
CHAPTER 3: MATRICES

1. Determinant of a square matrix

1.1. Definitions and properties.

Definition 1.1. Let A = (aij) ∈ Mn(K). We call determinant, the unique application
noted by ” det ” defined from Mn(K) ro K as follows:
• For n = 1 such that A = (a) with a ∈ K, then det(A) = a.
• For n > 1; det(A) =

∑n
i=1(−1)i+jaij det(Aij), for j fixed in certain value between 1 and

n, where Aij is the matrix obtained from A by deleting the ith line and jth column. Its de-
terminant i.e. det(Aij) is called the minor of (aij) in A and the number (−1)i+jaij det(Aij)
is called the cofactor of (aij) in A.

Remark 1.2. • To compute det(A), we can use the previous formulae, by mean of the ith

line, i.e.,
det(A) =

∑n
j=1(−1)i+jaij det(Aij), for i fixed in certain value between 1 and n.

• The determinant of the matrix A can be also noted by | A |.

Example 1.3. Let A = (6). Then, det(A) = 6.

Example 1.4. Let A =

(
1 3
2 4

)
. Then, det(A) = 1× 4− 2× 3 = −2.

Example 1.5. Let A =

 1 1 2
3 1 0
0 1 4

 . Then, det(A) =
∑3

i=1(−1)i+jaij det(Aij).

Let us fix j = 1, we get

det(A) =
3∑

i=1

(−1)i+1ai1 det(Ai1)

= (−1)1+1a11 det(A11) + (−1)2+1a21 det(A21) + (−1)3+1a31 det(A31)

= a11 det

(
1 0
1 4

)
− a21 det

(
1 2
1 4

)
+ a31 det

(
1 2
1 0

)
= 1× 4− 3× 2 + 0 = −2.

Properties
Let A = (aij), B = (bij) ∈Mn(K) and p a natural number. Then, we have:

1
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• if all the elements of a column or a line are equal to 0, then det(A) = 0.
• if two column (or two lines) are proportional (or equivalent) then, det(A) = 0.

Example 1.6. Let A =

 2 −1 3
0 1 5
4 −2 6

 . Then, det(A) = 0. Similarly for the matrix

B =

 2 1 2
−4 0 −4
3 6 3

 .

• If we add p times the corresponding elements of another column (line) to the elements
of a line (column), the value of the determinant will not change.

Remark 1.7. This property is used to get zeros in a column or a line to make the compu-
tation easier.

Example 1.8. Let A =

 1 9 −3
4 6 −2
−3 1 5

 . Then,

det(A) = det

 1 9 + 3(−3) −3
4 6 + 3(−2) −2
−3 1 + 3(5) 5


= det

 1 0 −3
4 0 −2
−3 16 5

 = det(B).

Development of the determinant by taking la jth column for j = 1.

det(B) =
3∑

i=1

(−1)i+1ai1 det(Ai1)

= (−1)1+1a11 det(A11) + (−1)2+1a21 det(A21) + (−1)3+1a31 det(A31)

= det

(
0 −2
16 5

)
− 4 det

(
0 −3
16 5

)
− 3 det

(
0 −3
0 5

)
= 32− 4(48) = 32− 192 = −160. Thus,

det(A) = det(B) = −160.

Example 1.9. Let A =

(
3 2
−1 4

)
. We have det(A) = 14. So that,

det

(
2 3
4 −1

)
= det

(
−1 4
3 2

)
= −14.
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• If A is an upper triangular matrix, lower triangular or diagonal, then its determinant
is equal to the product of the diagonal coefficients, i.e., det(A) = a11a22...ann.

Example 1.10. If A = In (The identity matrix), then det(A) = 1.

• if A,B ∈Mn(K), then

det(A×B) = det(A)× det(B) = det(B)× det(B).

• If we multiply a column (or a line) of matrix by a scalar α ∈ K, the determinant of
the new matrix is multiplied by α.
• If A ∈Mn(K) and α ∈ K, then det(α · A) = αn · det(A).

Example 1.11. Let A =

(
2 1
4 3

)
, B =

(
4 2
4 3

)
and C =

(
4 2
8 6

)
.

Then det(A) = 2, det(B) = 4 = 2 det(A) and det(C) = 8 = 22 det(A).

• Determinant of a sum of matrices:
There is no explicit formula, however we can generally confirm that det(A + B) 6=
det(A) + det(B).

Example 1.12. let A =

(
λ 0
0 λ

)
and B =

(
−λ 0
0 −λ

)
, with λ ∈ R− {0}.

Then, det(A+B) = det(02) = 0, and det(A) + det(B) = λ2 + λ2 = 2λ2 6= 0.

Theorem 1.13 (Fundamental theorem). Let A ∈Mn(K), Then

A is inverible ⇔ det(A) 6= 0 .

Proposition 1.14. If A is invertible, then

det(A−1) =
1

det(A)
.

Proposition 1.15 (Computaion of the inverse by the determinant). Let A = (aij) ∈
Mn(K) and i, j be two natural numbers.

If A is invertible, then A−1 =
1

det(A)
Ct .

C = (cij) = (−1)i+jaij det(Aij), C is the cofactor matrix (comatrix).

Example 1.16. We consider the matrix A =

 1 0 −3
4 0 −2
−3 16 5

 .

1- Show that A is invertible.
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2- Compute the determinant of A−1.
• We have seen from the example 1.8 that det(A) = −160 6= 0. Then, we conclude that
A is invertible.
• To compute A−1, we have A−1 = 1

det(A)
Ct.

We firstly figure out the cofactor matrix C =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 . We have:

The 1st line:

c11 = (−1)1+1a11 det(A11) = det

(
0 −2
16 5

)
= 32.

c12 = (−1)1+2a11 det(A12) = 0.

c13 = (−1)1+3a13 det(A13) = (−3) det

(
4 0
−3 16

)
= −192.

The 2nd line:

c21 = (−1)2+1a21 det(A21) = (−1)(4) det

(
0 −3
16 5

)
= −192.

c22 = (−1)2+2a22 det(A22) = 0.

c23 = (−1)2+3a23 det(A23) = (−1)(−2) det

(
1 0
−3 16

)
= (2)(16) = 32.

The 3rd line:

c31 = (−1)3+1a31 det(A31) = (1)(−3) det

(
0 −3
0 −2

)
= 0.

c32 = (−1)3+2a32 det(A32) = (−1)(16) det

(
1 −3
4 −2

)
= (−16)(10) = −160.

c33 = (−1)3+3a33 det(A33) = (1)(5) det

(
1 0
−4 0

)
= 0.

Thus, C =

 32 0 −192
−192 0 32

0 −160 0

 . We conclude that

A−1 = − 1
160

 32 −192 0
0 0 −160
−192 32 0

 =

 −1
5

6
5

0
0 0 1
6
5
−1

5
0

.

1.2. Computation of the determinant by the Gauss pivot method. We have seen
before that the determinant of triangular matrix is equal to the product of the diagonal
elements. The Gauss pivot method (also called Gauss-Jordan elimination) consists first
of all in bringing a given matrix born to an upper triangular matrix, this can be done
only by elementary operations on the lines. These operations are:
1- Exchange of two lines.
2- Multiplication of a line by a nonzero scalar.
3- Adding the multiple of a line to another line.
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The principle of this method is as follows:
• We choose in the matrix A a term (scalar of K) nonzero aij, in general the first term
at the top left, which is called the pivot;
• if the term a11 does not suit to choose, we can, by permuting lines 1 and i (the
columns 1 and j), put it in the correct position. We then obtain a matrix B such that
det(A) = (−1)i+j det(B);
• we eliminate all the terms located under the pivot, a11. The value of the determinant
remains unchanged by this operation;
• we repeat the same process in the private sub-matrix of its first line and of its first
column;
• at the last step we get a triangular matrix whose determinant is equal to the determi-
nant of the given matrix.

Example 1.17. Let A =

 2 1 −4
3 3 −5
4 5 −2

 .

Calculate the determinant of A by the Gauss pivot method.
Indeed, we denote the lines of the matrix by L1, L2, L3.
Step (1):
We have: a11 = 2 6= 0. Then, we can choose 2 as the first pivot and add L2, the first
line L1 multiplied by −3

2
, i.e., (L2 ← L2 − 3

2
· L1) and add the line L3, the first line L1

multiplied by −2, i.e., (L3 ← L3 − 2 · L1). Then, we get the matrix 2 1 −4
0 3

2
1

0 3 6

 .

Step (2):
The second pivot is 3

2
. Add to the line L3,the second line L2 multiplied by −2, i.e.,

(L3 ← L3 − 2 · L2.) Then, we get the matrix 2 1 −4
0 3

2
1

0 0 4

 .

The third pivot is 4 6= 0, where the matrix is upper triangular.
The determinant of A is equal to the product of the pivots, i.e.,

det(A) = 2× 3

2
× 4 = 12.

2. Matrices and linear applications

2.1. The matrix associated with a linear application. Let E and F be two K-
vectorial spaces with dimensions, respectively, m and n, B′ = {w1, w2, ..., wn} a base of
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F and f ∈ L(E,F ). We call a matrix of f in B and B′ and we write MB,B′(f) the matrix
of the family f(B) = {f(v1), f(v2), ..., f(vm)} in the base B′. In other words, MB,B′(f) is
the matrix with n lines and m columns with coefficients in K, where the elements of jth

column are the coordinates of the vector f(vj) in the base B′ where

MB,B′(f) = (aij),∀j ∈ {1, 2, ...,m}; f(vj) =
n∑

i=1

aij · wi =


a1j
a2j
...
anj

 .

If E = F and B = B′, The matrix MB,B(f) is simply noted by MB(f).

Example 2.1. We consider E a K-vectorial space with finite dimension n and, B a base
of E. Then, MB(IdE) = In.

Example 2.2. Let f ∈ L(R3) defined by;
f(x, y, z) = (−x+ y − z,−x+ z,−2x+ 2y).
We consider B the canonical base of R3. Give the matrix MB(f).
Indeed, we know that B = {v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1)}. Then,
f(v1) = (−1,−1,−2), f(v2) = (1, 0, 2), f(v3) = (−1, 1, 0) and then

MB(f) =

 −1 1 −1
−1 0 1
−2 2 0

 .

Example 2.3. Let f ∈ L(R2) defined by;
f(x, y, z) = (x+ y, x− y).
We consider B = {v1 = (1, 2), v2 = (−1, 1)} a base of R2 and B′ = {w1 = (0, 2), w2 =
(−2, 1)} a base of R2.
What is the matrix associated to f in the bases B and B′?
Firstly, we compute f(v1) and f(v2) as a linear combination of w1 et w2.
We put; f(v1) = α1 · w1 + α2 · w2, f(v2) = β1 · w1 + β2 · w2. Then, we have
(3,−1) = (−2α2,−2α1 + α2), (0,−2) = (−2β2, 2β1 + β2). We conclude that
α1 = 1

4
, α2 = −3

2
, β1 = −1, β2 = 0. Thus

MB,B′(f) =

(
1
4
−1

−3
2

0

)
.

Remark 2.4. In general, the matrix associated with a linear application depends on the
bases chosen B and B′.
2.2. Linear map associated with a matrix.

Proposition 2.5. Let E and F be two K-vectorial spaces with finite dimension m and
n, respectively, B = {v1, v2, ..., vm} a base of E, B′ = {w1, w2, ..., wn} a base of F . Then,
the data of a matrix A ∈ Mn,m(K), gives a unique linear map f from E in F , where
A = MB,B′(f).
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Analytic expression of f :
We have: ∀x ∈ E, there exists (x1, x2, ..., xm) ∈ Km;x =

∑m
i=1 xi · vi.

Given the matrix A = MB,B′(f).

• For any x ∈ E, we denote X = MB(x) =


x1
x2
...
xm

 .

• For any y ∈ F , we denote Y = MB′(y) =


y1
y2
...
yn

 .

Then if y = f(x), we have: Y = A×X. This equation can be written in the matrix form
as follows:

y1
y2
...
yn

 =


a11 a12 ... a1m
a21 a22 ... a2m
...

...
...

...
an1 an2 ... anm

×


x1
x2
...
xm

 .

Thus, we get the following system:


y1 = a11x1 + a12x2 + ...+ a1mxm
y2 = a21x1 + a22x2 + ...+ a2mxm
...

yn = an1x1 + an2x2 + ...+ anmxm.

We deduce that the linear map f associated with the matrix A is defined by:

f(x1, x2, ..., xm) = (a11x1 + a12x2 + ...+ a1mxm, ..., an1x1 + an2x2 + ...+ anmxm).

Example 2.6. Let f ∈ L(R3), both equipped with the canonical base B = {e1 =
(1, 0, 0), e2 = (0, 1, 0), e2 = (0, 0, 1)} of R3. Given the matrix

A = MB(f) =

 1 0 −1
3 −2 0
−1 1

2
4

 .

Give the analytic expression of f .
Indeed, we have for all the reals x, y and z: 1 0 −1

3 −2 0
−1 1

2
4

×
 x

y
z

 =

 x− z
3x− 2y

−x+ y
2

+ 4z

 .
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Then, the map f associated to the matrix A is defined by:

f(x, y, z) = (x− z, 3x− 2y,−x+
y

2
+ 4z).

Properties:
Let f ∈ L(E,F ) and g ∈ L(F,G) where E, F and G are three K-vectorial spaecs with
finite dimension m,n and p, respectively, with m,n, p three natural numbers diffrent
from 0. Let B = {v1, v2, ..., vm} a base of E, B′ = {w1, w2, ..., wn} a base of F and
B′′ = {u1, u2, ..., up} a base of G. Then, we have:
• The map ϕ : f → MB,B′(f) is an isomorphism from L(E,F ) on Mn,m(K).
• L(E,F ) is a K-vectorial space with finite dimension such that

dim(L(E,F )) = dim(Mn,m(K)) = m× n = dim(E)× dim(F ).

• We consider m = n and A = MB,B′(f). Then, we have:
f is an isomorphism from E on F if and only if A is invertible. Moreover,

MB′,B(f−1) = A−1.

• The map g ◦ f is defined by:

MB,B′′(g ◦ f) = MB′,B′′(g)×MB,B′(f).

Remark 2.7. The order in which the product is made is the order in which the composition
is writte.

Remark 2.8. If the matrix of f is A = MB,B′(f) = (aij) ∈Mn,m(K), and
the matrix of g is B = MB′,B′′(g) = (bij) ∈Mp,n(K), then the matrix g ◦ f
is C = MB,B′′(g ◦ f) = (cij) ∈Mp,m(K).

Example 2.9. Let f ∈ L(R3,R2) be defined by: f(x, y, z) = (x + y + 2z, x − y) and
g ∈ L(R2) defined by: f(x, y) = (x− y, 2x+ y).
Let B = {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} be the canonical base of R3 and
B′ = B′′ = {e1 = (1, 0), e2 = (0, 1)} lthe canonical base of R2.
Determine the map g ◦ f .

For determining the map g ◦ f , it is enough to go through the intermediate matrices.
We firstly determine the matrix MB,B′(g ◦ f).

We have MB′(g) =

(
1 −1
2 1

)
and MB,B′(f) =

(
1 1 2
1 −1 0

)
. Then,
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MB,B′(g ◦ f) = MB′(g)×MB,B′(f)

=

(
1 −1
2 1

)
×
(

1 1 2
1 −1 0

)
.

=

(
0 2 2
3 1 4

)
.

We conclude that (g ◦ f)(x, y, z) = MB,B′(g ◦ f)×

x
y
z

 = (2x+ 2z, 3x+ y + 4z) .

Then, g ◦ f ∈ L(R3,R2) is defined by: (g ◦ f)(x, y, z) = (2x+ 2z, 3x+ y + 4z) .

2.3. Passing matrix. Let E be a K-vectorial space with finite dimension nequipped
with the two bases B = {v1, v2, ..., vn} and B′ = {w1, w2, ..., wn}.

Definition 2.10. We call a passing matrix from B to B′ the square matrix P = (pij)where
jth column is written in the base B in the form:

∀j ∈ {1, 2, ..., n}, wj =
n∑

i=1

pij · vi .

In other words, lThe columns of P are the coordinates of the vectors de la base B′expressed
in the base B.

Sometimes we denote the matrix P by MB(B′) where PB,B′ .

Proposition 2.11. We consider the identical endomorphism of E, the map Id(E) : v →
Id(v) = v. Let P be the passing matrix from B to B′. Then,

P = MB′,B(IdE).

Indeed, we have:

MB′,B(IdE) = MB(IdE(w1), IdE(w2), ..., IdE(wn))

= MB(w1, w2, ..., wn)

= MB(B′) = P.

Example 2.12. P = MB,B(IdE) = In.

Remark 2.13. Since f = IdE is an isomorphism from E on E (automorphism), then P
the passing matrix from B to B′ is invertible and its inverse P−1 is the passing matrix
from B′ to B. In other words:

[MB′,B(IdE)]−1 = MB,B′(IdE).



10 ZOUHIR MOKHTARI

Example 2.14. Let B = {v1 = (1, 0), v2 = (0, 1)} and B′ = {w1 = (−1, 2), w2 = (2, 3)}
be two bases of R2.
1- Give the passing matrix from B to B′.
2- Give the passing matrix from B′ to B.
• We express the vectors of B′ in B:
We have 

w1 = −v1 + 2v2

w2 = 2v1 + 3v2.

Then, the passing matrix from B to B′ is MB′,B(IdR2) =

(
−1 2
2 3

)
.

• We express the vectors of B in B′:
We have 

v1 = −3
7
w1 + 2

7
w2

v2 = 2
7
w1 + 1

7
w2.

Then, the passing matrix from B′ to B is MB,B′(IdR2) =

( −3
7

2
7

2
7

1
7

)
.

Check: MB′,B(IdR2)×MB,B′(IdR2) = I2.

2.4. Change of base. Let E be a K-vectorial space of dimension n equipped with two
bases B = {v1, v2, ..., vn} and B′ = {w1, w2, ..., wn}.

2.4.1. Change of base for a vector.

Theorem 2.15. Let x be an element of E, X and X ′ he column matrices of the coordi-
nates of x in the bases B and B′ respectively. Then,

X = P ×X ′ .

Indeed, we have: P = MB,B′(IdR2), X = MB(x) and X ′ = MB′(x). Then,

X = MB(x) = MB(IdE(x)) = MB,B′(IdE)×MB′(x) = P ×X ′.

Remark 2.16. The following formula can also be extracted: X ′ = P−1 ×X .

2.4.2. Change of base for a linear map. Let E be a K-vectorial space with finite dimen-
sion m, B and B′ be two bases of E and P be the passing matrix from B to B′.
Let F be a K-vectorial space with finite dimension n, C and C ′ e two bases of F and Q
be the passing matrix from C to C ′.
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Theorem 2.17. Let f ∈ L(E,F ), A = MB,C(f) and A′ = MB′,C′(f). Then,

A′ = Q−1 × A× P.

Indeed, let x ∈ E, X = MB(x) and X ′ = MB′(x) be matrices columns of coordinates of x
in the bases B and B′ (resp.). Then, from Theorem 2.15, we get: X = P ×X ′.
similarly, let y ∈ F , Y = MC(x) and Y ′ = MC′(y) be matrices columns of coordinates of
y in the bases C and C ′ (resp.). then, we have: Y = Q× Y ′.
Then, the map y = f(x) can be written in matrix form Y = A×X where

Y = A×X ⇔ Q× Y ′ = A× P ×X ′

⇔ Y ′ = Q−1 × A× P ×X ′.

According to the data, the matrix A′ is the only matrix such that y = f(x)⇔ Y ′ = A′×X ′.
Thus, A′ = Q−1 × A× P.

Corollary 2.18 (Case of endomorphism). If f ∈ L(E), A = MB(f) and A′ = MB′(f).
Then,

A′ = P−1 × A× P .

Example 2.19. Lett f ∈ L(R3), B be the canonical bases of R3 and the matrix A =

MB(f) be defined by:

 2 1 1
−3 −2 −1
3 5 4

 .

We consider B′ = {u1 = (0,−1, 1), u2 = (1,−1, 1), u3 = (−1, 1,−1)} another base of R3.
1- Find the passing matrix P from B to B′.
2- Find A′ the matrix associates to f in the base B′.

• The canonical base of R3 is B = {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)}. We
express the vectors of B′ in B as follows:


u1 = −e2 + e3

u2 = e1 − e2 + e3
u3 = −e1 + e2 − e3.

Then, the passing matrix from B to B′ is

P = MB′,B(IdR3) =

 0 1 −1
−1 −1 1
1 1 −1

 .
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Consequently

P−1 =

 −1 −1 0
1 −1 −1
0 −1 −1

 .

• A′ the matrix associated to f in the base B′ is

A′ = MB′(f)

= P−1 × A× P

=

−1 0 0
0 2 0
0 0 3

 .

Definition 2.20 (Similar matrices). We say that two matrices A and A′ of Mn(K) are
similar if there exists an invertible matrix P , i.e., P ∈ GLn(K) such that:

A′ = P−1 × A× P .

Example 2.21. We consider E a K-vectorial space with a finite dimension, B and B′
two bases of E and f ∈ L(E). Then, the matrices MB(f) et MB′(f) are similar.

Definition 2.22 (Equivalent matrices). Let A,A′ ∈ Mn,m(K).We say that A′ is equiv-
alent to A if there exist two invertible matrices P ∈ GLm(K) et Q ∈ GLn(K) such
that:

A′ = Q−1 × A× P .

Example 2.23. We consider E and F two Kvectorial spaces with finite dimension, B
and B′ two bases of E, C and C ′ two bases of F and f ∈ L(E,F ). Then, MB,C′(f) et
MB′,C′(f) are equivalent.

2.5. Rank of a matrix.

Definition 2.24. Let A be a matrix of Mn,m(K). We call a rank of A, and we write
rg(A), the rank of this column vectors.

Example 2.25. Let A =


1 0 −1
0 1 1
1 1 0
0 1 1

 . The rank of A is the family rank of its column

vectors, i.e., the family rank

H = {u1 =


1
0
1
0

 , u2 =


0
1
1
1

 , u3 =


−1
1
0
1

} .
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It is clear that the family of vectors {v1, v2} is free. In the other hand, after solving the
linear system α1v1 +α2v2 +α3v3 = 0, we get v1− v2 + v3 = 0. Then, the family H is free.
We deduce that V ect(v1, v2, v3) = V ect(v1, v2). Then, rg(A) = rg(H) = 2.

The following proposition explains the link between the rank of a linear application
and the rank of an associated matrix.

Proposition 2.26. Let E and F be two K-vectorial spaces with finite dimension, B a
base of E, B′ a base of F , f ∈ L(E,F ) and A = MB,B′(f). Then,

rg(f) = rg(A) .

Indeed,

rg(A) = rg(MB,B′(f))

= rg(MB′(f(B)))

= rg(f(B)) = dim(V ect(f(B)))

= dim(Im(f)) = rg(f) .

Now we provide an invertibility criterion for matrices.

Theorem 2.27. Let A ∈Mn(K). Then, A if and only if the column matrices of A form
a basis of A ∈Mn,1(K). It also means that

A est inversible ⇔ rg(A) = n .

Remark 2.28. In practice, it is useful to identifyMn,1(K) with Kn. Then, A is invertible
if and only if its column vectors form a base of Kn.

Theorem 2.29 (Characterisation). Let A,B ∈Mn,m(K). Then,

A et B are equivalent ⇔ rg(A) = rg(B) .

The following proposition explains the invariance of the rank by transposition.

Proposition 2.30. Let A be a matrix of Mn,m(K). Then,

rg(At) = rg(A) .

Remark 2.31. Since the row vectors of a matrix these are the columns of its transpose, so
to determine the rank of a matrix consists in also determining the rank of its line vectors.

Proposition 2.32. Let C1, C2, ..., Cn be the columns of a matrix A. Then, the rank of A
is not modified by the following three elementary operations on the vectors;
1- We can exchange two columns (Ci ↔ Cj).
2- We can multiply a column by a non-zero scalar (Ci ← α · Ci, pour α 6= 0).
3-We can add to column Ci a multiple of another column Cj. (Ci ← Ci + α · Cj).
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3. Exercises

Let

A =

 −1 1
1 0
0 2

 , B =

 −3 0
2 1
−5 4

 , C =

 1 1 0
4 −1 −2
0 3 2

 .

1- Compute A+B,A−B, 2 · A− 7 ·B.
2- Compute At, Bt, (A×B)t.
3- Compute A×B,B × A,A3.

what can we say about a matrix A ∈Mn(R) which satisfies
tr(A× At) = 0?

Let A =

 0 1 −1
0 1 1
1 0 1

 .

1- Compute P (A) = A3 − 2 · A2 + 2 · A.
2- Deduce from what precedes that A is invertible, then give A−1.
3- Find A−1 by using the comatrix.

Let A =

 3 0 1
−1 3 −2
−1 1 0

 .

1- Compute (A− 2 · I3)3, then conclude that A is invertible.
2- Find A−1 by mean of I3, A and A2.

Let A =

 α 0 1
0 α 0
0 0 α

 , with α ∈ R.

1- Find a matrix X such that A = α · I3 +X.
2- Compute X2, then deduce Xn, for a natural number n.

Compute the determinant of the following matrices.

A =

(
sin(x) − cos(x)
cos(x) sin(x)

)
, B =

 1 0 1
4 −1 0
0 2 3

 , C =


0 1 3 2
4 1 2 0
5 2 1 7
0 3 1 0

 .

Let B = {e1, e2, e3} the canonical base of R3, f ∈ L(R3) whose canonical base is

A =

 1 2 −2
2 1 −2
2 2 −3

 .

1- show that F = {x ∈ R3, f(x) = x} is a sub-space of R3 for which we give the base
{v1}.
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2- We consider v2 = (0, 1, 1) et v3 = (1, 1, 2) two vectors of R3. Compute f(v2) et f(v3).
3- Show that B′ = {v1, v2, v3} is another base of R3.
4-Find the passing matrix P dfrom B to B′.
5- Compute P−1.
6- Find the matrix D of f in the base B′.
7- Give the relation between A,P and D.

Zouhir Mokhtari


