

Université Mohamed Khider Biskra Faculté des Sciences Exactes et Sciences de la vie Département de Biologie 1^{ère} Année LMD Matière de Physique

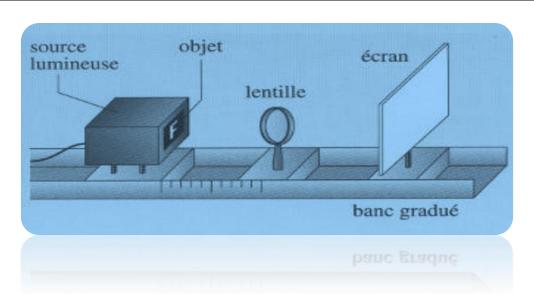
TP N°4

Modelisation du comportement d'une lentille mince convergente

I.1. La relation de conjugaison de Descartes est la suivante :

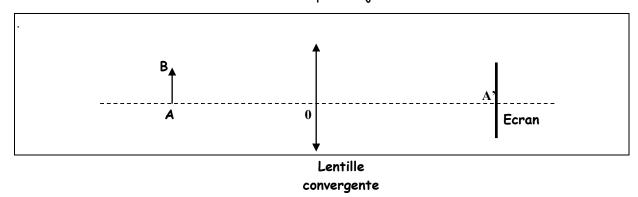
$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$$

 \overline{OA} est une grandeur algébrique repérant la position de l'objet lumineux (par rapport à la lentille).


 \overline{OA} ' est une grandeur algébrique repérant la position de l'image correspondante (par rapport à la lentille)

 \overline{OF} ' est la position entre la lentille et le foyer image. Cette distance est appelée la distance focale. On la note aussi f'.

Pour simplifier les calculs, on posera \overline{OA} = x et $\overline{OA'}$ = x' et on peut donc utiliser la relation simplifiée : $\frac{1}{x'} - \frac{1}{x} = \frac{1}{f'}$


I.2. Matériel utilisé (voir schéma ci-dessous) pour vérifier la relation de Descartes est :

- Un banc optique
- Un objet lumineux (source lumineuse avec une lettre F)
- Une lentille mince convergente de distance focale f'th = 100 mm + son support
- Un écran + son support

I.3. Modélisation de la situation expérimentale

La lettre F sera modélisée ci-dessous par l'objet AB.

I.4. Elaboration

A l'aide de l'équation de Descartes et vos connaissances du cours, compléter le tableau ci-dessous et retrouver la relation de conjugaison de Descartes.

×(m)	-0,400	-0,300	-0,250	-0,200	-0,150
×'(m)					

1) Créer la grandeur A = $\frac{1}{x}$ et B = $\frac{1}{y}$ avec y = x'

$A = \frac{1}{x}$			
$B = \frac{1}{y}$			

- 2) Tracer la courbe : B = f(A).
- 3) Montrer que l'équation obtenue a la même forme que la relation de conjugaison de Descartes
- 4) L'énoncé indique une lentille de distance focale f'_{th} = 100 mm. Déterminer alors l'écart relatif $\eta = \frac{\left|f'_{th} f'_{\text{exp}}\right|}{f'_{th}} \times 100$.
- 5) Conclure.

Rappel: La vergence C est définie par C = 1/f'. Si f' s'exprime en mètres (m), C s'exprime en dioptrie (d), sachant que C = 9,713 δ

Dr B. BOUDOUR