, 1992.

[133] T. Nishita and E. Nakamae. “Continuous Tone Representation of 3-D
Objects Taking Account of Shadows and Interreflection.” Computer
Graphics (SIGGRAPH ’85 Proceedings) 19:3 (1985), 23–30.

[134] Marc Olano, John C. Hart, Wolfgang Heidrich, and Michael McCool.
Real-Time Shading. Natick, MA: A K Peters, 2001.

[135] Guilford J. P. Psychometric Methods. New York: McGraw-Hill, 1954.

[136] E. Paquette, P. Poulin, and G. Drettakis. “A Light Hierarchy for
Fast Rendering of Scenes with Many Lights.” Eurographics 98 17:3
(1998), pp. 63–74.

[137] Steven Parker, William Martin, Peter-Pike Sloan, Peter Shirley,
Brian Smits, and Chuck Hansen. “Interactive Ray Tracing.” In Inter-
active 3D Graphics (I3D), pp. 119–126, 1999.

[138] S. N. Pattanaik and S. P. Mudur. “Computation of Global Illumina-
tion by Monte Carlo Simulation of the Particle Model of Light.” Third
Eurographics Workshop on Rendering, pp. 71–83.

[139] S. N. Pattanaik and S. P. Mudur. “The Potential Equation and Im-
portance in Illumination Computations.” Computer Graphics Forum
12:2 (1993), 131–136.

[140] S. N. Pattanaik and S. P. Mudur. “Adjoint Equations and Random
Walks for Illumination Computation.” ACM Transactions on Graphics
14:1 (1995), 77–102.

�

�

�

�

�

�

�

�

Bibliography 355

[141] S. Pattanaik, J. Tumblin, H. Yee, and D. Greenberg. “Time-
Dependent Visual Adaption for Fast Realistic Image Display.” Pro-
ceedings of SIGGRAPH 2000, pp. 47–54.

[142] M. Pellegrini. “Monte Carlo Approximation of Form Factors with
Error Bounded A Priori.” In Proc. of the 11th. annual symposium on
Computational Geometry, pp. 287 – 296. New York: ACM Press, 1995.

[143] F. Perez-Cazorla, X. Pueyo, and F. Sillion. “Global Illumination
Techniques for the Simulation of Participating Media.” In Proceedings
of the Eighth Eurographics Workshop on Rendering. Saint Etienne,
France, 1997.

[144] Matt Pharr and Randima Fernando. GPU Gems 2: Program-
ming Techniques for High-Performance Graphics and General-Purpose
Computation. Reading, MA: Addison-Wesley Professional, 2005.

[145] M. Pharr and P. M. Hanrahan. “Monte Carlo Evaluation Of Non-
Linear Scattering Equations For Subsurface Reflection.” In Proceed-
ings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, An-
nual Conference Series, pp. 75–84, 2000.

[146] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. “Ren-
dering Complex Scenes with Memory-Coherent Ray Tracing.” In Com-
puter Graphics (SIGGRAPH 1997 Proceedings), pp. 101–108, 1997.

[147] Bui-T. Phong and F. C. Crow. “Improved Rendition of Polygonal
Models of Curved Surfaces.” In Proceedings of the 2nd USA-Japan
Computer Conference, 1975.

[148] A. J. Preetham, P. Shirley, and B. Smits. “A Practical Analytic
Model for Daylight.” In SIGGRAPH 99 Conference Proceedings, An-
nual Conference Series, pp. 91–100, 1999.

[149] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in FORTRAN, Second edition. Cambridge, UK:
Cambridge University Press, 1992.

[150] Paul Rademacher, Jed Lengyel, Ed Cutrell, and Turner Whitted.
“Measuring the Perception of Visual Realism in Images.” In Rendering
Techniques 2001: 12th Eurographics Workshop on Rendering, pp. 235–
248, 2001.

[151] Ravi Ramamoorthi and Pat Hanrahan. “An Efficient Representation
for Irradiance Environment Maps.” In SIGGRAPH ’01: Proceedings

�

�

�

�

�

�

�

�

356 Bibliography

of the 28th annual conference on Computer graphics and interactive
techniques, pp. 497–500, 2001.

[152] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. “Multi-Level
Ray Tracing Algorithm.” SIGGRAPH: ACM Trans. Graph. 24:3
(2005), 1176–1185.

[153] R. Y. Rubinstein. Simulation and the Monte Carlo method. New
York: J. Wiley and Sons, 1981.

[154] H. E. Rushmeier and K. E. Torrance. “The Zonal Method for Cal-
culating Light Intensities in the Presence of a Participating Medium.”
In Computer Graphics (Proceedings of SIGGRAPH 87), pp. 293–302,
1987.

[155] L. Santaló. Integral Geometry and Geometric Probability. Reading,
Mass: Addison-Welsey, 1976.

[156] Mirko Sattler, Ralf Sarlette, Thomas Mücken, and Reinhard Klein.
“Exploitation of Human Shadow Perception for Fast Shadow Render-
ing.” In APGV 2005, pp. 131–134, 2005.

[157] M. Sbert, X. Pueyo, L. Neumann, and W. Purgathofer. “Global Mul-
tipath Monte Carlo Algorithms for Radiosity.” The Visual Computer
12:2 (1996), 47–61.

[158] M. Sbert, A. Brusi, R. Tobler, and W. Purgathofer. “Random Walk
Radiosity with Generalized Transition Probabilities.” Technical Re-
port IIiA-98-07-RR, Institut d’Informàtica i Aplicacions, Universitat
de Girona, 1998.

[159] M. Sbert, A. Brusi, and Ph. Bekaert. “Gathering for Free in Random
Walk Radiosity.” In Rendering Techniques ’99 (Proceedings of the 10th
Eurographics Workshop on Rendering, Granada, Spain), pp. 97–102.
Springer Computer Science, 1999.

[160] M. Sbert. “An Integral Geometry Based Method for Fast Form-
Factor Computation.” Computer Graphics Forum 12:3 (1993), C409–
C420.

[161] M. Sbert. “The Use of Global Random Directions to Compute
Radiosity—Global Monte Carlo Techniques.” Ph.D. thesis, Univer-
sitat Politècnica de Catalunya, Barcelona, Spain, 1996.

[162] M. Sbert. “Error and Complexity of Random Walk Monte Carlo Ra-
diosity.” IEEE Transactions on Visualization and Computer Graphics
3:1 (1997), 23–38.

�

�

�

�

�

�

�

�

Bibliography 357

[163] M. Sbert. “Optimal Source Selection in Shooting Random Walk
Monte Carlo Radiosity.” Computer Graphics Forum 16:3 (1997), 301–
308.

[164] P. Schröder. “Numerical Integration for Radiosity in the Presence of
Singularities.” In 4 th Eurographics Workshop on Rendering, Paris,
France, pp. 177–184, 1993.

[165] Peter Shirley and Kenneth Chiu. “A Low Distortion Map Between
Disk and Square.” Journal of Graphics Tools 2:3 (1997), 45–52.

[166] P. Shirley, B. Wade, Ph. M. Hubbard, D. Zareski, B. Walter, and
Donald P. Greenberg. “Global Illumination via Density Estimation.”
In Rendering Techniques ’95 (Proceedings of the Sixth Eurographics
Workshop on Rendering), pp. 219–230, 1995.

[167] P. Shirley. “A Ray Tracing Method for Illumination Calculation
in Diffuse–Specular Scenes.” In Graphics Interface ’90, pp. 205–212,
1990.

[168] P. Shirley. “Radiosity via Ray Tracing.” In Graphics Gems II, edited
by J. Arvo, pp. 306–310. Boston: Academic Press, 1991.

[169] P. Shirley. “Time Complexity of Monte Carlo Radiosity.” In Euro-
graphics ’91, pp. 459–465, 1991.

[170] P. Shirley. Realistic Ray Tracing. Natick, MA: A K Peters, 2000.

[171] F. Sillion and C. Puech. “A General Two-Pass Method Integrating
Specular and Diffuse Reflection.” In Computer Graphics (SIGGRAPH
’89 Proceedings), pp. 335–344, 1989.

[172] F. Sillion and C. Puech. Radiosity and Global Illumination. San
Francisco: Morgan Kaufmann, 1994.

[173] F. Sillion, J. Arvo, S. Westin, and D. Greenberg. “A Global Illu-
mination Solution for General Reflectance Distributions.” Computer
Graphics (SIGGRAPH ’91 Proceedings) 25:4 (1991), 187–196.

[174] F. Sillion. “A Unified Hierarchical Algorithm for Global Illumination
with Scattering Volumes and Object Clusters.” IEEE Transactions on
Visualization and Computer Graphics 1:3 (1995), 240–254.

[175] B. W. Silverman. Density Estimation for Statistics and Data Analy-
sis. London: Chapman and Hall, 1986.

�

�

�

�

�

�

�

�

358 Bibliography

[176] Maryann Simmons and Carlo H. Séquin. “Tapestry: A Dynamic
Mesh-based Display Representation for Interactive Rendering.” In
Eleventh Eurographics Workshop on Rendering, pp. 329–340, 2000.

[177] Peter-Pike Sloan, Jan Kautz, and John Snyder. “Precomputed Ra-
diance Transfer for Real-Time Rendering in Dynamic, Low-Frequency
Lighting Environments.” In SIGGRAPH ’02, pp. 527–536, 2002.

[178] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. “Clustered
Principal Components for Precomputed Radiance Transfer.” ACM
Transactions on Graphics 22:3 (2003), 382–391.

[179] Peter-Pike Sloan, Xinguo Liu, Heung-Yeung Shum, and John Snyder.
“Bi-Scale Radiance Transfer.” ACM Trans. Graph. 22:3 (2003), 370–
375.

[180] Peter-Pike Sloan, Ben Luna, and John Snyder. “Local, Deformable
Precomputed Radiance Transfer.” ACM Trans. Graph. 24:3 (2005),
1216–1224.

[181] B. Smits, J. Arvo, and D. Salesin. “An Importance-Driven Radiosity
Algorithm.” In Computer Graphics (SIGGRAPH ’92 Proceedings),
pp. 273–282, 1992.

[182] B. Smits, J. Arvo, and D. Greenberg. “A Clustering Algorithm for
Radiosity in Complex Environments.” In SIGGRAPH ’94 Proceedings,
pp. 435–442, 1994.

[183] J. Spanier and E. M. Gelbard. Monte Carlo Principles and Neutron
Transport Problems. Reading, MA: Addison-Wesley, 1969.

[184] J. Stam and E. Languenou. “Ray Tracing in Non-Constant Me-
dia.” In Proceedings of the 7th Eurographics Workshop on Rendering,
pp. 225–234, 1996.

[185] J. Stam. “Multiple Scattering as a Diffusion Process.” In Proceedings
of the 6th Eurographics Workshop on Rendering, pp. 51–58, 1995.

[186] J. Stam. “Diffraction Shaders.” In SIGGRAPH 99 Conference Pro-
ceedings, Annual Conference Series, pp. 101–110, 1999.

[187] William A. Stokes, James A. Ferwerda, Bruce Walter, and Don-
ald P. Greenberg. “Perceptual Illumination Components: A New
Approach to Efficient, High Quality Global Illumination Rendering.”
ACM Transactions on Graphics 23:3 (2004), 742–749.

�

�

�

�

�

�

�

�

Bibliography 359

[188] I. E. Sutherland. “Sketchpad–A Man-Machine Graphical Commu-
nication System.” Technical Report 296, MIT Lincoln Laboratory,
1963.

[189] L. Szirmay-Kalos and W. Purgathofer. “Global Ray-bundle Tracing
with Hardware Acceleration.” In Ninth Eurographics Workshop on
Rendering. Vienna, Austria, 1998.

[190] L. Szirmay-Kalos and W. Purgathofer. “Analysis of the Quasi-Monte
Carlo Integration of the Rendering Equation.” In WSCG ’99 (Seventh
International Conference in Central Europe on Computer Graphics,
Visualization and Interactive Digital Media), pp. 281–288, 1999.

[191] L. Szirmay-Kalos, T. Foris, L. Neumann, and C. Balasz. “An Anal-
ysis of Quasi-Monte Carlo Integration Applied to the Transillumina-
tion Radiosity Method.” Computer Graphics Forum (Eurographics ’97
Proceedings) 16:3. 271–281.

[192] L. Szirmay-Kalos, C. Balasz, and W. Purgathofer. “Importance-
Driven Quasi-Random Walk Solution of the Rendering Equation.”
Computers and Graphics 23:2 (1999), 203–211.

[193] L. Szirmay-Kalos. “Stochastic Iteration for Non-Diffuse Global Illu-
mination.” Computer Graphics Forum 18:3 (1999), 233–244.

[194] Whitted T. “An Improved Illumination Model for Shaded Display.”
Communications of the ACM 23:6 (1980), 343–349.

[195] Justin Talbot, David Cline, and Parris Egbert. “Importance Resam-
pling for Global Illumination.” In Rendering Techniques 2005: 16th
Eurographics Workshop on Rendering, pp. 139–146, 2005.

[196] Seth Teller, Kavita Bala, and Julie Dorsey. “Conservative Radiance
Interpolants for Ray Tracing.” In Seventh Eurographics Workshop on
Rendering, pp. 258–269, 1996.

[197] R. Tobler, A. Wilkie, M. Feda, and W. Purgathofer. “A Hierarchical
Subdivision Algorithm for Stochastic Radiosity Methods.” In Euro-
graphics Rendering Workshop 1997, pp. 193–204, 1997.

[198] Parag Tole, Fabio Pellacini, Bruce Walter, and Donald Green-
berg. “Interactive Global Illumination.” In Computer Graphics (SIG-
GRAPH 2002 Proceedings), 2002.

[199] J. Tumblin and H. E. Rushmeier. “Tone Reproduction for Realistic
Images.” IEEE Computer Graphics and Applications 13:6 (1993), 42–
48.

�

�

�

�

�

�

�

�

360 Bibliography

[200] E. Veach and L. J. Guibas. “Bidirectional Estimators for Light Trans-
port.” In Fifth Eurographics Workshop on Rendering, pp. 147–162.
Darmstadt, Germany, 1994.

[201] E. Veach and L. J. Guibas. “Optimally Combining Sampling Tech-
niques for Monte Carlo Rendering.” In SIGGRAPH 95 Conference
Proceedings, pp. 419–428, 1995.

[202] Eric Veach and Leonidas J. Guibas. “Metropolis Light Transport.”
In Computer Graphics Proceedings, Annual Conference Series, 1997
(SIGGRAPH 1997), 1997.

[203] E. Veach. “Non-Symmetric Scattering in Light Transport Algo-
rithms.” In Eurographics Rendering Workshop 1996, pp. 81–90, 1996.

[204] E. Veach. “Robust Monte Carlo Methods for Light Transport Sim-
ulation.” Ph.D. thesis, Stanford university, Department of Computer
Science, 1997.

[205] Edgar Velzquez-Armendriz, Eugene Lee, Bruce Walter, and Kavita
Bala. “Implementing the Render Cache and the Edge-and-Point Image
on Graphics Hardware.” Graphics Interface, 2006.

[206] V. Volevich, K. Myszkowski, A. Khodulev, and E. A. Kopylov. “Us-
ing the Visual Differences Predictor to Improve Performance of Pro-
gressive Global Illumination Computations.” ACM Transactions on
Graphics 19:2 (2000), 122–161.

[207] Ingo Wald and Philipp Slusallek. “State of the Art in Interactive
Ray Tracing.” In State of the Art Reports, EUROGRAPHICS 2001,
pp. 21–42, 2001.

[208] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek.
“Interactive Rendering with Coherent Ray Tracing.” In Proc. of Eu-
rographics, pp. 153–164, 2001.

[209] J. R. Wallace, M. F. Cohen, and D. P. Greenberg. “A Two-Pass
Solution to the Rendering Equation: A Synthesis of Ray Tracing and
Radiosity Methods.” Computer Graphics (SIGGRAPH ’87 Proceed-
ings) 21:4 (1987), 311–320.

[210] B. Walter, Ph. M. Hubbard, P. Shirley, and D. F. Greenberg. “Global
Illumination Using Local Linear Density Estimation.” ACM Transac-
tions on Graphics 16:3 (1997), 217–259.

�

�

�

�

�

�

�

�

Bibliography 361

[211] Bruce Walter, George Drettakis, and Steven Parker. “Interactive
Rendering using the Render Cache.” In Tenth Eurographics Workshop
on Rendering, pp. 19–30, 1999.

[212] Bruce Walter, George Drettakis, and Donald Greenberg. “Enhanc-
ing and Optimizing the Render Cache.” In Thirteenth Eurographics
Workshop on Rendering, pp. 37–42, 2002.

[213] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala,
Michael Donikian, and Donald P. Greenberg. “Lightcuts: A Scal-
able Approach to Illumination.” SIGGRAPH: ACM Trans. Graph.
24:3 (2005), 1098–1107.

[214] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Green-
berg. “Multidimensional Lightcuts.” To appear in SIGGRAPH: ACM
Trans. Graph., 2006.

[215] Rui Wang, John Tran, and David Luebke. “All-Frequency Relighting
of Non-Diffuse Objects Using Separable BRDF Approximation.” In
Rendering Techniques 2004 Eurographics Symposium on Rendering,
pp. 345–354, 2004.

[216] Rui Wang, John Tran, and David Luebke. “All-Frequency Interactive
Relighting of Translucent Objects with single and multiple scattering.”
ACM Trans. Graph. 24:3 (2005), 1202–1207.

[217] G. J. Ward and P. Heckbert. “Irradiance Gradients.” In Rendering in
Computer Graphics (Proceedings of the Third Eurographics Workshop
on Rendering), pp. 85–98, 1992.

[218] Greg Ward and Maryann Simmons. “The Holodeck Ray Cache: An
Interactive Rendering System for Global Illumination.” ACM Trans-
actions on Graphics 18:4 (1999), 361–398.

[219] G. J. Ward, F. M. Rubinstein, and R. D. Clear. “A Ray Tracing Solu-
tion for Diffuse Interreflection.” In Computer Graphics (SIGGRAPH
1988 Proceedings), pp. 85–92, 1988.

[220] G. J. Ward. “Real Pixels.” In Graphics Gems II, edited by James
Arvo, pp. 80–83. Boston: Academic Press, 1991.

[221] G. J. Ward. “Measuring and modeling anisotropic reflection.” In
Computer Graphics (SIGGRAPH 1992 Proceedings), pp. 265–272,
1992.

�

�

�

�

�

�

�

�

362 Bibliography

[222] G. Ward. “A Contrast-Based Scalefactor for Luminance Display.”
InGraphics Gems 4, edited by Paul S. Heckbert, pp. 415–421. Boston:
Academic Press, 1994.

[223] G. J. Ward. “Adaptive Shadow Testing for Ray Tracing.” In Photo-
realistic Rendering in Computer Graphics (Proceedings of the Second
Eurographics Workshop on Rendering), pp. 11–20, 1994.

[224] W. Wasow. “A Comment on the Inversion of Matrices by Random
Walks.” Math. Tabl. Aids. Comput. 6 (1952), 78–81.

[225] M. Watt. “Light-Water Interaction using Backward Beam Tracing.”
In Computer Graphics (SIGGRAPH 1990 Proceedings), pp. 377–85,
1990.

[226] A Wilkie, R. Tobler, and W Purgathofer. “Combined Rendering of
Polarization and Fluorescence Effects.” In Proceedings of Eurographics
Workshop on Rendering 2001, pp. 11–20, 2001.

[227] Hector Yee, Sumanta Pattanaik, and Donald P. Greenberg. “Spa-
tiotemporal Sensitivity and Visual Attention for Efficient Rendering of
Dynamic Environments.” ACM Transactions on Graphics 20:1 (2001),
pp. 39–65.

[228] H. R. Zatz. “Galerkin Radiosity: A Higher Order Solution Method
for Global Illumination.” In Computer Graphics Proceedings, Annual
Conference Series, 1993, pp. 213–220, 1993.

[229] Kun Zhou, Yaohua Hu, Stephen Lin, Baining Guo, and Heung-Yeung
Shum. “Precomputed Shadow Fields for Dynamic Scenes.” ACM
Trans. Graph. 24:3 (2005), 1196–1201.

[230] K. Zimmerman and P. Shirley. “A Two-Pass Realistic Image Synthe-
sis Method for Complex Scenes.” In Rendering Techniques 1995 (Pro-
ceedings of the Sixth Eurographics Workshop on Rendering), pp. 284–
295. New York: Springer-Verlag, 1995.

	Table of Contents
	Preface
	Preface to the Second Edition
	1. Introduction
	1.1 What Is Realistic Image Synthesis?
	1.2 Structure of this Book
	1.3 How to Use this Book

	2. The Physics of Light Transport
	2.1 Brief History
	2.2 Models of Light
	2.3 Radiometry
	2.4 Light Emission
	2.5 Interaction of Light with Surfaces
	2.6 Rendering Equation
	2.7 Importance
	2.8 The Measurement Equation
	2.9 Summary
	2.10 Exercises

	3. Monte Carlo Methods
	3.1 Brief History
	3.2 Why Are Monte Carlo Techniques Useful?
	3.3 Review of Probability Theory
	3.4 Monte Carlo Integration
	3.5 Sampling Random Variables
	3.6 Variance Reduction
	3.7 Summary
	3.8 Exercises

	4. Strategies for Computing Light Transport
	4.1 Formulation of the Rendering Equation
	4.2 The Importance Function
	4.3 Adjoint Equations
	4.4 Global Reflectance Distribution Function
	4.5 Classification of Global Illumination Algorithms
	4.6 Path Formulation
	4.7 Summary
	4.8 Exercises

	5. Stochastic Path-Tracing Algorithms
	5.1 Brief History
	5.2 Ray-Tracing Set-Up
	5.3 Simple Stochastic Ray Tracing
	5.4 Direct Illumination
	5.5 Environment Map Illumination
	5.6 Indirect Illumination
	5.7 Light Tracing
	5.8 Summary
	5.9 Exercises

	6. Stochastic Radiosity
	6.1 Classic Radiosity
	6.2 The Form Factors
	6.3 Stochastic Relaxation Radiosity
	6.4 Discrete Random Walk Methods for Radiosity
	6.5 Photon Density Estimation Methods
	6.6 Variance Reduction and Low-Discrepancy Sampling
	6.7 Hierarchical Refinement and Clustering
	6.8 Exercises

	7. Hybrid Algorithms
	7.1 Final Gathering
	7.2 Multipass Methods
	7.3 Bidirectional Tracing
	7.4 Metropolis Light Transport
	7.5 Irradiance Caching
	7.6 Photon Mapping
	7.7 Instant Radiosity
	7.8 Lightcuts and Multidimensional Lightcuts
	7.9 Exercises

	8. The Quest for Ultimate Realism and Speed
	8.1 Beyond the Rendering Equation
	8.2 Image Display and Human Perception
	8.3 Fast Global Illumination

	9. Conclusion
	9.1 Achievements of Photorealistic Rendering
	9.2 Unresolved Issues in Photorealistic Rendering
	9.3 Concluding Remarks

	A. A Class Library for Global Illumination
	A.1 Path Node Classes
	A.2 Light Source Sampling Classes

	B. Hemispherical Coordinates
	B.1 Hemispherical Coordinates
	B.2 Solid Angle
	B.3 Integrating over the Hemisphere
	B.4 Hemisphere-Area Transformation

	C. Theoretical Analysis of Stochastic Relaxation Radiosity
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

